高考物理带电粒子在复合场中的运动技巧和方法完整版及练习题

高考物理带电粒子在复合场中的运动技巧和方法完整版及练习题
高考物理带电粒子在复合场中的运动技巧和方法完整版及练习题

一、带电粒子在复合场中的运动专项训练

1.下图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面向外的匀强磁场.其中MN 和M N ''是间距为h 的两平行极板,其上分别有正对的两个小孔O 和

O ',O N ON d ''==,P 为靶点,O P kd '=(k 为大于1的整数)。极板间存在方向向上的匀强电场,两极板间电压为U 。质量为m 、带电量为q 的正离子从O 点由静止开始加

速,经O '进入磁场区域.当离子打到极板上O N ''区域(含N '点)或外壳上时将会被吸收。两虚线之间的区域无电场和磁场存在,离子可匀速穿过。忽略相对论效应和离子所受的重力。求:

(1)离子经过电场仅加速一次后能打到P 点所需的磁感应强度大小; (2)能使离子打到P 点的磁感应强度的所有可能值;

(3)打到P 点的能量最大的离子在磁场中运动的时间和在电场中运动的时间。 【来源】2015年全国普通高等学校招生统一考试物理(重庆卷带解析) 【答案】(1)22qUm B =

(2)22nqUm

B =,2(1,2,3,,1)n k =-(3)

22

22(1)t qum k -磁,2

2(1)=k m t h qU

-电 【解析】 【分析】

带电粒子在电场和磁场中的运动、牛顿第二定律、运动学公式。 【详解】

(1)离子经电场加速,由动能定理:

2

12

qU mv =

可得2qU

v m

=

磁场中做匀速圆周运动:

2

v qvB m r

=

刚好打在P 点,轨迹为半圆,由几何关系可知:

2

kd r =

联立解得B =

; (2)若磁感应强度较大,设离子经过一次加速后若速度较小,圆周运动半径较小,不能直接打在P 点,而做圆周运动到达N '右端,再匀速直线到下端磁场,将重新回到O 点重新加速,直到打在P 点。设共加速了n 次,有:

212

n nqU mv =

2n

n n

v qv B m r =

且:

2

n kd r =

解得:B =

要求离子第一次加速后不能打在板上,有

12

d r >

且:

2112

qU mv =

2

111

v qv B m r =

解得:2n k <,

故加速次数n 为正整数最大取21n k =- 即:

B =

2(1,2,3,

,1)n k =-;

(3)加速次数最多的离子速度最大,取21n k =-,离子在磁场中做n -1个完整的匀速圆周运动和半个圆周打到P 点。 由匀速圆周运动:

22r m

T v qB

ππ=

=

22=(1)222(1)

T t n T qum k -+=-磁

电场中一共加速n 次,可等效成连续的匀加速直线运动.由运动学公式

221(1)2

k h at -=

电 qU

a mh

=

可得:22(1)=k m

t h qU -电

2.如图,绝缘粗糙的竖直平面MN 左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E ,磁场方向垂直纸面向外,磁感应强度大小为B .一质量为m 、电荷量为q 的带正电的小滑块从A 点由静止开始沿MN 下滑,到达C 点时离开MN 做曲线运动.A 、C 两点间距离为h ,重力加速度为g .

(1)求小滑块运动到C 点时的速度大小v c ;

(2)求小滑块从A 点运动到C 点过程中克服摩擦力做的功W f ;

(3)若D 点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D 点时撤去磁场,此后小滑块继续运动到水平地面上的P 点.已知小滑块在D 点时的速度大小为v D ,从D 点运动到P 点的时间为t ,求小滑块运动到P 点时速度的大小v p .

【来源】2015年全国普通高等学校招生统一考试物理(福建卷带解析) 【答案】(1)E/B (2)(3)

【解析】 【分析】 【详解】

小滑块到达C 点时离开MN ,此时与MN 间的作用力为零,对小滑块受力分析计算此时的速度的大小;由动能定理直接计算摩擦力做的功W f ;撤去磁场后小滑块将做类平抛运动,根据分运动计算最后的合速度的大小;

(1)由题意知,根据左手定则可判断,滑块在下滑的过程中受水平向左的洛伦兹力,当洛伦兹力等于电场力qE 时滑块离开MN 开始做曲线运动,即Bqv qE =

解得:E v B

=

(2)从A 到C 根据动能定理:2

102

f mgh W mv -=

- 解得:2

212f E W mgh m B

=-

(3)设重力与电场力的合力为F ,由图意知,在D 点速度v D 的方向与F 地方向垂直,从D 到P 做类平抛运动,在F 方向做匀加速运动a=F /m ,t 时间内在F 方向的位移为212

x at = 从D 到P ,根据动能定理:150a a +=,其中2114

mv 联立解得:()

2

2

222

()P D

mg qE v t v m +=

+ 【点睛】

解决本题的关键是分析清楚小滑块的运动过程,在与MN 分离时,小滑块与MN 间的作用力为零,在撤去磁场后小滑块将做类平抛运动,根据滑块的不同的运动过程逐步求解即可.

3.如图所示,待测区域中存在匀强电场和匀强磁场,根据带电粒子射入时的受力情况可推测其电场和磁场. 图中装置由加速器和平移器组成,平移器由两对水平放置、相距为l 的相同平行金属板构成,极板长度为l 、间距为d,两对极板间偏转电压大小相等、电场方向相反. 质量为m 、电荷量为+q 的粒子经加速电压U0 加速后,水平射入偏转电压为U1 的平移器,最终从A 点水平射入待测区域. 不考虑粒子受到的重力.

(1)求粒子射出平移器时的速度大小v1;

(2)当加速电压变为4U0 时,欲使粒子仍从A 点射入待测区域,求此时的偏转电压U; (3)已知粒子以不同速度水平向右射入待测区域,刚进入时的受力大小均为F. 现取水平向右为x 轴正方向,建立如图所示的直角坐标系Oxyz. 保持加速电压为U0 不变,移动装置使粒子沿不同的坐标轴方向射入待测区域,粒子刚射入时的受力大小如下表所示.

请推测该区域中电场强度和磁感应强度的大小及可能的方向.

【来源】2012年普通高等学校招生全国统一考试理综物理(江苏卷) 【答案】(1)0

12qU v m

=

(2)1U?4U = (3)E 与Oxy 平面平行且与x 轴方向的夹角为30°或150°,

若B 沿-x 轴方向,E 与Oxy 平面平行且与x 轴方向的夹角为-30°或-150°. 【解析】

(1)设粒子射出加速器的速度为0v 动能定理2001

2

qU mv =

由题意得10v v =,即0

12qU v m

=

(2)在第一个偏转电场中,设粒子的运动时间为t 加速度的大小1

qU a md

=

在离开时,竖直分速度y

v at = 竖直位移2

112

y at =

水平位移1

l v t = 粒子在两偏转电场间做匀速直线运动,经历时间也为t 竖直位移2y y v t =

由题意知,粒子竖直总位移12

y?2y y =+ 解得2

10U l y U d

=

则当加速电压为04U 时,1U?4U =

(3)(a)由沿x 轴方向射入时的受力情况可知:B 平行于x 轴. 且F

E q

= (b)由沿y +

-轴方向射入时的受力情况可知:E 与Oxy 平面平行.

222F f (5F)+=,则f?2F =且1f?qv B =

解得0

2F m

B B

qU =

(c)设电场方向与x 轴方向夹角为

.

若B 沿x 轴方向,由沿z 轴方向射入时的受力情况得222sin )(cos )(7)f F F F αα++=( 解得

=30°,或

=150°

即E 与Oxy 平面平行且与x 轴方向的夹角为30°或150°. 同理,若B 沿-x 轴方向

E 与Oxy 平面平行且与x 轴方向的夹角为-30°或-150°.

4.如图所示,在平面直角坐标系xOy 中的第一象限内存在磁感应强度大小为B 、方向垂直于坐标平面向里的有界矩形匀强磁场区域(图中未画出);在第二象限内存在沿x 轴负方向的匀强电场。一粒子源固定在x 轴上坐标为(),0L -的A 点。粒子源沿y 轴正方向释放出速度大小为0v 的电子,电子通过y 轴上的C 点时速度方向与y 轴正方向成45α=角,电子经过磁场偏转后恰好垂直通过第一象限内与x 轴正方向成15β=角的射线OM 已知电子的质量为m ,电荷量为e ,不考虑粒子的重力和粒子之间的相互作用)。求:

()1匀强电场的电场强度E 的大小; ()2电子在电场和磁场中运动的总时间t ()3矩形磁场区域的最小面积min S 。

【来源】湖南省怀化市2019年高考物理一模物理试题

【答案】(1)20

2mv eL

;(2)0223L m v eB π+;203()mv eB 【解析】 【详解】

()1电子从A 到C 的过程中,由动能定理得:2

20112

2

C eEL mv mv =-

0cos45C v v =

联立解得:2

2mv E eL

=

()2电子在电场中做类平抛运动,沿电场方向有:1sin 2

C v L t α

=

其中0

cos C v v α

=

由数学知识知电子在磁场中的速度偏向角等于圆心角:23

πθ= 电子在磁场中的运动时间:22t T θπ

=

其中

2m T

eB

π=

电子在电场和磁场中运动的总时间12

t t t

=+

联立解得:

22

3

L m

t

v eB

π

=+

()3电子在磁场中做匀速圆周运动,洛伦兹力提供向心力,

则有

2

C

v

evB m

r

=

最小矩形区域如图所示,

由数学知识得:2sin

2

CD r

θ

=?cos

2

CQ r r

θ

=-

最小矩形区域面积:min

S CD CQ

=?

