初中数学《直角三角形》公开课ppt北师大版3
北师大版数学八年级上册《直角三角形—逆命题、逆定理》课件

那么 这个三角形是等边三角形.
练习:
指出下列命题的条件和结论,说出其的逆命题.
(3)全等三角形的对应角相等. 条件:两个三角形是全等三角形. 结论:它们的对应角相等.
逆命题:如果两个三角形的对应角相等,
⑵同位角相等,两直线平行 同位角相等 两直线平行
⑶如果a=b,那么a2=b2。
a=b
a2=b2
⑷如果a2=b2,那么a=b。
a2=b2
a=b
观察表中的命题,命题⑴与命题⑵有什么关系? 命题⑶与命题⑷呢?
命题
条件
结论
⑴两直线平行,同位角相等 两直线平行 同位角相等
⑵同位角相等,两直线平行 同位角相等 两直线平行
练习一下
1.如图,正方形ABCD,AB=4,AE=2,DF=1, 图中有几个直角三角形?
易知:△ABE,△DEF,△FCB
A 2E2 D
均为Rt△
1 另外:△BEF也是Rt△
4
F 由勾股定理知
3
BE2=22+42=20,
EF2=22+12=5,
B
4
C
BF2=32+42=25
∴BE2+EF2=BF2
∴ △BEF是Rt△
2.琳琳想知道学校旗杆的高,他发现旗杆顶端的绳 子垂到地面还多1米,当他把绳子的下端拉开5米 后,发现下端刚好接触地面,你能帮他算出来旗 杆的高度吗?
A
x米 (x+1)米
5米
C
B
2.如图,长方形ABCD中,BC=8,CD=4,
将其沿BD折叠,点A落在A′处, 求 CF
最新北师大版八年级数学下册《直角三角形》精品教学课件

∴∠ABP=∠ACP=90°
∵PB=PC,AP=AP
∴Rt△ABP≌Rt△ACP(HL)
∴∠APB=∠APC
PB=PC,
在△PBD和△PCD中,
∠DPB=∠DPC, DP=DP,
∴△PBD≌△PCD(SAS)
∴∠BDP=∠CDP
课堂小结,整体感知
1.课堂小结:请同学们回顾本节课所学的内容,有哪些收获?
实践探究,交流新知
猜想: 斜边和一条直角边分别相等的两个直角三角形全等.
1.分析命题: 条件:两个直角三角形的斜边和一条直角边分别相等; 结论:这两个直角三角形全等.
2.数学语言: 已知:如图,在△ABC和△A′B′C′中,∠C=∠C′=90°,AC=A′C′,AB=A′B′; 求证:△ABC≌△A′B′C′.
开放训练,体现应用
例2 如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E
,CF⊥AD于点F.求证:AF=BE.
证明:∵∠BAC=90°
∴∠BAE+∠FAC=90°
∵BE⊥AD,CF⊥AD
∴∠BEA=∠AFC=90°
∴∠BAE+∠EBA=90°
∴∠EBA=∠FAC.
∴∠BFD=∠CED=90°
DF=DE,
在△BDF和△CDE中 ∠BFD=∠CED,
BF=CE,
∴△BDF≌△CDE(SAS)
∴∠B=∠C
开放训练,体现应用
变式训练2 如图,在四边形ABCD中,∠ABC=∠ADC=90°,
BE⊥AC于点E,DF⊥AC于点F,CF=AE,BC=DA.
求证:Rt△ABE≌Rt△CDF.
开放训练,体现应用
例1 如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方 向的长度DF相等,两个滑梯的倾斜角∠ABCБайду номын сангаас∠EFD的大小有什么关系?
北师大版数学七年级下册第四章:1、认识三角形 课件(共65张PPT)

