第29章《投影与视图》复习课教案
人教版数学九年级下册第29章《投影与视图》课堂教案

人教版数学九年级下册第29章《投影与视图》课堂教案一. 教材分析《投影与视图》这一章主要让学生了解和掌握投影的性质和特点,以及如何通过不同的投影方式来得到物体的视图。
内容主要包括平行投影、中心投影的概念,三视图的绘制方法等。
通过这一章的学习,学生可以更好地理解和应用几何知识,提高空间想象能力和解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对空间图形有一定的认识。
但一部分学生可能对空间图形的理解和想象能力较弱,因此在教学过程中需要注重引导学生通过实际操作来加深对知识的理解。
三. 教学目标1.了解投影的性质和特点,掌握平行投影和中心投影的概念。
2.学会通过不同的投影方式来得到物体的视图,提高空间想象能力。
3.能够运用所学知识解决实际问题。
四. 教学重难点1.投影的性质和特点2.平行投影和中心投影的概念3.三视图的绘制方法五. 教学方法1.采用问题驱动的教学方法,引导学生通过实际操作来解决问题。
2.利用多媒体辅助教学,展示实物投影和视图,帮助学生直观理解。
3.采用小组合作学习,让学生在讨论和交流中提高对知识的理解。
六. 教学准备1.多媒体教学设备2.实物模型3.绘图工具七. 教学过程1.导入(5分钟)利用多媒体展示不同的实物投影和视图,让学生感受投影和视图的魅力,激发学生的学习兴趣。
2.呈现(10分钟)通过具体的实物模型,向学生展示不同的投影方式,引导学生总结投影的性质和特点。
3.操练(10分钟)学生分组讨论,每组选择一个实物,通过实际操作来绘制该实物的三视图。
教师在此过程中进行指导,帮助学生解决问题。
4.巩固(10分钟)学生独立完成教材中的相关练习题,教师进行讲解和答疑。
5.拓展(10分钟)教师提出一些实际问题,引导学生运用所学知识进行解决,提高学生的实际应用能力。
6.小结(5分钟)教师引导学生总结本节课所学内容,巩固知识。
7.家庭作业(5分钟)布置一些有关投影与视图的练习题,让学生在课后进行巩固和提高。
数学九年级下册《投影与视图-复习课》教案

初中20 -20 学年度第一学期教学设计主备教师审核教师授课周次授课时间课题第二十九章投影与视图(复习) 课型复习课教学目标1、通过本节复习,使学生对本章知识点有一个系统的认识。
2、通过习题演练,达到灵活运用知识点的目的。
3、认识本节内容与生活实际的紧密联系。
教学重点掌握本章知识点。
教学难点灵活运用本章知识点。
教学方法与手段指导法,鼓励法,归纳法。
教学准备多媒体课件第一课时课时数1课时课堂教学实施设计(教师活动、学生活动)复备内容或集体备课讨论记录(标、增、改、删、调)师生共同勾勒出本章知识框架图:【知识归纳】1.平行投影和中心投影由形成的投影是平行投影.由形成的投影叫做中心投影.投影线投影面产生的投影叫做正投影.[注意] (1)在实际制图中,经常采用正投影.(2)当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.(3)阳光下同一时刻不同物体及影长与光线构成的三角形相似.2.视图三视图是、、的统称.三视图位置有规定,主视图要在,它的下方应是,坐落在右边.三视图的对应规律主视图和俯视图;主视图和左视图;左视图和俯视图.【当堂检测】1、李刚同学拿一个矩形木框在阳光下摆弄,矩形木框在地面上形成的投影不可能是( D )2、学校里旗杆的影子整个白天的变化情况是( B )A、不变B、先变短后变长C、一直在变短D、一直在变长3、晚上,人在马路上走过一盏灯的过程,其影子的长度变化情况是(B )A、先变短后变长B、先变长后变短C、逐渐变短D、逐渐变长4、如图是由一些相同的小正方体构成的几何体的三视图,则构成这个几何体的小正方体的个数是( D )A、5B、6C、7D、8四题图五题图【巩固提高】5.由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,求x,y的值. (答案:x=1或x=2,y=3)6.由几个小立方体叠成的几何体的主视图和左视图如图,求组成几何体的小立方体个数的最大值与最小值.(答案:12个,7个) 【课后小结】这节课你有什么收获。