联立解得:2

3()

mv

Smin

eB

=

5.平面直角坐标系的第一象限和第四象限内均存在垂直纸面向里的匀强磁场,磁感应强度大小分别为2B和B(B的大小未知),第二象限和第三象限内存在沿﹣y方向的匀强电场,x轴上有一点P,其坐标为(L,0)。现使一个电量大小为q、质量为m的带正电粒子从坐标(﹣2a,a)处以沿+x方向的初速度v0出发,该粒子恰好能经原点进入y轴右侧并在随后经过了点P,不计粒子的重力。

(1)求粒子经过原点时的速度;

(2)求磁感应强度B的所有可能取值

(3)求粒子从出发直至到达P点经历时间的所有可能取值。

【来源】2019年东北三省四市高考二模物理试题

【答案】(12v0,方向:与x轴正方向夹45°斜向下;

(2)磁感应强度B 的所有可能取值:0

nmv B qL

=

n =1、2、3……; (3)粒子从出发直至到达P 点经历时间的所有可能取值:023(1)24a m m t k k v qB qB

ππ=++- k =1、2、3……或02324a m m

t n n v qB qB

ππ=++ n =1、2、3……。 【解析】 【详解】

(1)粒子在电场中做类平抛运动,水平方向:2a =v 0t , 竖直方向:2

y v a t =

解得:v y =v 0,tan θ=

y v v =1,θ=45°,

粒子穿过O

点时的速度:0v ==;

(2)粒子在第四象限内做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:

2

v qvB m r

= ,

粒子能过P 点,由几何知识得:L =nr cos45° n =1、2、3……, 解得:0

nmv B qL

=

n =1、2、3……; (3)设粒子在第二象限运动时间为t 1,则:t 1=0

2a

v ;

粒子在第四、第一象限内做圆周运动的周期:12m T qB π=

,2m

T qB

π=, 粒子在下方磁场区域的运动轨迹为1/4圆弧,在上方磁场区域的运动轨迹为3/4圆弧, 若粒子经下方磁场直接到达P 点,则粒子在磁场中的运动时间:t 2=

1

4

T 1, 若粒子经过下方磁场与上方磁场到达P 点,粒子在磁场中的运动时间:t 2=1

4T 1+34

T 2, 若粒子两次经过下方磁场一次经过上方磁场到达P 点:t 2=2×

1

4T 1+34T 2, 若粒子两次经过下方磁场、两次经过上方磁场到达P 点:t 2=2×1

4T 1+2×34

T 2, ………… 则23(1)

24m

m

t k

k qB

qB

ππ=+- k =1、2、3……

或2324m

m

t

n

n

qB

qB

ππ=+ n =1、2、3…… 粒子从出发到P 点经过的时间:t =t 1+t 2, 解得:023(1)24a m m t k k v qB qB

ππ=++- k =1、2、3…… 或02324a m m t n n v qB qB

ππ=

++ n =1

、2、3……;

6.如图所示,直线y =x 与y 轴之间有垂直于xOy 平面向外的匀强磁场1B ,直线x =d 与y =x 间有沿y 轴负方向的匀强电场,电场强度41.010V/m E =?,另有一半径R =1.0m 的圆形匀强磁场区域,磁感应强度20.20T B =,方向垂直坐标平面向外,该圆与直线x =d 和x 轴均相切,且与x 轴相切于S 点.一带负电的粒子从S 点沿y 轴的正方形以速度0v 进入圆形磁场区域,经过一段时间进入磁场区域1B ,且第一次进入磁场1B 时的速度方向与直线y =x

垂直.粒子速度大小50 1.010m/s v =?,粒子的比荷为5

/ 5.010C/kg q m =?,粒子重力不

计.求:

(1)粒子在匀强磁场2B 中运动的半径r ; (2)坐标d 的值;

(3)要使粒子无法运动到x 轴的负半轴,则磁感应强度1B 应满足的条件; (4)在(2)问的基础上,粒子从开始进入圆形磁场至第二次到达直线y =x 上的最长时间( 3.14π=,结果保留两位有效数字).

【来源】天津市滨海新区2019届高三毕业班质量监测理科综合能力测试物理试题 【答案】(1)r =1m (2)4m d = (3)10.1B T ≤或10.24B T ≥ (4)56.210t s -≈? 【解析】

【详解】

解:(1) 由带电粒子在匀强磁场中运动可得:

2

0 20

v

B qv m

r

=

解得粒子运动的半径:1

r m

=

(2) 粒子进入匀强电场以后,做类平抛运动,设粒子运动的水平位移为x,竖直位移为y 水平方向:0

x v t

=

竖直方向:2

1

2

y at

=

Eq

a

m

=

tan45

v

at

?=

联立解得:2

x m

=,1

y m

=

由图示几何关系得:d x y R

=++

解得:4

d m

=

(3)若所加磁场的磁感应强度为

1

B',粒子恰好垂直打在y轴上,粒子在磁场运动半径为1r

由如图所示几何关系得:)

1

2

r y R

=+

2

v v

=

由带电粒子在匀强磁场中运动可得:

2

1

1

v

B qv m

r

'=

解得:

1

0.1

B T

'=

若所加磁场的磁感应强度为

1

B'',粒子运动轨迹与轴相切,粒子在磁场中运动半径为2r

由如图所示几何关系得:)

22

22

r r y R

=+

由带电粒子在匀强磁场中运动可得:

2

1

2

v

B qv m

r

''=

解得

1

21

0.24

10

B T T

''=≈

综上,磁感应强度应满足的条件为10.1B T ≤或10.24B T ≥

(4)设粒子在磁场2B 中运动的时间为1t ,在电场中运动的时间为2t ,在磁场1B 中运动的时间为3t ,则有:

1114t T =

10

2R

T v π=

20

x t v =

3212t T =

2

22r T v

π=

解得:()

55

1232 1.52210 6.210t t t t s s ππ--=++=-+?≈?

7.如图所示,空间存在方向垂直于xOy 平面向里的匀强磁场,在0d 的区域Ⅱ内的磁感应强度大小为2B .一个质量为m 、电荷量为-q 的粒子以速度

qBd

m

从O 点沿y 轴正方向射入区域Ⅰ.不计粒子重力.

(1) 求粒子在区域Ⅰ中运动的轨道半径: (2) 若粒子射入区域Ⅰ时的速度为2qBd

v m

= ,求粒子打在x 轴上的位置坐标,并求出此过程中带电粒子运动的时间;

(3) 若此粒子射入区域Ⅰ的速度

qBd v

m >

,求该粒子打在x轴上位置坐标的最小值.【来源】江苏省苏锡常镇四市2019届高三第二次模拟考试物理试题

【答案】(1)R d

=(2)()

43

OP d

=-

2

3

m

t

qB

π

=(3)

min

3

x d

=

【解析】

【分析】

【详解】

(1)带电粒子在磁场中运动,洛仑磁力提供向心力:

2

1

v

qv B m

r

=

qBd

v

m

=,代入上式,解得:R d

=

(2) 当粒子射入区域Ⅰ时的速度为0

2

v v

=时,如图所示

在OA段圆周运动的圆心在O1,半径为12

R d

=

在AB段圆周运动的圆心在O2,半径为R d

=

在BP段圆周运动的圆心在O3,半径为12

R d

=

可以证明ABPO3为矩形,则图中30

θ=,由几何知识可得:

13

2cos303

OO d d

==

所以:

3

23

OO d d

=

所以粒子打在x轴上的位置坐标(

133

243

OP O O OO d

=+=

粒子在OA段运动的时间为:

1

302

3606

m m

t

qB qB

ππ

==

粒子在AB段运动的时间为

2

1202

36023

m m

t

q B qB

ππ

==

粒子在BP段运动的时间为

31

302

3606

m m

t t

qB qB

ππ

===

在此过程中粒子的运动时间:12

2

2

3

m

t t t

qB

π

=+=

(3)设粒子在区域Ⅰ中轨道半径为R,轨迹由图

可得粒子打在x 轴上位置坐标:(

)22

222x R R d R d =--+

-

化简得:222340R Rx x d -++=

把上式配方:2

22213033R x x d ??--+= ??? 化简为:2

22213033R x x d ??-=-≥ ??

