第5章-频谱的线性搬移电路
合集下载
第5章 频谱的线性搬移电路

π
2 2 g DU 1 cos(3ω 2 − ω1 )t − g DU 1 cos(3ω 2 + ω1 )t 3π 3π 2 + g DU 1 cos(ω 2 + ω1 )t −
π
2 2 + g DU 1 cos(5ω 2 − ω1 )t + g DU 1 cos(5ω 2 − ω1 )t + ⋅ ⋅ ⋅ 5π 5π
VD iD
i
+ - + -
2011-12-7
+
u1 H(jω) u2 uo
gD
-
0
u
9
第5章 频谱的线性搬移电路
分析方法: 分析方法:用时变分析方法。 假定u1<<u2,则二极管工作状态由u2控制。这时二极管用一 个受u2控制的开关来等效: u2 ≥ 0 g DuD iD = u2 < 0 0 假设u 2 = U 2 cos ω 2t ⇒
Hale Waihona Puke 举例:平衡电路的另一种实用形式——二极管桥式电路。 举例: 特点是省去了带中心抽头的变压器。 图(a) 原理电路;图(b)实际电路 当u2>0,四个二极管截止,uAB=u1; 当u2<0,四个二极管导通(AB短路),uAB=0。 所以,输出电压为uo=uAB=K(ω2t)u1。
2011-12-7
17
第5章 频谱的线性搬移电路
考虑负载电阻的反作用: 考虑负载电阻的反作用:负载电阻对电流的影响,用反映 电阻来描述。 (1)变压器次级负载为宽带电阻(纯电阻)RL。 初级两端反映电阻为4RL,D1、D2支路均为2RL 。
1 gD g= ⇒ iL = 2 gK (ω2t )u1 = 2 K (ω2t )u1 1 / g D + 2 RL 1 + 2 g D RL
高频电子线路 第五章 频谱的线性搬移电路

凡是 p + q 为偶数的组合分量,均由幂级数中n 为偶数且 大于等于 p + q 的各次项产生的;
凡是 p + q 为奇数的组合分量,均由幂级数中n 为奇数且 大于等于 p + q 的各次项产生的;
当的幅度较小时,组和分量的强度随 p +q 的增大而减小。
结论:
①.当多个信号作用于非线性器件时,通过非线性 作用,输出端所含分量为:
结论:
① .倍频作用。在非线性器件的输入端加单一频率 信号时,输出端除了有输入信号频率之外,还有 输入信号的各次谐波—非线性电路的倍频作用。
②.平方律波作用。输出的直流分量1/2 C2U2,其 大小与正弦分量的振幅平方成正比关系—检出正 弦波的振幅变化。
B. 有两个输入信号作用的情况
如图5-2所示,若作用在非线性器件上的两
其以上各次方项,则该式化简为
i f (EQ u2 ) f (EQ u2 )u1
(5-13)
与u1无关的系数
u2都随时间变化
i I0(t) g(t)u1
(5-14)
考虑到 u1和 u2 都是余弦信号, u1=U1cosω1t
u2
= U2cosω2t ,时变偏置电压 EQ(t)= EQ+U2cosω2t为一周期
u2)u12
1 n!