1.三角形内角和定理:三角形三个内角的和等于180°.
2.三角形内角和定理的应用:①在三角形中,已知任意两个内角的度数可以 求出第三个内角的度数;②已知三角形三个内角的关系,可以求出各个内角 的度数;③求一个三角形中各角之间的关系.
3.三角形按角分类:
直角三角形:有一个角是直角的三角形 锐角三角形:三个角都是锐角的三角形 钝角三角形:有一个角是钝角的三角形
∠A、∠C的公共边是
.
,∠A的对边是
栏目索引
,
图4-1-3 答案 ∠B;BC;AC 解析 △ABC中,AB与BC的夹角是∠B,∠A的对边是BC,∠A、∠C的公共 边是AC.
1 认识三角形
知识点二 三角形三个内角之间的关系
栏目索引
4.(2017广西南宁中考)如图4-1-4,△ABC中,∠A=60°,∠B=40°,则∠C等于
其所在直 直角三角形
线)的交
点位置 钝角三角形
交点在三角形内 交点在直角顶点处 交点在三角形外
三条中线交于三 角形内一点(这一 点称为三角形的 重心)
交点在三角形内
共同点
每个三角形都有三条高、三条中线、三条角平分线,它们(或它们所在的直线) 都分别交于一个点,它们都是线段
1 认识三角形
栏目索引
知识拓展
(1)得到线段垂直;(2)得到角相等 (1)得到线段相等; (2)得到面积相等
得到角相等
1 认识三角形
栏目索引
线段 的位置
锐角三角形 直角三角形
钝角三角形
三条高全在三角形内
三条中线全在三
角形内 一条高在三角形内,另外两条
与两直角边重合
三条角平分线全 在三角形内
三角形内一条,三角形外两条
新北师大版九年级数学下册《三角函数的计算》优质ppt教学课件

上表的显示结果是以“度”为单位的,再按 ˚ ′ ″ 键即可显示 以“度、分、秒”为单位的结果.
根据上述方法你能求出问题1中∠A的大小吗?
sin A = 1 = 0.25. 按键顺序和显示结果为
4
SHIFT sin 0 · 2 5 = 14.477 512 19°
再按 ° ′ ″ 键可显示14˚28′39″,所以∠A=14˚28′39″.
正弦值随着角度的增大(或减小)而增大(或减小); 余弦值随着角度的增大(或减小)而减小(或增大); 正切值随着角度的增大(或减小)而增大(或减小).
知识点1 利用计算器求锐角三角函数值
1.如图,在△ABC中,∠ACB=90°,∠ABC=26°,BC=5.若用科学计算器 求边AC的长,则下列按键顺序正确的是( D )
D 39°
E
45°
C
A
【解析】(1)由题意,AC=AB=610 米.
(2)DE=AC=610米,
在Rt△BDE中,tan∠BDE= BE ,
DE
故BE=DEtan39°. 因为CD=AE,
所以CD=AB-DE·tan 39°
=610-610×tan 39°≈116(米). 答:大楼的高度CD约为116 米.
B.sin65°54′-sin35°54′=sin30°
C.2sin15°30′=sin31°
D.sin72°18′-sin12°18′=sin47°42′
•2. 已知sin α=1 ,求α,若用科学计算器计算且结果以“度、分、秒
2
”为单位,最后按键(D )
•A.AC/ON
B. SHIFT
C.MODE
(4)sin18°+cos55°-tan59°≈-0.7817.
北师大版九年级数学下册《三角函数的应用》精品课件PPT

都来当个小专家!
A
B 咋 办
2 如图,水库大坝的截面是梯形
ABCD,坝顶AD=6m,坡长CD=8m.坡底
D
BC=30m,∠ADC=1350. (1)求坡角∠ABC的大小;
(2)如果坝长100m,那么修建这个 C 大坝共需多少土石方(结果精确到
0.01m3 ).
先构造直 角三角形!
2020年北师大版九年级数学下册1.5《 三角函 数的应 用》课 件(共 16张pp t)
1 如图,有一斜坡AB长40m,坡顶离地面的
高度为20m,求此斜坡的倾斜角. 2.有一建筑物,在地面上A点测得其顶点 A
C的仰角为300,向建筑物前进50m至B处,又 A
测得C的仰角为450,求该建筑物的高度(结
果精确到0.1m).
B
3. 如图,燕尾槽的横断面是一个等腰梯 形,其中燕尾角∠B=550,外口宽AD=180mm, 燕尾槽的尝试是70mm,求它的里口宽BC(结 果精确到1mm).
北师大版九年级数学下册 2020年北师大版九年级数学下册1.5《三角函数的应用》课件(共16张ppt)
2020年北师大版九年级数学下册1.5《 三角函 数的应 用》课 件(共 16张pp t)
2020年北师大版九年级数学下册1.5《 三角函 数的应 用》课 件(共 16张pp t)
直角三角形的边角关系
看我露一手
解:要知道货轮继续向东航行途中有无触礁的危险,只
要过点A作AD⊥BC的延长线于点D,如果AD>10海里,则无
触礁的危险.根据题意可知,∠BAD=550,∠CAD=250,BC=
20海里.设AD=x,则
北
A
tan 550 BD , tan 250 CD ,
七年级数学北师大版下册4.三角形的三边关系课件