? 则当2

3

R x =

时,位置坐标x 取最小值:min 3x d =

8.如图所示,在竖直平面内的xoy 直角坐标系中,x 轴上方存在正交的匀强电场和匀强磁场,电场强度E 1,方向沿y 轴向上,磁感应强度B ,方向垂直纸面向里.x 轴下方存在方向沿y 轴向上的匀强电场(图中未画出),场强为E 2.质量为m 、电荷量为q 的带正电小球(可视为质点),从y 轴上的A 点以速度大小v 0沿x 轴正方向抛出,经x 轴上的P 点后与x 轴正向成45°进入x 轴上方恰能做匀速圆周运动.O 、P 两点间距离0x 与O 、A 两点间距离0y 满足以下关系,2

0020

2=y x g v ,重力加速度为g ,以上物理量中m 、q 、v 0、g 为已知量,其余量大小未知.

(1)电场强度E 1与E 2的比值

(2)若小球可多次(大于两次)通过P 点,则磁感应强度B 为多大?

(3)若小球可恰好两次通过P 点,则磁感应强度B 为多大?小球两次通过P 点时间间隔为多少?

【来源】安徽省黄山市2019届高中毕业班第二次质量检测高三理综物理试题

【答案】(1)1

2

;(2)

mg

B

qv

=;(3

1mg

B1

n qv

=+

()(n=1,2,3……..);

nv

t2

2g

=+

()(n=1,2,3……..)

【解析】

【分析】

【详解】

解:(1)小球在x轴上方匀速圆周,可得:1

qE mg

=

小球从A到P的过程做内平抛运动:00

x v t

=2

1

y at

2

=

结合:2

00

2

g

y x

2v

=

可得:a g

=

由牛顿第三定律可得:2

qE mg ma

-=

解得:2

qE2mg

=

故:1

2

E1

E2

=

(2) 小球第一次通过P点时与x轴正向成45?,可知小球在P点时则有:y0

v v

=

故P点时的速度:

v2v

=

由类平抛的位移公式可得:

2

v

x

g

=

小球多次经过P点,轨迹如图甲所示,小球在磁场中运动

3

4

个周期后,到达x轴上的Q 点,P、Q关于原点O对称,之后回到A并不断重复这一过程,从而多次经过P点

设小球在磁场中圆周运动的半径为R,由几何关系可得:

R2x

=

又由:

2

v

qvB m

R

=

联立解得:

mg

B

qv

=

(3)小球恰能两次经过P 点,轨迹如图乙所示 在x 轴上方,小球在磁场中的运动周期:2πm

T qB

= 在x

轴下方,小球的运动时间:00

20x 2v t 2

v g

== 由规律可知,小球恰能两次经过P 点满足的几何关系为:01

2x 2R 2R n

=+? (

n=1,

2,3……..)

解得:

1(1)mg

B n qv =+ (n=1,2,3……..) 两次通过P 点的时间间隔为:23(1)4

t n T nt =++ (n=1,2,3……..) 解得:0

3(2)2nv t g

π=+

(n=1,2,3……..)

9.如图所示,空间有相互平行、相距和宽度也都为L 的I 、II 两区域,I 、II 区域内有垂直于纸面的匀强磁场,I 区域磁场向内、磁感应强度为0B ,II 区域磁场向外,大小待定。现有一质量为m ,电荷量为q -的带电粒子,从图中所示的一加速电场中的MN 板附近由静止释放被加速,粒子经电场加速后平行纸面与I 区磁场边界成45°角进入磁场,然后又从I 区右边界成45°角射出。

(1)求加速电场两极板间电势差U ;

(2)若II 区磁感应强度也是0B 时,则粒子经过I 区的最高点和经过II 区的最低点之间的高度

差是多少?

(3)为使粒子能返回I 区,II 区的磁感应强度B 应满足什么条件?并求出粒子从左侧进入I 区到从左侧射出I 区需要的最长时间。

【来源】河南省南阳中学2019届高三下学期第十七次考试理综物理试题

【答案】(1)222

04q B L U m

=

(2)2h L = (3)0212B B +≥,

()

3224m t qB ππ=-+ 【解析】 【详解】

(1)画出粒子在磁场中运动的示意图,如图所示:

粒子在加速电场中根据动能定理可得2

12

qU mv =

粒子在I 区域做圆周运动,根据洛伦兹力提供向心力可得2

01

v qvB m R =

根据几何关系可得:122

R L =

联立可得加速电场两极板间电势差222

04q B L U m

=

(2)粒子在II 区域运动的半径与I 区域相同,

高度差由图中几何关系可得:()21h R cos Ltan θθ=-+ 可得:2h L =

(3)画出粒子刚好从II 区域右边界穿出磁场的临界状态,即轨迹圆与右边界相切的情况.

根据几何关系可得()21cos R L θ+≤,

解得021

2

B B +≥

可知当021

B B +=

时,粒子在II 区域中运动的时间最长,即粒子从左侧进入Ⅰ区到从左侧射出Ⅰ区的时间最长

粒子两次在I 区域运动的时间为10

1224m t qB π=?? 粒子两次在磁场之间的时间为20

224L m

t v qB == 粒子在II 区域运动的时间(

)30

32321

4m m

t qB

qB

ππ=

?=-

总时间()

1230

3224

m t t t t qB ππ=++=-+

10.如图,空间某个半径为R 的区域内存在磁感应强度为B 的匀强磁场,与它相邻的是一对间距为d ,足够大的平行金属板,板间电压为U 。一群质量为m ,带电量为q 的带正电的粒子从磁场的左侧以与极板平行的相同速度射入磁场。不计重力,则

(1)离极板AB 距离为

2

R

的粒子能从极板上的小孔P 射入电场,求粒子的速度? (2)极板CD 上多长的区域上可能会有带电粒子击中?

(3)如果改变极板的极性而不改变板间电压,发现有粒子会再次进入磁场,并离开磁场区域。计算这种粒子在磁场和电场中运动的总时间。

【来源】江苏省苏州新区一中2019届高三一摸模拟物理试题 【答案】(1)入射粒子的速度qBR

v m

=

;(2)带电粒子击中的长度为222222B R d q x mU

=;(3)总时间12

2m dBR t t t qB U π=+=+ 【解析】

【详解】

(1)洛伦兹力提供向心力,2

mv qvB r

=,解得

mv r qB = 根据作图可解得,能从极板上的小孔P 射入电场,r R = 所以,入射粒子的速度qBR

v m

=

(2)所有进入磁场的粒子都能从P 点射入电场,从最上边和最下边进入磁场的粒子将平行极板进入电场,这些粒子在垂直于电场方向做匀加速直线运动,F qU a m md

=

= 212

d at =

解得t =

沿极板运动的距离x vt ==

有带电粒子击中的长度为2x =

(3)能再次进入磁场的粒子应垂直于极板进入电场,在电场中运动的时间

122

v dBR t a U

== 在磁场中运动的时间为22

T

t =,22R m T v qB ππ== 所以2m

t qB

π=

总时间122m

dBR t t t qB

U

π=+=

+

11.如图,竖直平面内(纸面)存在平行于纸面的匀强电场,方向与水平方向成θ= 60°角,纸面内的线段MN 与水平方向成α=30°角,MN 长度为d .现将一质量为m 、电荷量为q (q >0)的带电小球从M 由静止释放,小球沿MN 方向运动,到达N 点的速度大小为N v (待求);若将该小球从M 点沿垂直于MN 的方向,以大小N v 的速度抛出,小球将经过M 点正上方的P 点(未画出),已知重力加速度大小为g ,求:

(l)匀强电场的电场强度E 及小球在N 点的速度N v ; (2)M 点和P 点之间的电势差;

(3)小球在P 点动能与在M 点动能的比值.

【来源】【市级联考】江西省南昌市2019届高三下学期4月第二次模拟考试理综物理试题 【答案】(1)2gd (2)4mgd q (3)7

3

【解析】 【详解】

解:(1)由小球运动方向可知,小球受合力沿MN 方向,如图甲,由正弦定理:

sin30sin30sin120

mg F Eq

== 得:3mg

E q

=

合力:F =mg

从M N →,有:2

2N ad υ=

得:2N gd υ=

(2)如图乙,设MP 为h ,作PC 垂直于电场线,小球做类平抛运动:

2

1cos602

h at

=

sin60N h t υ= cos30MC U Eh =

MP MC U U =

得:4MP mgd

U q

=

(3)如图乙,作PD 垂直于MN ,从M P →,由动能定理:MD KP KM FS E E =-

sin30MD S h =

21

2

KM N E mv =

7

3

KP MD KM KM KM E FS E E E +==

12.在空间中存在垂直于纸面向里的匀强磁场,其竖直边界AB 、CD 的宽度为d ,在边界AB 左侧是竖直向下、场强为E 的匀强电场,现有质量为m 、带电量为+q 的粒子(不计重力)从P 点以大小为v 0的水平初速度射入电场,随后与边界AB 成45°射入磁场,若粒子能垂直CD 边界飞出磁场,试求: (1)匀强磁场的磁感应强度B ; (2)从进入电场到穿出磁场的总时间。

【来源】陕西省汉中市汉台区2019届高三年级教学质量第一次检测考试物理试题

高中物理运动学经典习题30道 带答案

一.选择题(共28小题) 1.(2014?陆丰市校级学业考试)某一做匀加速直线运动的物体,加速度是2m/s2,下列关于该物体加速度的理解 D 9.(2015?沈阳校级模拟)一物体从H高处自由下落,经时间t落地,则当它下落时,离地的高度为() D 者抓住,直尺下落的距离h,受测者的反应时间为t,则下列结论正确的是()