《投影与视图》总复习教案

本章复习【知识与技能】通过复习系统掌握本章知识.【过程与方法】提高解决问题分析问题的能力,培养空间想象能力.【情感态度】体会到数学来源于生活,应用于生活.【教学重点】投影和三视图.【教学难点】画三视图.一、知识结构【教学说明】引导学生回顾本章知识点,使学生系统地了解本章知识及它们之间的关系.二、释疑解惑,加深理解(一)投影1.中心投影:灯光的光线可以看成是从一点发出的(即为点光源),像这样的光线所形成的投影称为中心投影.2.平行投影:太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影.3.中心投影光源的确定:分别自两个物体的顶端及其影子的顶端作一条直线,这两条直线的交点即为光源的位置.4.如何判断平行投影与中心投影分别自两个物体的顶端及其影子的顶端作一条直线,若两直线平行,则为平行投影;若两直线相交,则为中心投影,其交点是光源的位置.(二)视图1.三种视图的内在联系主视图反映的是物体的长和高;俯视图反映的是物体的长和宽;左视图反映的是物体的高和宽. 因此,在画三种视图时,主、俯视图要长对正,主、左视图要高平齐,俯、左视图要宽相等.2.三种视图的位置关系一般地,首先确定主视图的位置,画出主视图,然后在主视图的下面画出俯视图,在主视图的右边画出左视图.3.三种视图的画法首先观察物体,画出视图的外轮廓线,然后将视图补充完整,看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线.【教学说明】1.以问题串的形式呈现,既可以帮助学生梳理知识,又增强了学生回答问题的针对性,增进师生的交流,促进学生回顾反思;2.意在让学生温故知新,为下一步巩固训练,形成技能作铺垫.三、典例精析,复习新知1.一个用于防震的L形包装塑料泡沫如图所示,则该物体的俯视图是()解:从上面看该组合体,俯视图是一个矩形,并且被一条棱隔开,故选B.2.如图所示几何体的主视图是()解:从正面看,此图形的主视图由3列组成,从左到右小正方体的个数是:1,3,1.故选B.3.下列四幅图形中,表示两颗小树在同一时刻阳光下的影子的图形可能是()解:因为太阳光的光线是平行的. 过大树的顶端及其影子的顶端作一条直线,再过小树的顶端及其影子的顶端作一条直线,两直线平行的就是阳光下的影子,因而选D.4.(1)如图①是同一时刻两棵小树的影子,请你在图中画出形成树影的光线,并判断它是太阳光还是灯光的光线?若是灯光,请确定光源的位置.(2)请判断如图②的两棵小树影子是太阳光还是灯光下形成的?并画出同一时刻旗杆的影子(用线段表示).解:(1)如图①是过大树的顶端及其影子的顶端作一条直线,再过小树的顶端及其影子的顶端作一条直线,两直线相交,故是灯光,交点A就是光源.(2)如图②所示,是太阳光的光线. 原因是过大树的顶端及其影子的顶端作一条直线,再过小树的顶端及其影子的顶端作一条直线,两直线平行. 然后再过旗杆的顶端作一条与已知光线平行的直线,交地面于一点,连结这点与旗杆底端的线段就是旗杆的影子.【教学说明】通过设置学习小组,以任务驱动式,引导学生进行小组竞学,探求解题规律技巧,培养学生分析问题和解决实际问题的能力,提高课堂效率.四、复习训练,巩固提高1.下面是空心圆柱在指定方向上的视图,正确的是(C)2.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下(D)A.小明的影子比小强的影子长B.小明的影长比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长3.请写出三种视图都相同的两种几何体:正方体、球体.4.身高相同的甲、乙两人分别在距同一路灯2米处、3米处,路灯亮时,甲的影子比乙的影子短(填“长”或“短”).5.下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为(C)6.分别画出下图中立体图形的三视图:解:7.