f
(n) (EQ
u2 )u1n
(5-11)
与式(5-5)相对应,有
f (EQ u2 ) anu22
n0
f (EQ u2 ) nanu2n1
n 1
f (EQ u2 ) 2! Cnm2anu2n2
n2
(5-12)
若u1 足够小,可以忽略式(5-11)中 u1 的二次方及
凡是 p + q 为奇数的组合分量,均由幂级数中n 为奇数且 大于等于 p + q 的各次项产生的;
当的幅度较小时,组和分量的强度随 p +q 的增大而减小。
结论:
①.当多个信号作用于非线性器件时,通过非线性 作用,输出端所含分量为:
结论:
① .倍频作用。在非线性器件的输入端加单一频率 信号时,输出端除了有输入信号频率之外,还有 输入信号的各次谐波—非线性电路的倍频作用。
②.平方律波作用。输出的直流分量1/2 C2U2,其 大小与正弦分量的振幅平方成正比关系—检出正 弦波的振幅变化。
B. 有两个输入信号作用的情况
如图5-2所示,若作用在非线性器件上的两
其以上各次方项,则该式化简为
i f (EQ u2 ) f (EQ u2 )u1
(5-13)
与u1无关的系数
u2都随时间变化
i I0(t) g(t)u1
(5-14)
考虑到 u1和 u2 都是余弦信号, u1=U1cosω1t
u2
= U2cosω2t ,时变偏置电压 EQ(t)= EQ+U2cosω2t为一周期
u2)u12
1 n!
f
(n) (EQ
u2 )u1n
(5-11)
与式(5-5)相对应,有
f (EQ u2 ) anu22
n0
f (EQ u2 ) nanu2n1
n 1
f (EQ u2 ) 2! Cnm2anu2n2
n2
(5-12)
若u1 足够小,可以忽略式(5-11)中 u1 的二次方及
第5章 频谱的线性搬移电路

《高频电路原理与分析》
第5章 频谱的线性搬移电路
频谱搬移的数学模型 幂级数展开法和线性时变分析法 非线性器件 二极管、三极管、场效应管、集成模拟乘法器
《高频电路原理与分析》
第5章 频谱的线性搬移电路
5.1 非线性电路的分析方法
5.1.1 非线性函数的级数展开分析法
非线性器件的伏安特性
i f (u )
m 0
m m anCn u1n mu2n
i
m 0
n
an C u
m n m m n 1 2
m 0
m m anCn u1n mu2
u
第5章 频谱的线性搬移电路
1. 若u1=U1cosω1t, u2=0,有
i
n 0
i a u cos tanU1n cos n1t a u a U n 1 n0
第5章 频谱的线性搬移电路
第5章
频谱的线性搬移电路
5.1 非线性电路的分析方法 5.2 二极管电路 5.3 差分对电路 5.4 其它频谱线性搬移电路
《高频电路原理与分析》
第5章 频谱的线性搬移电路
频谱搬移电路的分类 频谱的线性搬移——振幅调制与解调、混频、倍频 频谱非线性搬移——频率调制与解调、相位调制与解调
在EQ+u2上对u1用泰勒级数展开,有
i f EQ u2 f EQ u2 u1
若u1足够小,可忽略u1的二次方及其以上各次方项,则该式为
f EQ u2 I 0 t
时变静态电流
i f ( EQ u2 ) f ( EQ u2 )u1
f EQ u2 g t
e
x2 cos 2t
第五章频谱的线性搬移电路讲解

非线性器件,并选择静态工作点使其工作于接近平方律
的区域。
iD
I DSS (1
uGS VP
)2
iD / mA IDSS
8
6
4
-2
Q 2
-2
-1
VP
0 uGB
(a)
信息学院
结束
(1-10)
第五章 频谱的线性搬移电路
高频电路原理与分析
(2)从频谱搬移电路考虑,采用多个非线性器件组成平衡 电路,抵消一部分无用的组合频率分量。 (3)从输入信号的大小考虑,应减小输入信号的幅度,以 便有效地减小高阶相乘项产生的组合频率分量的强度。
i f (EQ u1 u2 )
f (EQ u2 ) f (EQ u2(1-12)
第五章 频谱的线性搬移电路
高频电路原理与分析
•