∝ ∝ 光照射下,可观察到一个下落的水滴,缓缓调节水滴下落的时间间隔到适当情况,可以看到一种奇特的现象,水滴似乎不再下落,而是像固定在图中的A、B、C、D四个位置不动,一般要出现这种现象,照明光源应该满足(g=10m/s2)() 地时的速度之比是 15.(2013秋?忻府区校级期末)一观察者发现,每隔一定时间有一滴水自8m高的屋檐落下,而且看到第五滴水 D

17.(2014秋?成都期末)如图所示,将一小球从竖直砖墙的某位置由静止释放.用频闪照相机在同一底片上多次曝光,得到了图中1、2、3…所示的小球运动过程中每次曝光的位置.已知连续两次曝光的时间间隔均为T,每块砖的厚度均为d.根据图中的信息,下列判断正确的是() 小球下落的加速度为 的速度为 :2 D: 2 D O点向上抛小球又落至原处的时间为T2在小球运动过程中经过比O点高H的P点,小球离开P点至又回到P 23.(2014春?金山区校级期末)一只气球以10m/s的速度匀速上升,某时刻在气球正下方距气球6m处有一小石 2

v0v0D 27.(2013?洪泽县校级模拟)一个从地面竖直上抛的物体,它两次经过同一较低a点的时间间隔为T a,两次经 g(T a2﹣T b2)g(T a2﹣T b2)g(T a2﹣T b2)D g(T a﹣T b) 28.(2013秋?平江县校级月考)在以速度V上升的电梯内竖直向上抛出一球,电梯内观者看见小球经t秒后到 h=

2021届高考物理人教版二轮复习 计算题精解训练 机械波 作业(12) 含解析

2021届高考物理二轮复习计算题精解训练 (12)机械波 1.如图是一列横波在某一时刻的波形图像。已知这列波的频率为5 Hz ,此时0.5 m x =处的质点正向 y 轴正方向振动,可以推知: (1)这列波正在沿轴哪个方向方向传播; (2)波速大小是多少; (3)该质点1 s 内通过的路程是多少。 2.一列沿 x 轴传播的简谐横波,在0t =时刻的波形如图实线所示,在1=0.2 s t 时刻的波形如图虚线所示: (1)若波向 x 轴负方向传播,求该波的最小波速; (2)若波向 x 轴正方向传播,且1t T <,求 2 m x =处的 P 质点第一次出现波峰的时刻。 3.简谐横波沿 x 轴传播,M N 、是 x 轴上两质点,如图甲是质点 N 的振动图象.图乙中实线是 3 s t =时刻的波形图象,质点 M 位于8 m x =处,虚线是再过t ?时间后的波形图象.图中两波峰间距离7.0 m x ?=.求 (1)波速大小和方向; (2)时间t ?.

4.如图所示、一列简谐横波沿 x 轴正方向传播,实线和虚线分别为10 s t =时与2 2 s t =时的波形图像,已知该波中各个质点的振动周期大于4 s 。求: (i)该波的传播速度大小; (ii)从10 s t =开始计时,写出 1 m x =处质点的振动方程。 5.如图,在平静的湖面上有相距12 m 的B C 、两片小树叶,将一枚小石子投到B C 、连线左侧的 O 点, 6 m OB =,经过24 s ,第1个波峰传到树叶 B 时,第13个波峰刚好在 O 点形成。求: (ⅰ)这列水波的波长和水波的频率; (ⅱ)从第1个波峰传到树叶 B 算起,需要多长时间 C 树叶开始振动。 6.如图所示,图甲为一列简谐横波在2s t =时的图象,Q 为4m x =处的质点,P 为11m x =处的质点,图乙为质点P 的振动图象。 (1)求质点P 的振动方程及该波的传播速度; (2)2s t =后经过多长时间Q 点位于波峰?

高中物理 运动学经典试题

1.如图所示,以匀速行驶的汽车即将通过路口,绿灯还有2 s 将熄灭,此时汽车距离 停车线18m 。该车加速时最大加速度大小为,减速时最大加速度大小为。 此路段允许行驶的最大速度为,下列说法中正确的有 A .如果立即做匀加速运动,在绿灯熄灭前汽车可能通过停车线 B .如果立即做匀加速运动,在绿灯熄灭前通过停车线汽车一定超速 C .如果立即做匀减速运动,在绿灯熄灭前汽车一定不能通过停车线 D .如果距停车线处减速,汽车能停在停车线处 2.甲、乙两车在公路上沿同一方向做直线运动,它们的 v -t 图象如图所示.两图象在t =t 1时 相交于P 点,P 在横轴上的投影为Q ,△OPQ 的面积为S .在t =0时刻,乙车在甲车前面,相距为 d .已知此后两车相遇两次,且第一次相遇的时刻为t ′,则下面四组t ′和d 的组合可能的是 ( ) A . B . C . D . 3.A 、B 两辆汽车在笔直的公路上同向行驶,当B 车在A 车前84 m 处时,B 车速度为4 m/s ,且以2 m/s 2的加速度做匀加速运动;经过一段时间后,B 车加速度突然变为零.A 车一直以20 m/s 的速度做匀速运动,经过12 s 后两车相遇.问B 车加速行驶的时间是多少? 4. 已知O 、A 、B 、C 为同一直线上的四点.AB 间的距离为l 1,BC 间的距离为l 2,一物体自O 点 由静止出发,沿此直线做匀加速运动,依次经过A 、B 、C 三点,已知物体通过AB 段与BC 段所用的时间相等.求O 与A 的距离. 5. 甲乙两辆汽车在平直的公路上沿同一方向作直线运动,t =0时刻同时经过公路旁的同一 个路标.在描述两车运动的v -t 图中(如图),直线a 、b 分别描述了甲乙两车在0~20秒的 运动情况.关于两车之间的位置关系,下列说法正确的是 ( ) A .在0~10秒内两车逐渐靠近 B .在10~20秒内两车逐渐远离 C .在5~15秒内两车的位移相等 D .在t =10秒时两车在公路上相遇 6.如图是一娱乐场的喷水滑梯.若忽略摩擦力,人从滑梯顶 端滑下直到入水前,速度大小随时间变化的关系最接近图 8m/s 22m/s 25m/s 12.5m/s 5m S d t t ==',1S d t t 41,211=='S d t t 2 1,211=='S d t t 43,211=='

高考物理二轮复习计算题题型1运动学、动力学类问题练习

计算题题型1 运动学、动力学类问题 角度1:直线运动规律及牛顿运动定律的综合应用 1.(2017·江西吉安一诊)如图所示,在赛车训练场相邻两车道上有黑白两辆车,黑色车辆停在A线位置,某时刻白色车速度以v1=40 m/s通过A线后立即以大小a1=4 m/s2的加速度开始制动减速,黑车4 s后开始以a2=4 m/s2的加速度开始向同一方向匀加速运动,经过一定时间,两车同时在B线位置.两车看成质点.从白色车通过A线位置开始计时,求经过多长时间两车同时在B线位置及在B线位置时黑色车的速度大小. 2.质量M=10 kg的木板A沿水平面向右运动,与水平面之间的动摩擦因数μ1=0.1,当A的速度v0=5 m/s时,在A的左端施加一个恒力F=35 N,如图所示,同时在木板上表面无初速度地放上一个质量m=5 kg的滑块B.已知滑块B右端的木板上表面粗糙,长度为12.5 m,与滑块之间的动摩擦因数μ2=0.1,滑块左端的木板上表面包括滑块所放的位置均光滑,长度为 2.5 m,g 取10 m/s2. (1)至少经过多长时间滑块与木板的速度相等? (2)共经过多长时间滑块与木板分开? 3.(2017·辽宁鞍山一模)如图所示为在某工厂的厂房内用水平传送带将工件的半成品运送到下一工序的示意图.传送带在电动机的带动下保持v=2 m/s的速度匀速向右运动,现将质量

为m=20 kg的半成品轻放在传送带的左端A处,半成品工件与传送带间的动摩擦因数为μ=0.5,设传送带足够长,重力加速度g=10 m/s2.试求: (1)半成品工件与传送带相对滑动所经历的时间; (2)半成品工件与传送带间发生的相对位移大小; (3)若每分钟运送的半成品工件为30个,则电动机对传送带做功的功率因运送工件而增加多少? 角度2:带电粒子(带电体)在电场与磁场中的平衡与运动 1.(2017·黑龙江双鸭山一模)如图所示,一带电荷量为+q、质量为m的小物块处于一倾角为37°的光滑斜面上,当整个装置被置于一水平向右的匀强电场中,小物块恰好静止.重力加速度取g,sin 37°= 0.6,cos 37°=0.8.求: (1)水平向右电场的电场强度; (2)若将电场强度减小为原来的,物块的加速度是多大? (3)电场强度变化后物块下滑距离L时的动能.