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.8.已知,如图,AB 和DE 是直立在地面上的两根石柱.AB=5m ,某一时刻AB 在阳光下的投影BC=3m. (1)请你在图中画出此时DE 在阳光下的投影;(2)在测量AB 的投影时,同时测量出DE在阳光下的投影长为6m ,请你计算DE 的长.解:(1)如图,EF 即为DE 在阳光下的投影.(2)∵AB DE BC EF =,∴DE=·563AB EF BC ⨯==10(m ). 【教学说明】通过设置学习小组,引导学生进行小组竞学,探求解题规律技巧,培养学生分析问题和解决实际问题的能力,提高课堂效率.五、师生互动,课堂小结今天我们共同复习了视图与投影,知道了视图与投影之间的关系(在特殊位置下物体的平行投影即是物体的三种视图).如何画三视图、利用投影的性质可以测量旗杆、建筑物、路灯等物体的高度,即利用“平行投影时不同物体在同一时刻,物体与物体的影长成比例”或相似三角形的性质进行求解.那么你在哪些方面存在疑惑呢?【教学说明】该环节是为了提高学生归纳问题的能力,鼓励学生积极表达自己的观点,充分体现以学生为主体,教师为主导的教学原则.本环节的设置使学生学会从系统的角度把握学习方法,努力使知识结构化、网络化,引导学生注意各知识点之间的联系.1.布置作业:教材“复习题”中第3、5、9题.2.完成创业作业中本课时部分.本节课采用“问题助学、基本题组导学”的自助式学习模式,让学生在解决问题中梳理知识,提炼思想方法,形成技能.本节课的习题设置由浅入深、层层深入,体现基础性、变式性、层次性、导学性.教师只讲易混点、易错点、易漏点,重在点拨、规范.真正体现了“以学生为主体,以教师为主导,以练习为主线 ,以能力发展为主轴”的教学原则.立足于基础知识、基本技能、基本数学思想、基本活动经验的巩固和提高.符合学生的认知规律和教学活动规律,有效地提高了课堂效率和教学质量.。
人教版九年级下册第29章投影与视图29.2三视图教案

3.成果展示:每个小组将向全班展示他们的讨论成果和绘制的三视图。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三视图在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
-掌握三视图的绘制方法:学生需要掌握如何根据几何体在三个不同视图上的投影来绘制三视图,包括投影线、隐藏线、轮廓线等的正确表达。
-能够识别和绘制简单几何体的三视图:通过实际操作,学生应能够对常见的几何体如立方体、圆柱体、圆锥体等的三视图进行识别和绘制。
2.教学难点
-空间想象能力的培养:对于一些空间想象能力较弱的学生,理解几何体与其三视图之间的对应关系是一大难点。例如,如何从二维的视图想象出三维的形状。
3.重点难点解析:在讲授过程中,我会特别强调三视图的绘制方法和视图之间的相互关系这两个重点。对于难点部分,如隐藏线和投影线的处理,我会通过实物模型和示例图来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三视图相Байду номын сангаас的实际问题,如如何根据三视图还原一个几何体。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解三视图的基本概念。三视图是指主视图、左视图和俯视图,它们分别从不同角度展示物体的形状。三视图是工程绘图和建筑设计中不可或缺的部分,它帮助我们更直观地理解物体的三维结构。
2.案例分析:接下来,我们来看一个具体的案例。通过一个简单的立方体,演示如何绘制三视图,并讲解三视图在实际中的应用。
-实际应用中的三视图理解:将三视图的知识应用到实际问题中,如解读建筑图纸或机械图纸,对于学生来说是一个挑战,需要他们将理论知识与实践相结合。
第29章 投影与视图全章教案

第二十九章投影与视图29.1投影(1)学习目标1、经历实践探索,了解投影、投影面、平行投影和中心投影的概念;2、了角平行投影和中心投影的区别。