(1)a=________, b=________, c=________,
(2)a=________, b=________, c=________,
(3)a=________, b=________, c=________,
计算每个三角形的任意两边之差,并与第三边比较,
你能得到什么结论? 再画一些三角形试一试.
14.已知:如图,四边形 ABCD 是任意四边形,AC 与 BD 交于 点 O. 试说明:AC+BD>12(AB+BC+CD+DA). 解:在△OAB 中,有 OA+OB>AB; 在△OAD 中,有__O__A_+__O_D__>__A_D_____; 在△ODC 中,有__O__D_+__O__C_>__C_D_____; 在△__O_B__C___中,有___O_B_+__O__C_>__B__C____,
2.等腰三角形的一边长为3cm,另一边长为4cm,则 它的周长是___1_0_c_m__或__1_1_c_m_; 3.等腰三角形的一边长为3cm,另一边长为8cm,则 它的周长是____1_9_c_m___.
巩固新知
1 如图,在△ABC中,BC=BA,点D在AB上,且 AC=CD=DB,则图中的等腰三角形有( C )
*11.(2020·毕节)已知等腰三角形两边的长分别为 3 和 7, 则此等
腰三角形的周长为( )
A.13
B.17
C.13 或 17 D.13 或 10
【点拨】分两种情况讨论:若底边长为 3,腰长为 7,则此等腰 三角形的周长为 3+7+7=17; 若底边长为 7,腰长为 3,因为 3+3<7,不符合三角形的三边 关系,所以此等腰三角形不存在.
【中考·贺州】一个等腰三角形的两边长分别为4,8,
北师大版数学八年级下册1.2《直角三角形》说课稿

北师大版数学八年级下册1.2《直角三角形》说课稿一. 教材分析《直角三角形》是北师大版数学八年级下册第1章第2节的内容。
本节课主要介绍直角三角形的性质,包括直角三角形的定义、直角三角形的边角关系、直角三角形的应用等。
通过学习本节课,学生能够理解直角三角形的概念,掌握直角三角形的性质,并能运用直角三角形的性质解决实际问题。
二. 学情分析学生在学习本节课之前,已经学习了三角形的基本概念和性质,对三角形有一定的认识。
但是,学生可能对直角三角形的性质和应用还不够了解。
因此,在教学过程中,教师需要通过引导学生观察、思考、讨论等方式,帮助学生理解和掌握直角三角形的性质。
三. 说教学目标1.知识与技能目标:学生能够理解直角三角形的概念,掌握直角三角形的性质,并能运用直角三角形的性质解决实际问题。
2.过程与方法目标:学生能够通过观察、思考、讨论等方式,培养自己的观察能力和思维能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,增强对数学学科的兴趣和自信心。
四. 说教学重难点1.教学重点:直角三角形的性质及其应用。
2.教学难点:直角三角形的边角关系。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、探究学习法等。
2.教学手段:利用多媒体课件、几何画板等辅助教学。
六. 说教学过程1.导入:通过复习三角形的基本概念和性质,引出直角三角形的定义。
2.探究直角三角形的性质:引导学生观察、思考直角三角形的性质,并通过几何画板软件进行演示。
3.小组讨论:学生分组讨论直角三角形的应用,分享自己的解题心得。
4.总结直角三角形的性质:引导学生总结直角三角形的性质,并进行解释。
5.练习与拓展:布置一些有关直角三角形的练习题,帮助学生巩固所学知识,并拓展学生的思维。
七. 说板书设计板书设计如下:1.定义:有一个角是直角的三角形a.两个锐角的和为90度b.直角对边最长c.直角三角形的一条直角边等于另一条直角边的平方根乘以斜边d.计算直角三角形的边长e.证明几何命题八. 说教学评价教学评价主要通过学生的课堂表现、练习题的完成情况和课后作业的完成情况进行评估。
北师大版九年级下册数学《解直角三角形》直角三角形的边角关系研讨说课复习课件