2020高考物理运动学专题练习

直线运动规律及追及问题 一 、 例题 例题1.一物体做匀变速直线运动,某时刻速度大小为4m/s ,1s 后速度的大小变为10m/s ,在这1s 内该物体的 ( ) A.位移的大小可能小于4m B.位移的大小可能大于10m C.加速度的大小可能小于4m/s D.加速度的大小可能大于10m/s 析:同向时2201/6/14 10s m s m t v v a t =-=-= m m t v v s t 71210 4201=?+=?+= 反向时2202/14/14 10s m s m t v v a t -=--=-= m m t v v s t 312 10 4202-=?-=?+= 式中负号表示方向跟规定正方向相反 答案:A 、D 例题2:两木块自左向右运动,现用高速摄影机在同一底片上多次曝光,记录下木快每次曝光时的位置,如图所示,连续两次曝光的时间间隔是相等的,由图可知 ( ) A 在时刻t 2以及时刻t 5两木块速度相同 B 在时刻t1两木块速度相同 C 在时刻t 3和时刻t 4之间某瞬间两木块速度相同 D 在时刻t 4和时刻t 5之间某瞬间两木块速度相同 解析:首先由图看出:上边那个物体相邻相等时间内的位移之差为恒量,可以判定其做匀变速直线运动;下边那个物体很明显地是做匀速直线运动。由于t 2及t 3时刻两物体位置相同,说明这段时间内它们的位移相等,因此其中间时刻的即时速度相等,这个中间时刻显然在t 3、t 4之间 答案:C 例题3 一跳水运动员从离水面10m 高的平台上跃起,举双臂直立身体离开台面,此时中心位于从手到脚全长的中点,跃起后重心升高0.45m 达到最高点,落水时身体竖直,手先入水(在此过程中运动员水平方向的运动忽略不计)从离开跳 台到手触水面,他可用于完成空中动作的时间是多少?(g 取10m/s 2 结果保留两位数字) 解析:根据题意计算时,可以把运动员的全部质量集中在重心的一个质点,且忽略其水平方向 的运动,因此运动员做的是竖直上抛运动,由g v h 22 0=可求出刚离开台面时的速 度 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 1 t 2 t 3 t 4 t 5 t 6 t 7

2020高考物理计算题专题训练含答案

计算题 1.为了使航天员能适应在失重环境下是的工作和生活,国家航天局组织对 航天员进行失重训练。故需要创造一种失重环境;航天员乘坐到民航客机 上后,训练客机总重5×104kg,以200m/s速度沿300倾角爬升到7000米 高空后飞机向上拉起,沿竖直方向以200m/s 的初速度向上作匀减速直线 运动,匀减速的加速度为g,当飞机到最高点后立即掉头向下,仍沿竖直 方向以加速度为g加速运动,在前段时间内创造出完全失重,当飞机离地 2000米高时为了安全必须拉起,后又可一次次重复为航天员失重训练。若 飞机飞行时所受的空气阻力f=Kv(k=900N·s/m),每次飞机速度达到 350m/s 后必须终止失重训练(否则Array飞机可能失速)。 求:(1)飞机一次上下运动为航天员创 造的完全失重的时间。 (2)飞机下降离地4500米时飞机 发动机的推力(整个运动空间重力加速 度不变)。 (3)经过几次飞行后,驾驶员想在保持其它不变,在失重训练时间不 变的情况下,降低飞机拉起的高度(在B点前把飞机拉起)以节约燃油, 若不考虑飞机的长度,计算出一次最多能节约的能量。

2.如图所示是一种测定风速的装置,一个压力传感器固定在竖直墙上,一弹簧一端固定在传感器上的M 点,另一端N 与导电的迎风板相连,弹簧穿在光滑水平放置的电阻率较大的金属细杆上,弹簧是不导电的材料制成的。测得该弹簧的形变量与压力传感器示数关系见下表。 迎风板面积S =0.50m 2,工作时总是正对着风吹来的方向。电路的一端与迎风板相连,另一端在M 点与金属杆相连。迎风板可 在金属杆上滑动,且与金属杆接触良好。定值电阻R =1.0Ω,电源的电动势E =12V ,内阻r =0.50Ω。闭合开关,没有风吹时,弹簧处于原长L 0=0.50m ,电压 传感器的示数U 1=3.0V ,某时刻由于风吹迎风板,电压传感器的示数变为 U 2=2.0V 。求: (1)金属杆单位长度的电阻; 形变量(m ) 0 0.1 0.2 0.3 0.4 压 力(N ) 0 130 260 390 520

2020届高考物理计算题复习《竖直上抛运动》(解析版)

《竖直上抛运动》 计算题 在竖直井的井底,将一物块以 的速度竖直向上抛出,物块在上升过程 中做加速度大小 的匀减速直线运动,物块上升到井口时被人接住,在 被人接住前1s 内物块的位移 求: 物块从抛出到被人接住所经历的时间; 此竖直井的深度. 原地纵跳摸高是篮球和羽毛球重要的训练项目。已知质量 的运动员原地 摸高为 米,比赛过程中,该运动员先下蹲, 重心下降 米,经过充分调整后, 发力跳起摸到了 米的高度。假设运动员起跳过程为匀加速运动,忽略空气阻 力影响,g 取 求: 1. 如图甲所示,将一小球从地面上方 气阻力,上升和下降过程中加速度不变, 小球从抛出到上升至最高点所需的时间 小球从抛出到落地所需的时间 t; 在图乙中画出小球从抛出到落地过程中的 处以 的速度竖直上抛,不计空 g 取 ,求: 图象。 2. 3.

该运动员离开地面时的速度大小为多少; 起跳过程中运动员对地面的压力; 从开始起跳到双脚落地需要多少时间? 4. 气球以的速度匀速上升,当它上升到离地面40m高处,从气球上落下一个物 体.不计空气阻力,求物体落到地面需要的时间;落到地面时速度的大小. 5.小运动员用力将铅球以的速度沿与水平方向成 方向推出,已知铅球出手点到地面的高度为 求: 铅球出手后运动到最高点所需时间; 铅球运动的最高点距地面的高度H ; 铅球落地时到运动员投出点的水平距离x.

6. 气球下挂一重物,以的速度匀速上升,当到达离地高度处时, 悬挂重物的绳子突然断裂,空气阻力不计,g取则求: 绳断后物体还能向上运动多高? 绳断后物体再经过多长时间落到地面。 落地时的速度多大? 7.气球下挂一重物,以的速度匀速上升,当到达离地高度 处时,悬挂重物的绳子突然断裂,那么重物经多长时间落 到地面?落地时的速度多大?空气阻力不计,g取。 8.气球以的速度匀速上升,在离地面75m高处从气球上掉落一个物体,结果气 球便以加速度向上做匀加速直线运动,不计物体在下落过程中受到的 空气阻力,问物体落到地面时气球离地的高度为多少?

高三物理复习〈运动学〉测试题

1.(07北京理综18)图示为高速摄影机拍摄到的子弹穿透苹果瞬间的照片.该照片经放大后分析出,在曝光时间内,子弹 影像前后错开的距离约为子弹长度的1%~2%.已知子弹飞 行速度约为500 m/s,由此可估算出这幅照片的曝光时间最 接近() A.10-3 s B.10-6 s C.10-9 s D.10-12 s 2.(1)在测定匀变速直线运动加速度的实验中,将以下步骤的代号按合理顺序填空写在横线上:_____________. (A)拉住纸带,将小车移至靠近打点计时器处,先接通电源,后放开纸带; (B)将打点计时器固定在平板上,并接好电路; (C)把一条细绳拴在小车上,细绳跨过定滑轮,下面吊着重量适当的钩码; (D)断开电源,取下纸带; (E)将平板一端抬高,轻推小车,使小车恰能在平板上作匀速运动; (F)将纸带固定在小车尾部,并穿过打点计时器的限位孔; (G)换上新的纸带,再重复做两三次. (2)某同学利用打点计时器所 记录的纸带来研究做匀变速 直线运动小车的运动情况, 实验中获得一条纸带,如图 三所示,其中两相邻计数点 间有四个点未画出。已知所 用电源的频率为50H Z,则打A点时小车运动的速度v A=_______m/s,小车运动的加速度a=_______m/s2。(结果要求保留三位有效数字) 3.如右图所示,甲、乙两个同学在平直跑道上练习“4×100m” 接力,他们在奔跑时具有相同的最大速度。乙从静止开始全力奔跑需跑出25m才能达到最大速度,这一过程可视为匀变速运动。现在甲手持接力棒以最大速度向乙奔来,乙在接力区伺机全力奔出。若要 求乙接棒时奔跑速度达到最大速度的80%,试求: ⑴乙在接力区须奔跑多少距离? ⑵乙应在距离甲多远处时起跑?5.(07全国卷Ⅰ23)甲乙两运动员在训练交接棒的过程中发现:甲经短距离加速后能保 持9 m/s 的速度跑完全程;乙从起跑后到接棒前的运动是匀加速的.为了确定乙起跑的时机,需在接力区前适当的位置设置标记.在某次练习中,甲在接力区前s0=13.5 m 处作了标记,并以v=9 m/s 的速度跑到此标记时向乙发出起跑口令.乙在接力区的前端听到口令时起跑,并恰好在速度达到与甲相同时被甲追上,完成交接棒.已知接力区的长度为L=20 m.求: (1)此次练习中乙在接棒前的加速度 a. (2)在完成交接棒时乙离接力区末端的距离. 6.(08·四川理综·23)A、B两辆汽车在笔直的公路上同向行驶,当B车在A车前84 m 处时,B 车速度为 4 m/s,且以2 m/s2的加速度做匀加速运动;经过一段时间后,B车加速度突然变为零.A车一直以20 m/s的速度做匀速运动,经过12 s后两车相遇.问B车加速行驶的时间是多少? .如图所示,直线MN表示一条平直公路,甲、乙两辆汽车原来停在A、B两处, A、B间的距离为85m,现甲车先开始向右做匀加速直线运动,加速度a1=2.5m/s2, 甲车运动 6.0s时,乙车立即开始向右做匀加速直线运动,加速度a2=5.0m/s2,求两 辆汽车相遇处距A处的距离. 8.火车A以速度v1匀速行驶,司机发现正前方同一轨道上相距s处有另一火车B沿同方向以速度v2(对地,且v2小于v1)做匀速运动,A车司机立即以加速度(绝对值)a紧急刹车,为使两车不相撞,a应满足什么条件?