3、使学生学会关注生活中有关投影的数学问题,提高数学的应用意识。
学习重点理解平行投影和中心投影的特征;学习难点在投影面上画出平面图形的平行投影或中心投影。
教学互动设计备注(一)创设情境你看过皮影戏吗?皮影戏又名“灯影子”,是我国民间一种古老而奇特的戏曲艺术,在关中地区很为流行。
皮影戏演出简便,表演领域广阔,演技细腻,活跃于广大农村,深受农民的欢迎。
(二)你知道吗北京故宫中的日晷闻名世界,是我国光辉出灿烂文化的瑰宝.它是我国古代利用日影测定时刻的仪器,它由“晷面”与“晷针”组成,当太阳光照在日晷中轴上产生投影,晷针的影子就会投向晷面,随着时间的推移,晷针的影的长度发生变化,晷针的影子在晷面上慢慢移动,聪明的古人以此来显示时刻.问题:那什么是投影呢?出示投影让学生感受在日常生活中的一些投影现象。
一般地.用光线照射物体.在某个平面(地面、墙壁等)上得到的影子叫做物体的投影.照射光线叫做投影线,投影所在的平面叫做投影面.有时光线是一组互相平行的射线.例如太阳光或探照灯光的一束光中的光线(如图).由平行光线形成的投影是平行投影.例如.物体在太阳光的照射下形成的影子(简称日影)就是平行投影.由同一点(点光源)发出的光线形成的投影叫做中心投影.例如.物体在灯泡发出的光照射下形成影子就是中心投影.(三)问题探究(在课前布置,以数学学习小组为单位)探究平行投影和中心投影和性质和区别1、以数学习小组为单位,观察在太阳光线下,木杆和三角形纸板在地面的投影。
2、不断改变木杆和三角形纸板的位置,什么时候木杆的影子成为一点,三角形纸板的影子是一条线段?当木杆的影子与木杆长度相等时,你发现木杆在什么位置?三角形纸板在什么位置时,它的影子恰好与三角形纸板成为全等图形?还有其他情况吗?(四)应用新知:(1)地面上直立一根标杆AB如图,杆长为2cm。
人教版数学九年级下册第29章《投影与视图》课堂教学设计

人教版数学九年级下册第29章《投影与视图》课堂教学设计一. 教材分析人教版数学九年级下册第29章《投影与视图》是本册教材中的一个重要章节,主要介绍投影的概念、分类以及投影的基本性质。
通过本章的学习,使学生了解投影在数学、物理、艺术等领域的应用,培养学生的空间想象能力和抽象思维能力。
本章内容主要包括以下几个部分:1.投影的概念和分类2.正投影和斜投影3.投影的基本性质4.平行投影5.中心投影6.投影变换二. 学情分析学生在学习本章内容前,已经掌握了平面几何、立体几何的基本知识,具备了一定的空间想象能力和抽象思维能力。
但投影概念较为抽象,学生理解起来可能存在一定的困难。
因此,在教学过程中,教师需要运用生动形象的实例,引导学生直观地理解投影的概念,并通过大量的练习,使学生熟练掌握投影的性质和变换。
三. 教学目标1.了解投影的概念、分类和基本性质。
2.掌握正投影和斜投影的特点。
3.能够运用投影性质解决实际问题。
4.培养学生的空间想象能力和抽象思维能力。
四. 教学重难点1.投影的概念和分类。
2.投影的基本性质。
3.投影变换。
五. 教学方法1.采用直观演示法,通过实物模型和多媒体动画,引导学生直观地理解投影的概念和性质。
2.运用讲解法,详细讲解投影的分类、基本性质和变换规律。
3.采用练习法,让学生在实践中巩固投影知识。
4.运用小组讨论法,培养学生合作学习的能力。
六. 教学准备1.投影仪、实物模型、多媒体动画。
2.投影习题、测验题。
3.投影实验材料。
七. 教学过程1.导入(5分钟)利用实物模型和多媒体动画,引导学生直观地了解投影的概念。
例如,用一个三角形模型在灯光下投影,让学生观察投影的特点。
2.呈现(10分钟)讲解投影的分类,包括正投影和斜投影。
通过示例,使学生了解正投影和斜投影的特点。
3.操练(10分钟)让学生进行投影练习,掌握投影的基本性质。
例如,让学生根据给定的物体,画出其正投影和斜投影。
4.巩固(10分钟)讲解投影变换,包括平行投影和中心投影。
人教版九年级数学下册《第二十九章投影与视图》教案

人教版九年级数学下册《第二十九章投影与视图》教案一. 教材分析《人教版九年级数学下册》第二十九章《投影与视图》是学生在学习了平面几何、立体几何的基础上,进一步研究三视图、投影等知识。