式中f(EQ+u2)是当输入信号u1=0时的电流,称
为时变静态电流或时变工作点电流,f′ (EQ+u2)称为
时变增益或时变电导。
•
所谓时变是指f(EQ+u2)和 f′ (EQ+u2)与u1无关,
• 为二项式系数,故
n
i
C
m n
u1n
m
u
m 2
n0 m0
• 令 u2 0 u1 U1 cos1t
i
anu1n
anU
n 1
c osn
1t
n0
n0
bnU
n 1
c os n1t
n0
信息学院
结束
(1-6)
第五章 频谱的线性搬移电路
高频电路原理与分析
• 结论:
• 1. 当单一频率信号作用于非线性器件时,在输出电 流中不仅包含了输入信号的频率分量ω1,而且还包含 了该频率分量的各次谐波分量n ω1(n=2,3,…), 可用于倍频电路。
第五章频谱的线性搬移电路资料

第五章 频谱的线性搬移电路
5.1 非线性电路的分析方法
5.1.1 非线性函数的级数展开分析法
非线性器件的伏安特性: i f (u) f (UQ u1 u2 )
UQ为静态工作点,u1、u2为两个输入电压。将函数在UQ展开有:
i a0 a1(u1 u2 ) a2 (u1 u2 )2 an (u1 u2 )n
c os32t
3 4
a3U12U 2
c os21
2
t
3 4
a3U12U 2
c os21
2
t
3 4
a3U1
U
2 2
c os22
1 t
3 4
a3U1
U
2 2
c os22
1 t
5
模模 拟拟 电电 子子 线线 路路
第五章 频谱的线性搬移电路
除了基波分量外,产生了新的频率分量。
谐波分量 组合频率分量
21, 22 , 31, 32 , ...
1 2 , 1 22 , 21 2 , ...
频率分量特性
p1 q2
pqn
(p和q为包括零在内的正整数)
偶次频率分量(包括直流、偶次谐波、和p+q为偶数) 只和幂级数偶次项系数有关;奇次频率分量只和奇次项系
数有关。
m次频率分量,其振幅只和幂级数中m次项的系数有关。
• 所有的频率分量总是成对出现的: p1 q2
• 时变参量元件:非线性电阻的参量 i
(电导)取决于大信号,而与小信号
无关。若大信号是时变的,则元件的
参量(电导)也是时变的,称为时变
参量元件。
v
• 时变参量电路:含有时变参量元件的 电路称为时变参量电路,也可称为时
Chapter5 频谱的线性搬移电路

cos(2 2 1 )t
cos(2 2 1 ) t ]
频率分量为 q 2
q 2 1 , q 0,1, 2
选出其中的ω0=ω2±ω1即可用于AM的调制、 解调、混频电路 优点:相对与幂级数分析法,该法分解的无用 频率分量大大减少 条件:u1足够小
从频谱结构看,上述频率变换电路都只是对输入信号频 谱实行横向搬移而不改变原来的谱结构,因而都属于所谓的 线性频率变换。
5 .频谱搬移的数学模型: 幂级数展开法 线性时变分析法 6.非线性器件有: 二极管、三极管、场效应管、集成模拟乘法器等。
待解决的问题:
1.为什么非线性器件有频率生成功能?(5.1节) 2.我们需要生成什么样的频谱?(6.1/6.2/ 6.3节) 3.我们要如何来构造具体的电路形式?(5.2/5.3/5.4节)
( x y ) 2 x 2 2 xy y 2 ( x y ) 3 x 3 3 x 2 y 3 xy 2 y 3 ( x y ) 4 x 4 4 x 3 y 6 x 2 y 2 4 xy 3 y 4 ( x y ) 5 x 5 5 x 4 y 10 x 3 y 2 10 x 2 y 3
一般情况下
u=EQ+u1+u2,
其中EQ为静态工作点,u1和u2为两个输入电压。 用泰勒级数将上式在静态工作点EQ处展开,可得
i a 0 a1 ( u1 u 2 ) a 2 ( u1 u 2 ) 2 a n ( u1 u 2 ) n a n ( u1 u 2 ) n
i f ( EQ u1 u 2 ) 1 f ( EQ u2 ) f ( EQ u 2 )u1 f ( E Q u 2 )u12 2! 1 (n) U2的n f ( EQ u2 )u1n 次方 n!