高考物理专题复习--21运动学图像专题知识要点

运动学图像专题 主标题:运动学图像专题 副标题:剖析考点规律,明确高考考查重点,为学生备考提供简洁有效的备考策略。 关键词:匀变速直线运动,图像 难度:3 重要程度:3 内容: 1、考点剖析:运动图像是高考中的热点,多以选择题出现(在计算题中也有应用),难度中等。高考较注重学生对图像的理解,有些题目利用图像分析求解能使问题简化,深刻理解运动图像的物理意义,能从图像中获得有效信息,灵活运用运动学规律公式是解决此类问题的关键。 2、知识点:利用图像法可直观地反映物理规律,分析物理问题。图像法是物理研究中常用的一种重要方法,运动学中常用的图像为v-t图像。在理解图像物理意义的基础上,用图像法分析解决有关问题(如往返运动、定性分析等)会显示出独特的优越性,解题既直观又方便。 3、题型分类:(主要讨论v-t图像和s-t图像,其他图像的意义在例题中说明) 点:即图像的各种交点;v-t图像中表示该时刻两物体的速度相同;s-t图像中表示该时刻两物体的位移相同 线:即图像的斜率;v-t图像中表示该时刻物体的加速度;s-t图像中表示该时刻物体的速度 面:即图像的面积;v-t图像中表示一段时间内的位移;s-t图像中无意义; 例1、如图所示是某质点做直线运动的v-t图像,由图可知这个质点的运动情况是( ) A、前5s做的是匀速运动 B、5s~15s内做匀加速运动,加速度为1m/s2 C、15s~20s内做匀减速运动,加速度为3.2m/s2 D、质点15s末离出发点最远,20秒末回到出发点 【解析】由图像可知前5s做的是匀速运动,选项A正确;5~15s内做匀加速度运动,加速度为0.8m/s2,选项B错误;15s~20s做匀减速运动,加速度为-3.2m/s2,选项C错,质点一直做单方向的直线运动,在20s末离出发点最远,选项D错误。 【答案】A 例2、如图所示是甲、乙两物体从同一点出发的位移-时间(x-t)图像,由图像可以看出在0~4s这段时间内( )

高考物理计算题专项练习(轨道型)

高三物理计算题专练(轨道类) 1.如图所示,质量为m=0.10kg的小物块以初速度v0=4.0m/s,在粗糙水平桌面上做直线运动,经时间t=0.4s后以速度v飞离桌面,最终落在水平地面上。已知物块与桌面间的动摩擦因数μ=0.25,桌面离地高h=0.45m,不计空气阻力,重力加速度g取10m/s2。求: (1)小物块飞离桌面时的速度大小v。 (2)小物块落地点距飞出点的水平距离s。 2.如图所示,一滑板爱好者总质量(包括装备)为50kg,从以O为圆心,半径为R=1.6m光滑圆弧轨道的A点(α=60°)由静止开始下滑,到达轨道最低点B后(OB在同一竖直线上),滑板爱好者沿水平切线飞出,并恰好从C点以平行斜面方向的速度进入倾角为37°的斜面,若滑板与斜面的动摩擦因数为μ=0.5,斜面长s=6m,(g取10m/s2,sin37°=0.6,cos37°=0.8)求: (1)滑板爱好者在B、C间运动的时间。 (2)滑板爱好者到达斜面底端时的速度大小。 3.学校科技节上,同学发明了一个用弹簧枪击打目标的装置,原理如图甲,AC段是水平放置的同一木板;CD段是竖直放置的光滑半圆弧轨道,圆心为O,半径R=0.2m;MN是与O点处在同一水平面的平台;弹簧的左端固定,右端放一可视为质点、质量m=0.05kg的弹珠P,它紧贴在弹簧的原长处B点;对弹珠P施加一水平外力F,缓慢压缩弹簧,在这一过程中,所用外力F与弹簧压缩量x的关系如图乙所示。已知BC段长L=1.2m,EO间的距离s=0.8m。计算时g取10m/s2,滑动摩擦力等于最大静摩擦力。压缩弹簧释放弹珠P后,求:

(1)弹珠P通过D点时的最小速度v D; (2)弹珠P能准确击中平台MN上的目标E点,它通过C点时的速度v C; (3)当缓慢压缩弹簧到压缩量为x0时所用的外力为8.3N,释放后弹珠P能准确击中平台MN 上的目标E点,求压缩量x0。 4.一长l=0.80m的轻绳一端固定在O点,另一端连接一质量m=0.10kg的小球,悬点O距离水平地面的高度H=1.00m。开始时小球处于A点,此时轻绳拉直处于水平方向上,如图所示。让小球从静止释放,当小球运动到B点时,轻绳碰到悬点O正下方一个固定的钉子P时立刻断裂。不计轻绳断裂的能量损失,重力加速度g取10m/s2。求: (1)当小球运动到B点时的速度大小。 (2)绳断裂后球从B点抛出并落在水平地面的C点,求C点与B点之间的水平距离。 (3)若OP=0.6m,轻绳碰到钉子P时绳中拉力达到所能承受的最大拉力断裂,求轻绳能承受的最大拉力。

高中物理运动学测精彩试题(附答题卷和问题详解)

运动学测试(附答案) 一.不定项选择题(5分×12=60分) 1. 一物体以初速度0v 、加速度a 做匀加速直线运动,若物体从t 时刻起,加速度a 逐渐减小至零,则物体从t 时刻开始 ( ) A.速度开始减小,直到加速度等于零为止 B.速度继续增大,直到加速度等于零为止 C.速度一直增大 D.位移继续增大,直到加速度等于零为止 2.某人欲估算飞机着陆时的速度,他假设飞机停止运动前在平直跑道上做匀减速运动,飞机在跑道上滑行的距离为x ,从着陆到停下来所用的时间为t ,则飞机着陆时的速度为( ) A.x t B.2x t C.x 2t D.x t 到2x t 之间的某个值 3.2009年7月16日,中国海军第三批护航编队16日已从某军港启航,于7月30日抵达亚丁湾、索马里海域如图1-1-1所示,此次护航从启航,经东海、海峡、南海、马六甲海峡,穿越印度洋到达索马里海域执行护航任务,总航程五千多海里.关于此次护航,下列说确的是( ) A .当研究护航舰艇的运行轨迹时,可以将其看做质点 B .“五千多海里”指的是护航舰艇的航行位移 C .“五千多海里”指的是护航舰艇的航行路程 D .根据题中数据我们可以求得此次航行的平均速度 4.一质点沿直线Ox 方向做变速运动,它离开O 点的距离随时间变化的关系为x =5+2t 3(m),它的速度随时间t 变化关系为v =6t 2(m/s).该质点在t =0到t =2 s 间的平均速度和t =2 s 到t =3 s 间的平均速度大小分别为( ) A .12 m/s ,39 m/s B .8 m/s ,38 m/s C .12 m/s ,19.5 m/s D .8 m/s ,12 m/s 5. 机车在高速公路上行驶,车速超过100 km/h 时,应当与同车道前车保持100 m 以上的距离.从驾驶员看见某一情况到采取制动动作的时间里,汽车仍要通过一段距离(称为反应距离);从采取制动动作到车完全停止的时间里,汽车又要通过一段距离(称为制动距离),如表所示给出了汽车在不同速度下的反应距离和制动距离的部分数据.如果驾驶员的反应时间一定,路面情况相同 A .驾驶员的反应时间为1.5 s B .汽车制动的加速度大小为2 m/s 2 C .表中Y 为49 D .表中X 为32 6. 在某可看做直线的高速公路旁安装有雷达探速仪,可以精确抓拍超速的汽车,以及测量汽车运动过程中的加速度.若B 为测速仪,A 为汽车,两者相距345 m ,此时刻B 发出超声波,同时A 由于紧急情况而急刹车,当B 接收到反射回来的超声波信号时,A 恰好停止,且此时A 、B 相距325 m ,已知声速为340 m/s ,则汽车刹车过程中的加速度大小为( ) A. 20 m/s 2 B. 10 m/s 2 C. 5 m/s 2 D. 1 m/s 2 7.一人看到闪电12.3 s 后又听到雷声.已知空气中的声速为330 m/s ~340 m/s ,光速为3×108 m/s ,于是他用12.3除以3很快估算出闪电发生位置到他的距离为4.1 km.根据你所学的物理知识可以判断( ) A .这种估算方法是错误的,不可采用 B .这种估算方法可以比较准确地估算出闪电发生位置与观察者间的距离 C .这种估算方法没有考虑光的传播时间,结果误差很大