这一章节的内容既巩固了学生以前所学的几何知识,又为后续的立体几何学习打下基础。
本章主要包括以下几个知识点:1.投影的概念和分类2.正投影和斜投影3.视图的概念和分类4.一视图、二视图、三视图的画法5.几何体的三视图二. 学情分析学生在学习本章内容前,已经掌握了平面几何的基本知识,对几何图形的认知有一定的基础。
但投影与视图的概念对于他们来说比较抽象,需要通过具体的实例和实践活动来理解和掌握。
另外,学生对于空间想象能力的培养还不够,需要在教学过程中加强训练。
三. 教学目标1.让学生理解投影的概念,掌握正投影和斜投影的性质。
2.让学生掌握视图的分类,学会画一视图、二视图、三视图。
3.培养学生空间想象能力,提高他们解决实际问题的能力。
四. 教学重难点1.投影的概念和分类2.正投影和斜投影的性质3.视图的画法4.空间想象能力的培养五. 教学方法1.采用直观演示法,通过实物和模型展示投影与视图的概念和性质。
2.采用实践操作法,让学生动手画一视图、二视图、三视图,培养空间想象能力。
3.采用问题驱动法,引导学生思考和探讨,提高他们解决问题的能力。
六. 教学准备1.准备投影仪、实物、模型等教学道具。
2.准备相关的练习题和测试题。
3.准备黑板和粉笔。
七. 教学过程1. 导入(5分钟)教师通过展示实物和模型,引导学生观察和思考,让学生初步认识投影和视图的概念。
2. 呈现(10分钟)教师通过投影仪展示PPT,详细讲解投影的分类、正投影和斜投影的性质,以及视图的分类和画法。
3. 操练(10分钟)学生分组进行实践活动,每组选择一个几何体,分别画出它的三视图。
教师巡回指导,解答学生疑问。
4. 巩固(10分钟)教师出示一些练习题,让学生独立完成,检查他们对于投影与视图知识的掌握程度。
春九年级人教版数学下册教案:29投影与视图章末复习

2021年春九年级人教版数学下册教案:29投影与视图章末复习章末复习教学目标【知识与技能】进一步理解投影、三视图等概念.能画出几何体的三视图,能根据三视图想象物体的形状.【过程与方法】通过对具体实例的评析加深对本章知识的理解,感受到三视图、平面展开图与各立体图形之间的相互转化关系.【情感态度】关注有关生活中的投影,生产中的三视图问题,提高数学应用意识,增强学生的空间想象能力.【教学重点】进一步加深对本章知识的理解,提高解题技能【教学难点】利用三视图想象实物形状,并根据相关数据进行计算.教学过程一、知识框图,整体把握1/62021年春九年级人教版数学下册教案:29投影与视图章末复习【教学说明】构建本章知识结构图可由师生共同完成,教师指示,学生回忆思考,可让学生获得本章完整的知识体系.同时教师在黑板知构.二、释疑解惑,加深理解本章通过问题的形式来释疑解惑,以加深学生对知识的理解.问题1平行投影和中心投影的区别是什么?如何判别物体的投影是平行投影还是中心?问题2正投影和平行投影有什么关系?正投影与三视图的关系如何?画三视图时有哪些需要注意的问题?问题3怎样根据三视图想象立体图形的形状?【教学说明】教师出示问题,让学生独立思考,然后相互交流.教师2/6在巡视中听取学生的观点,看学生有哪些地方存在误区,对此教师要予以纠正,然后作出系统的说明.三、典例精析,复习新知例1如图,晚上小明在路灯下散步,在小明由A处走到B处这一过程中,他在地上的影子〔〕A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短例2主视图、左视图、俯视图分别是以下三个图形的物体是〕例3以下列图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,那么这个几何体的左视图是()【教学说明】上述三道例题都可让学生自主完成,然后相互交流,探3/6讨出正确结论.出现失误的学生在自查中反思,加深对知识的理解.其中例3中小正方形内数字所表示的意义是解题关键.例4由一些大小相同的小立方体组成的简单几何体的主视图和俯视图如下列图.〔1〕请你画出这个几何体的一种左视图;〔2〕假设组成这个几何体的小正方体的块数为n,求n的值.