第五章 频谱的线性搬移

有用分量
2a2u1u2 a2U1U 2 cos 1 2 t a2U1U 2 cos 1 2 t
第 5章
16
频谱搬移通过提取两个信号的和频与差频实现。实现理想乘法 运算,减少无用组合频率数目和强度是重要目标。 (1)从非线性器件的特性考虑:选用具有平方律特性的场效应管; 选择器件工作特性接近平方律的区域。 (2)从电路考虑,采用平衡等措施,抵消无用分量,加强有用分量。 (3)从输入信号大小考虑,限制输入信号振幅,减小高阶项强度。
第五章 频谱的线性搬移电路
5.1 非线性电路的分析方法 5.2 二极管电路 5.3 差分对电路 5.4 其它频谱线性搬移电路
信息科学技术学院 电子信息科学与技术系
高频电子线路
第 5章
1
概述
频谱搬移电路:将输入信号进行频谱变换,获得具有所需 频谱的输出信号,分为线性搬移电路和非线性搬移电路。 线性搬移电路:频谱搬移前后的频率分量的比例关系不变。 例如:幅度调制与解调,混频电路等。
u1
非线性 器 件 u2
滤波器
滤除无 用分量
n
uo
有用 信号
信号i f u
a u
n 0 n
1
u2 包含频率组合分量为:
p ,q p1 q2
经滤波器滤除无用分量后,有用频率分量(和频与差频分量)为
1,1 1 2 ,此时p=q=1
该频率分量由二个信号的二次乘积项/交叉项产生:
f U Q u1 u2
式中, u 为加在非线性器件上的电压,其中 UQ 为 静态工作点, 用泰勒级数将上式在静态工作点UQ展开:
i a0 a1 u1 u2 a2 u1 u2 an u1 u2
第5章频谱的线性搬移电路资料

第5章 频谱的线性搬移电路
引言
前面在分析高频电路基础上介绍了: 1、高频放大器(小信号、功率) 2、正弦波振荡器
下面将介绍另一类电路:频率搬移与控制电路,包括: 1、线性搬移及应用(5、6章):主要用于幅度调制与解调、
混频等 2、非线性搬移及应用(7章):频率调制与解调、相位调
制与解调 3、反馈控制(8章):包括AGC、AFC、APC(PLL)
《高频电子线路》
11
第5章 频谱的线性搬移电路
二、 线性时变电路分析法 1、线性时变参数分析法的原理 对式(5-1)在UQ+u2上对u1用泰勒级数展开,有
i f (UQ u1 u2 )
f
(UQ
u2 )
f
(UQ
u2 )u1
1 2!
f
(UQ
u2 )u12
1 n!
f
(n) (UQ
u2 )u1n
n
i
anCnmu1nmu2m
n0 m0
(5-5)
下面分别进行分析。
《高频电子线路》
6
第5章 频谱的线性搬移电路
2、只输入一个余弦信号时
先来分析一种最简单的情况。令u2=0,即只有一个输入信
号,且令u1=U1cosω1t,代入式(5-2),有:
(5-6)
i anu1n anU1n cosn 1t
1、非线性函数的泰勒级数
非线性器件的伏安特性,可用下面的非线性函数来
表示:
i f (u)
(5-1)
式中,u为加在非线性器件上的电压。一般情况下,
u=UQ+u1+u2,其中UQ为静态工作点,u1和u2为两个输入 电压。用泰勒级数将式(5-1)展开,可得
引言
前面在分析高频电路基础上介绍了: 1、高频放大器(小信号、功率) 2、正弦波振荡器
下面将介绍另一类电路:频率搬移与控制电路,包括: 1、线性搬移及应用(5、6章):主要用于幅度调制与解调、
混频等 2、非线性搬移及应用(7章):频率调制与解调、相位调
制与解调 3、反馈控制(8章):包括AGC、AFC、APC(PLL)
《高频电子线路》
11
第5章 频谱的线性搬移电路
二、 线性时变电路分析法 1、线性时变参数分析法的原理 对式(5-1)在UQ+u2上对u1用泰勒级数展开,有
i f (UQ u1 u2 )
f
(UQ
u2 )
f
(UQ
u2 )u1
1 2!