高考物理二轮专题复习 模型讲解 运动学模型

2013年高考二轮专题复习之模型讲解 运动学模型 【模型概述】 在近年的高考中对各类运动的整合度有所加强,如直线运动之间整合,曲线运动与直线运动整合等,不管如何整合,我们都可以看到共性的东西,就是围绕着运动的同时性、独立性而进行。 【模型回顾】 一、两种直线运动模型 匀速直线运动:两种方法(公式法与图象法) 匀变速直线运动:2 002 1at t v s at v v t +=+=,,几个推论、比值、两个中点速度和一个v-t 图象。 特例1:自由落体运动为初速度为0的匀加速直线运动,a=g ;机械能守恒。 特例2:竖直上抛运动为有一个竖直向上的初速度v 0;运动过程中只受重力作用,加速度为竖直向下的重力加速度g 。特点:时间对称(下上t t =)、速率对称(下上v v =);机械能守恒。 二、两种曲线运动模型 平抛运动:水平匀速、竖直方向自由落体 匀速圆周运动: ωωmv mr r mv ma F F =====22 向向法 【模型讲解】 一、匀速直线运动与匀速直线运动组合 例1.一路灯距地面的高度为h ,身高为l 的人以速度v 匀速行走,如图1所示。 (1)试证明人的头顶的影子作匀速运动; (2)求人影的长度随时间的变化率。

图1 解法1:(1)设t=0时刻,人位于路灯的正下方O 处,在时刻t ,人走到S 处,根据题意有OS=vt ,过路灯P 和人头顶的直线与地面的交点M 为t 时刻人头顶影子的位置,如图2所示。OM 为人头顶影子到O 点的距离。 图2 由几何关系,有 OS OM l OM h -= 联立解得t l h hv OM -= 因OM 与时间t 成正比,故人头顶的影子作匀速运动。 (2)由图2可知,在时刻t ,人影的长度为SM ,由几何关系,有SM=OM-OS ,由以上各式得 t l h lv SM -= 可见影长SM 与时间t 成正比,所以影长随时间的变化率l h lv k -= 。 解法2:本题也可采用“微元法”。设某一时间人经过AB 处,再经过一微小过程)0(→??t t ,则人由AB 到达A ’B ’,人影顶端C 点到达C ’点,由于t v S AA ?=?'则人影顶端的移动速度:

高三物理计算题训练

天津市第一百中学高三物理计算题训练 1、如图所示,质量为1kg的物体静置在水平地面上,现对物体施以水平方向的恒定拉力,1s末将拉力撤 去,物体运动的v—t图象如图所示,试求: (1)在0~3s内物体的位移; (2)滑动摩擦力的大小; (3)拉力的大小。 2、如图所示,在光滑水平面上放有一个长为L的长木板C,在C左端和距左端s处各放有一个小物块A、B,A、B都可视为质点,它们与C之间的动摩擦因数都是μ,A、B、C的质量都是m。开始时B、C静止,A以某一初速度v0向右运动。设B与C之间的最大静摩擦力等于滑动摩擦力。求:⑴A相对于C向右滑动过程中,B与C之间的摩擦力大小。⑵为使A、B能够相碰,A的初速度v0应满足什么条件? v0 A B C 3、如图所示,原来静止在水平面上的长纸带上放有一个质量为m的小金属块A。金属块离纸带左端距离为d,与纸带间动摩擦因数为μ。现用力向右将纸带从金属块下面抽出,设纸带的加速过程极短,可以认为一开始抽动纸带就做匀速运动。求:⑴金属块刚开始运动时所受的摩擦力大小和方向。⑵为了能把纸带从金属 块下面抽出,纸带的速度v应满足什么条件? A v d 4、真空中存在空间范围足够大的、水平向右的匀强电场。在电场中,若将一个质量为m带正电的小球由静止释放,运动中小球的速度与竖直方向夹角为53o(取sin37o=0.6,cos37o=0.8)。现将该小球从电场中某点以v0=10m/s的初速度竖直向上抛出。求运动过程中 (1)小球受到的电场力的大小和方向; (2)小球从抛出点至最高点的电势能变化量; (3)小球的最小动量的大小和方向。 5、如图所示,质量均为m的A、B两物体,用劲度为k的轻质弹簧相连,A被手用外力F提在空中静止,这时B离地面的高度为h。放手后,A、B下落,若B与地面碰撞后不再反弹,求:A从开始下落到其速度达到最大的过程中,A的重力势能的改变量。 A B h 6、如图所示,竖直的光滑杆上套着一轻质弹簧,弹簧长度为原长时,上端在O 点处。现将质量,m2=3kg 的圆环套在杆上,压缩弹簧,平衡于A点处,A点和O点间距为x0;再将一质量m1=6kg的圆环套在杆上,从距A点3x0处的B点由静止开始下滑并与m2碰撞后粘为一体。它们运动到C处时 速度达到最大值,此时动能E k=19.5J。已知弹簧劲度系数k=300N/m。求: (1)m1在与m2碰撞前瞬间的速度v;

2014-2018高考物理运动学真题

专题一质点的直线运动 (2017~2018年) 201803 4.在一斜面顶端,将甲乙两个小球分别以v和的速度沿同一方向水平抛出,两球都落在该斜面上。甲球落至斜面时的速率是乙球落至斜面时速率的 A.2倍 B.4倍 C.6倍 D.8倍 5.甲乙两车在同一平直公路上同向运动,甲做匀加速直线运动, 乙做匀速直线运动。甲乙两车的位置x随时间t的变化如图所示。 下列说法正确的是 A.在t1时刻两车速度相等 B.从0到t1时间内,两车走过的路程相等 C.从t1到t2时间内,两车走过的路程相等 D.从t1到t2时间内的某时刻,两车速度相等 6.地下矿井中的矿石装在矿车中,用电机通过竖井运送至地面。某竖井中矿车提升的速度大小v随时间t的变化关系如图所示,其中图线①②分别描述两次不同的提升过程,它们变速阶段加速度的大小都相同;两次提升的高度相同,提升的质量相等。不考虑摩擦阻力和空气阻力。对于第①次 和第②次提升过程, A.矿车上升所用的时间之比为4:5 B.电机的最大牵引力之比为2:1 C.电机输出的最大功率之比为2:1 D.电机所做的功之比为4:5

201802 6.甲、乙两汽车同一条平直公路上同向运动,其速度—时间图像分别如图中甲、乙两条曲线所示。已知两车在t2时刻并排行驶,下列说法正确的是() A.两车在t1时刻也并排行驶 B.t1时刻甲车在后,乙车在前 C.甲车的加速度大小先增大后减小 D.乙车的加速度大小先减小后增大 (2016~2014年) 1.(2016·全国卷Ⅲ,16,6分)(难度★★)一质点做速度逐渐增大的匀加速直线运动,在时间间隔t内位移为s,动能变为原来的9倍。该质点的加速度为() A.s t2 B.3s 2t2 C.4s t2 D.8s t2 2.(2016·全国卷Ⅰ,21,6分)(难度★★★)(多选)甲、乙两车在平直公路上同向行驶,其v-t图象如图所示。已知两车在t=3s时并排行驶,则() A.在t=1s时,甲车在乙车后 B.在t=0时,甲车在乙车前7.5m C.两车另一次并排行驶的时刻是t=2s D.甲、乙车两次并排行驶的位置之间沿公路方向的距离为40m

@高考物理计算题训练——滑块与木板模型(答案版)