【分析】从俯视图可看出这个几何体有前后两排,前排并排有三个正方形,后排有两个正方形,从主视图可看出这个几何体分为左、中、右三列,左列最多只有一个立方块,中列最多有两个立方块,右列最多有三个立方块.由于这个几何体的左视图没有画出,故无法确定这个几何体的形状,但可知道这个几何体最少需要8个立方块,最多有11个立方块,而n=8,9,10,11四个值.它的左视图有或或或四种可能.【教学说明】本例的目的是让学生明确确定一个几何体必须从三个角度得到它的视图才行,仅有其中一个或两个都是不可能的.同时,通过本例可进一步加深学生的空间观念和分类讨论问题的能力.教学时仍可让学生先尝试着解决,最后教师予以评讲.4/6例5如图是某种物体的三视图及相关数据〔单位:cm),求该物体的体积〔,π,精确到3).【分析】由三视图可想象出这个物体应该是一个正六棱柱中央挖出了一个圆柱,其体积为V≈3.例6如下列图,点P表示广场上的一盏照明灯.1〕请你在图中画出小敏在照明灯P照射下的影子〔用线段表示〕;2〕假设小丽到灯柱MO的距离为米,照明灯P到灯柱的距离为米,小丽目测照明灯P的仰角为55°,她的目高QB为米,试求照明灯到地面的距离〔结果精确到米〕.〔参考数据:tan55°,sin55°≈,cos55°≈0.574)【分析】在〔1〕中,只需连接小敏的头的顶部〔记为D)与点P连线,5/6交地面〔AB所在直线〕于点C,那么线段AC的长即为小敏在灯P下的影子〔即图中粗线AC);在〔2〕中,过P作PH垂直于过Q点的水平线于H,即PH丄QH,再求PH的长即可.【教学说明】本例是一道投影和解直角三角形的综合问题,难度不大,学生能独立完成.教师在给出问题后,巡视全场,帮助学生完成解答.四、师生互动,课堂小结通过这节课的学习你有哪些问题?回忆本章知识,你还有哪些问题?【教学说明】学生相互交流,进一步加深对本章知识的理解,针对学生存在的疑问,可当堂解决,也可课后个别辅导,帮助他〔她〕完善对本章知识的认知.课后作业布置作业:从教材复习题29中选取.完成练习册中的内容.教学反思本课时通过知识框图和例题的讲解,力求让学生对本章知识了然于胸,教师在教学时应注意让学生在全面掌握知识点的根底上抓住重点、举一反三.6/6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题投影与视图(练习课)
一、教学目标
1、进一步体会投影中的平行投影、中心投影和正投影间的相互关系
2、加深体会立体图形或实物原型与三视图的互相转化,进一步拓展学生的空间想象力
二、教学过程
(一)提问导入
前面我们都学习了哪些内容?
(让学生进行2~3分钟的梳理,然后让几个学生说说看,最后老师拓展总结)
(二)看谁学得好
练习设计
1.填空题
(1)俯视图为圆的几何体是_______,______。
(2)画视图时,看得见的轮廓线通常画成_______,
看不见的部分通常画成_______。
(3)举两个左视图是三角形的物体例子:________,_______。
(4)如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称_______。
(5)请将六棱柱的三视图名称填在相应的横线上.
(6)一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有________个碟子。
2.选择题
(1)圆柱对应的主视图是()。
(A)(B)(C)(D)
(2)某几何体的三种视图分别如下图所示,那么这个几何体可能是()。
(A)长方体(B)圆柱(C)圆锥(D)球
(3)下面是空心圆柱在指定方向上的视图,正确的是…()
(4)一个四棱柱的俯视图如右图所示,则这个四棱柱的主视图和左视图可能是()
(5)主视图、左视图、俯视图都是圆的几何体是()。
(A)圆锥(B)圆柱(C)球(D)空心圆柱
3、解答题
(1)根据要求画出下列立体图形的视图。
(画左视图)(画俯视图)(画正视图)
(2)画出右方实物的三视图。
(3)如图是一个物体的三视图,请画出物体的形状。
(4)根据下面三视图建造的建筑物是什么样子的?共有几层?一共需要多少个小正方体。