f
(UQ
u2 )u12
1 n!
f
(n) (UQ
u2 )u1n
n
i
anCnmu1nmu2m
n0 m0
(5-5)
下面分别进行分析。
《高频电子线路》
6
第5章 频谱的线性搬移电路
2、只输入一个余弦信号时
先来分析一种最简单的情况。令u2=0,即只有一个输入信
号,且令u1=U1cosω1t,代入式(5-2),有:
(5-6)
i anu1n anU1n cosn 1t
1、非线性函数的泰勒级数
非线性器件的伏安特性,可用下面的非线性函数来
表示:
i f (u)
(5-1)
式中,u为加在非线性器件上的电压。一般情况下,
u=UQ+u1+u2,其中UQ为静态工作点,u1和u2为两个输入 电压。用泰勒级数将式(5-1)展开,可得
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
i
anCnmu1nmu2m
n0 m0
(5-5)
下面分别进行分析。
《高频电子线路》
8
第5章 频谱的线性搬移电路
2、只输入一个余弦信号时
先来分析一种最简单的情况。令u2=0,即只有一个输入信 号,且令u1=U1cosω1t,代入式(5-2),有:
i anu1n anU1n cosn 1t
《高频电子线路》
3
第5章 频谱的线性搬移电路
频谱搬移的原因:信号调制 例:幅度调制(调幅):
由信号 u 控制载波 uc 的幅度。
设载波为: uc Uc cosct
调制电压: u U cos t
则调制信号为:
um (Uc kau ) cosct =(Uc kaU cos t) cosct
《高频电子线路》
p q
p,q p1 q 2
通常,把p+q称为组合分量的阶数。
(5-9) (5-10)
《高频电子线路》
12
第5章 频谱的线性搬移电路
通过以上分解式可得: (1) 多个信号作用于非线性电路时,其输出端包含多种频率成
分:基波、各次谐波以及各种组合分量,其中绝大多数频 率成分是不需要的。 (2) 在频谱搬移电路中,必须包含选频电路,以滤除不必要的 成分。 (3) 在频率搬移电路中,如何减少无用的组合分量的数目及其 强度,是非常重要的。 级数展开分析法特点:该方法是一种理论分析方法,适用于一 切形式的非线性电路,但不适宜于工程应用。
4
第5章 频谱的线性搬移电路
调制信号频谱:
um (Uc kau ) cosct
=(Uc kaU cos t) cosct
=U c
(1
kaU Uc
cos
t)
cos ct
=Uc (1 m cos t) cosct
=uc
2
Uc[cos(c
t)
cos(c
t)]
结论:单频调幅波包含三个频率分
量: c ,c ,c 。调幅的 实质是频谱搬移,即把频率为 的信 号搬移至载波频率 c 附近。
《高频电子线路》
11
第5章 频谱的线性搬移电路
例如:若作用在非线性器件上的两个电压均为余弦信
号,即u1=U1cosω1t, u2=U2cosω2t,利用式(5-7)和三角函 数的积化和差公式
cosx cos y 1 cos(x y) 1 cos(x+y)
2
2
i
C p,q cos(p1 q 2 )t
《高频电子线路》
13
第5章 频谱的线性搬移电路
二、 线性时变电路分析法 1、线性时变参数分析法的原理 对式(5-1)在EQ+u2上对u1用泰勒级数展开,有
《高频电子线路》
5
单频调制信号频谱
第5章 频谱的线性搬移电路
5.1 非线性电路的分析方法
频谱搬移实现要求:电路必须能够产生新的频率成分。 频谱搬移实现方法:使用非线性电路。