1、木板M静止在光滑水平面上,木板上放着一个小滑块m,与木板之间的动摩擦因数μ,为了使得m能从M上滑落下来,求下列各种情况下力F的大小范围。 (1)m与M刚要发生相对滑动的临界条件:①要滑动:m 与M间的静摩擦力达到最大静摩擦力;②未滑动:此时m与 M加速度仍相同。受力分析如图,先隔离m,由牛顿第二定 律可得:a=μmg/m=μg 再对整体,由牛顿第二定律可得:F0=(M+m)a 解得:F0=μ(M+m) g 所以,F的大小范围为:F>μ(M+m)g (2)受力分析如图,先隔离M,由牛顿第二定律可得:a=μ mg/M 再对整体,由牛顿第二定律可得:F0=(M+m)a 解得:F0=μ(M+m) mg/M 所以,F的大小范围为:F>μ(M+m)mg/M 2、如图所示,有一块木板静止在光滑水平面上,木板质量M=4kg,长L=1.4m.木板右端放着一个小滑块,小滑块质量m=1kg,其尺寸远小于L,它与木板之间的动摩擦因数μ=0.4,g=10m/s2, (1)现用水平向右的恒力F作用在木板M上,为了使得m能从M上滑落下来,求F的大小范围. (2)若其它条件不变,恒力F=22.8N,且始终作用在M上,求m在M上滑动的时间. (1)小滑块与木板间的滑动摩擦力 f=μFN=μmg=4N…………① 滑动摩擦力f是使滑块产生加速度的最大合外力,其最大加速度 a1=f/m=μg=4m/s2…② 当木板的加速度a2> a1时,滑块将相对于木板向左滑动,直至脱离木板 F-f=m a2>m a1F> f +m a1=20N …………③ 即当F>20N,且保持作用一般时间后,小滑块将从木板上滑落下来。 (2)当恒力F=22.8N时,木板的加速度a2',由牛顿第二定律得F-f=Ma2'

高三物理第一轮复习运动学部分专题

一.平均速度:任意运动的平均速度公式和匀变速直线运动的平均速度公式的理解 ①t s ??= 一v 普遍适用于各种运动;②v =20t V V +只适用于加速度恒定的匀变速直线运动 ③t V V S t 2 0+= 仅适用于匀变速直线运动 1.物体由A 沿直线运动到B ,在前一半时间内是速度为v 1的匀速运动,在后一半时间内是速度为v 2的匀速运动.则物体在这段时间内的平均速度为( ) A .221v v + B .21v v + C .21212v v v v + D .2 121v v v v + 2.一个物体做变速直线运动,前一半路程的平均速度是v 1,后一半路程的平均速度是v 2,则全程的平均速度是( ) A .221v v + B .21212v v v v + C .21212v v v v ++ D .2 121v v v v + 3.一辆汽车以速度v 1行驶了1/3的路程,接着以速度v 2=20km/h 跑完了其余的2/3的路程,如果汽车全程的平均速度v=27km/h ,则v 1的值为( ) A .32km/h B .345km/h C .56km/h D .90km/h 4.甲乙两车沿平直公路通过同样的位移,甲车在前半段位移上以v 1=40km/h 的速度运动,后半段位移上以v 2=60km/h 的速度运动;乙车在前半段时间内以v 1=40km/h 的速度运动,后半段时间以v 2=60km/h 的速度运动,则甲、乙两车在整个位移中的平均速度大小的关系是 A .V 甲=V 乙 B .V 甲 < V 乙 C .V 甲 > V 乙 D .因不知位移和时间故无法确定 二.加速度公式的理解:a=(v t -v 0 )/t 公式中各个部分物理量的理解 匀加速运动:速度随时间均匀增加,v t >v 0,a 为正,此时加速度方向与速度方向相同。 匀减速运动:速度随时间均匀减小,v t <v 0,a 为负,此时加速度方向与速度方向相反。 1.对于质点的运动,下列说法中正确的是( ) A .质点运动的加速度为零,则速度变化量也为零 B .质点速度变化率越大,则加速度越大 C .物体的加速度越大,则该物体的速度也越大 D .质点运动的加速度越大,它的速度变化量越大 2.下列说法正确的是( ) A .加速度增大,速度一定增大 B .速度改变△V 越大,加速度就越大 C .物体有加速度,速度就增加 D .速度很大的物体,其加速度可能很小 3.关于加速度与速度,下列说法中正确的是( ) A .速度为零,加速度可能不为零 B .加速度为零时,速度一定为零 C .若加速度方向与速度方向相反,则加速度增大时,速度也增大 D .若加速度方向与速度方向相同,则加速度减小时,速度反而增大 4.一物体做匀变速直线运动,某时刻速度的大小为4m/s ,1s 后速度的大小变为10m/s ,在这1s 内该物体的( ) A .位移的大小可能小于4m B .位移的大小可能大于10m C .加速度的大小可能小于4m/s 2 D .加速度的大小可能大于10m/s 2

高考物理力学,运动学实验题

课时作业(二十六)[第26讲本单元实验] 基础热身 1.在验证机械能守恒定律的实验中: (1)下列实验操作顺序正确合理的一项是________(填序号) A.先将固定在重物上的纸带穿过打点计时器,再将打点计时器固定在铁架台上 B.先用手提着纸带,使重物静止在打点计时器下方,再接通电源 C.先放开纸带让重物下落,再接通打点计时器的电源 D.先取下固定在重物上的打好点的纸带,再切断打点计时器的电源 (2)质量m=1kg的重锤自由下落,在纸带上打出了一系列的点,如图K26-1所示,相邻计数点时间间隔为0.02s,长度单位是cm,g取9.8m/s2.则(保留3位有效数字): ①打点计时器打下计数点B时,重锤的速度v B=__________m/s; ②从点O到打下计数点B的过程中,重锤重力势能的减少量ΔE p=______________J,动能的增加量ΔE k=__________________J; ③实验结论是________________________________________________________________________ ________________________________________________________________________. 图K26-1 2.在用如图K26-2所示的装置做“探究动能定理”的实验时,下列说法正确的是() 图K26-2 A.通过改变橡皮筋的条数改变拉力做功的数值 B.通过改变橡皮筋的长度改变拉力做功的数值 C.通过打点计时器打下的纸带来测定小车加速过程中获得的最大速度 D.通过打点计时器打下的纸速来测定小车加速过程中获得的平均速度 技能强化 3.2011·德州模拟关于“探究动能定理”的实验,下列叙述正确的是() A.每次实验必须设法算出橡皮筋对小车做功的具体数值 B.每次实验中,橡皮筋拉伸的长度没有必要保持一致 C.放小车的长木板应该尽量水平 D.先接通电源,再让小车在橡皮筋的作用下弹出 图K26-3 4.2010·安徽卷利用如图K26-3所示装置进行验证机械能守恒定律的实验时,需要测量物体由静止开始自由下落到某点时的瞬时速度v0和下落高度h.某班同学利用实验得到的纸带,设计了以下四种测量方案. A.用刻度尺测出物体下落的高度h,并测出下落时间t,通过v=gt计算出瞬时速度v0 B.用刻度尺测出物体下落的高度h,并通过v=2gh计算出瞬时速度v0

(完整word版)高考物理计算题训练

高考物理计算题训练(1) 1.(17分)如图为一滑梯的示意图,滑梯的长度AB为L= 5.0m,倾角θ=37°。BC段为与滑梯平滑连接的水平地面。一个小孩从滑梯顶端由静止开始滑下,离开B点后在地面上滑行了s = 2.25m后停下。小孩与滑梯间的动摩擦因数为μ = 0.3。不计空气阻力。取g = 10m/s2。已知sin37°= 0.6,cos37°= 0.8。求: (1)小孩沿滑梯下滑时的加速度a的大小; (2)小孩滑到滑梯底端B时的速度v的大小; (3)小孩与地面间的动摩擦因数μ′。 2.(18分)在如图甲所示的电路中,螺线管匝数n = 1500匝,横截面积S = 20cm2。螺线管导线电阻r = 1.0Ω,R1 = 4.0Ω,R2 = 5.0Ω,C=30μF。在一段时间内,穿过螺线管的磁场的磁感应强度B按如图乙所示的规律变化。求: (1)求螺线管中产生的感应电动势; (2)闭合S,电路中的电流稳定后, 求电阻R1的电功率; (3)S断开后,求流经R2的电量。 2 图甲 图乙 s

3.(20分)如图,在平面直角坐标系xOy 内,第Ⅰ象限存在沿y 轴负方向的匀强电场,第Ⅳ象限以ON 为直径的半圆形区域内,存在垂直于坐标平面向外的匀强磁场,磁感应强度为B 。一质量为m 、电荷量为q 的带正电的粒子,从y 轴正半轴上y = h 处的M 点,以速度v 0垂直于y 轴射入电场,经x 轴上x = 2h 处的P 点进入磁场,最后以垂直于y 轴的方向射出磁场。不计粒子重力。求 (1)电场强度大小E ; (2)粒子在磁场中运动的轨道半径r ; (3)粒子从进入电场到离开磁场经历的总时间t 。 答案 1.(17分) 解:(1)物体受力如右图所示 (1分) 由牛顿运动定律 mg sin θ -μN = ma (1分) N - mg cos θ = 0 (1分) 解得 a = g sin θ -μg cos θ = 3.6m/s 2 (1分) (2) 由 (1分) 求出 (1分) (3)由匀变速直线运动规律 (1分) 由牛顿第二定律 (1 分) 解得 (1分) 2.(18分) 解:(1)根据法拉第电磁感应定律 (3分)求出 E = 1.2(V ) (1分) (2)根据全电路欧姆定律 (1分) 根据 (1分) 求出 P = 5.76×10-2(W ) (1 分) (3)S 断开后,流经R 2的电量即为S 闭合时C 板上所带的电量Q 电容器两端的电压 U = IR 2=0.6(V ) (1分) P O y M N x B v 0 N mg f

相关文档
最新文档