线性电阻上电压电流波形
二极管上电压电流波形
非线性电路的分析方法:级数展开法和时变参数分析法。
《高频电子线路》
6
第5章 频谱的线性搬移电路
一、非线性函数的级数展开分析法
1、非线性函数的泰勒级数 非线性器件的伏安特性,可用下面的非线性函数来表示:
i f (u)
(5-1)
式中, u为加在非线性器件上的电压。一般情况下,
u=EQ+u1+u2, 其中EQ为静态工作点, u1和u2为两个输入电 压。用泰勒级数将式(5-1)展开, 可得
i a0 a1(u1 u2 ) a2 (u1 u2 )2 an (u1 u2 )n
3、正弦波振荡器
反馈式振荡器的平衡条件,三点式振荡器的起振判断条件,电路 结构,克拉泼,西勒电路的计算,晶体振荡器的特点等。
下面学习频率变换电路电路,包括频谱的线性搬移和非线 性搬移电路及其应用。
《高频电子线路》
1
第5章 频谱的线性搬移电路
第5章 频谱的线性搬移电路
5.1 非线性电路的分析方法 5.2 二极管电路 5.3 差分对电路 5.4 其它频谱线性搬移电路
《高频电子线路》
2
第5章 频谱的线性搬移电路
频谱搬移的概念:频谱搬移电路是通信系统最基本的单元电 路之一,主要完成将信号频谱从一个位置搬移至另一个位置。 频谱搬移的分类:频谱的线性搬移和非线性搬移两大类。
f
f
0
0
fc
(a)
f
f
0
0
fc
(b)
图5-1 频谱搬移电路 (a)频谱的线性搬移;(b)频谱的非线性搬移
an (u1 u2 )n
n0
(5-2)
《高频电子线路》
7
第5章 频谱的线性搬移电路
式中,an(n=0,1,2,…)为各次方项的系数,由下式确定:
an
1 d n f (u) n! dun
u EQ
1 n!
f
n (EQ )
n
(u1 u2 )n
Cnmu1nmu2m
m0
(5-3) (5-4)
式中,Cmn=n!/m!(n-m)!为二项式系数,故
n0
n0
(5-6)
1
cosn
x
1 2n
[Cnn / 2
1 (n1)
12 2n1
k 0
2 k 0
Cnk
Cnk cos(n 2k)x] cos(n 2k)x
n为偶数 n为奇数
(5-7)
故
i bnU1n cos n1t
(5-8)
n0
《高频电子线路》
9
第5章 频谱的线性搬移电路
由(5-8)式可得: (1) 单一频率信号作用于非线性电路时,其输出除包含原 来频率成分外,还有其多次谐波成分。 (2) 如果在其输出端加一窄带滤波器,可作为倍频电路。 (3) 若要使输出包含任意所需频率成分(即在输出有任意 频率成分),不能在非线性电路输入端只输入一个单一 频率信号来完成。
《高频电子线路》
10
第5章 频谱的线性搬移电路
3、同时输入两个信号
u1
非线性 器件
滤波器
uo
u2
图5-2 非线性电路完成频谱的搬移
为了便于区别,u1称为输入信号,为要处理的信号,通 常占据一定带宽,u2 称为参考信号或控制信号,通常为单一 频率成分信号(通常频谱搬移电路中有f2>>f1)。
由式(5-5)可得,此时除包含两个输入信号成分外,还包 括各种乘积项u1 n-m u2 m
第5章 频谱的线性搬移电路
回顾
1、高频电路基础
谐振电路:谐振频率,谐振阻抗,Q值,带宽,特性曲线等; 单,多回路,抽头回路等。
2、高频放大器(小信号、功率):
小信号:甲类工作状态,谐振回路作负载,Y参数模型,共射放大 倍数,提高稳定性方法(中和,失配)等;
功率: 丙类工作状态,谐振回路作负载,图解法,集电极电流 是余弦脉冲,功放的三个工作状态,外部特性,馈电等。