知道一个元素行不行?
知道两个角行不行?
A
c
b
C
a
B
合作探究
1.在图中的Rt△ABC中,根据∠A=75°,斜边AB=6,你能求出这个直角三角形
的其他元素吗?
能
B
6
BC
sin A
BC AB sin A 6 sin 75
AB
cos A
AC
AC AB cos A 6 cos 75
)
(2)R t△A B C 中,
因为 A B =
6米
AC
= 4 3 米,
sin 60
所以 A D - A B = 12- 4 3 ≈5.1 米.
所以改善后的滑梯会加长 5.1 m .
D
300
600
B
C
拓展探究
如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形
为“好玩三角形”,在Rt△ABC中,∠C=90°,若Rt△ABC是“好玩三角
解直角三角形
九年级下册
课件
学习目标
1
理解解直角三角形的含义。
掌握运用直角三角形的两锐角互余、勾股定
2
3
理及锐角三角函数求直角三角形的未知元素.
通过利用三角函数解决实际问题的过程,进一步提高学
生的逻辑思维能力和分析问题解决问题的能力.
自主学习
直角三角形共6个元素:三条边三个角,那么之间有哪些关系:
25°
∵∠B=25°,∴∠A=65°
b
b
30
71
又∵sinB=
,∴c=
0
sin B sin 25
c
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6. 如图,在△ ABC 中,∠ACB=90°,D 为 AB 边上的一点,∠BCD=∠A=30°,BC=4 cm, 求 AD 的长.
解:∵在△ABC 中, ∠ACB=90°, ∠A=30°,BC=4 cm, ∴AB=2BC=8(cm),∠B=60°.
∵∠BCD=∠A=30°, ∴∠B+∠BCD=60°+30°=90°. ∴∠CDB=90°. ∴BD=12BC=2(cm). ∴AD=AB-BD=8-2=6(cm).
的长为 4
.
12. 如图,在△ ABC 中,∠ACB=90°,BC 的垂
直平分线交 AB 于点 D,垂足为 E,当 AB=10,
∠B=30°时,△ ACD 的周长是 15
.
二级能力提升练
13. 如图,在△ ABC 中,∠C=90°,∠B=30°,AD
平分∠CAB,交 BC 于点 D,若 CD=1,求
(2)如图,过 C 作 CP⊥AB 交 AN 于 P,则线段 CP 即为小船与灯塔 C 的最短距离. ∵∠NBC=60°,∠BPC=90°, ∴∠PCB=30°. ∴PB=1BC=15(海里).
2
∴15÷15=1(时).∴10+1=11(时) ∴上午 11 时小船与灯塔 C 的距离最短.
谢谢!
●
●
7.阅历之所以会对读书所得产生深浅 有别的 影响, 原因在 于阅读 并非是 对作品 的简单 再现, 而是一 个积极 主动的 再创造 过程, 人生的 经历与 生活的 经验都 会参与 进来。
●
8.少年时阅历不够丰富,洞察力、理 解力有 所欠缺 ,所以 在读书 时往往 容易只 看其中 一点或 几点, 对书中 蕴含的 丰富意 义难以 全面把 握。
●
4.根据结构来梳理。按照情节的开端 、发展 、高潮 和结局 来划分 文章层 次,进而 梳理情 节。
●
5.根据场景来梳理。一般一个场景可 以梳理 为一个 情节。 小说中 的场景 就是不 同时间 人物活 动的场 所。
●
6.根据线索来梳理。抓住线索是把握 小说故 事发展 的关键 。线索 有单线 和双线 两种。 双线一 般分明 线和暗 线。高 考考查 的小说 往往较 简单,线 索也一 般是单 线式。
16. 上午 8 时,一条船从海岛 A 出发,以 15 海 里/时的速度向正北方向航行,上午 10 时到 达海岛 B 处,从 A,B 望灯塔 C,测得∠NAC =30°,∠NBC=60°.
(1)求从海岛 B 到灯塔 C 的距离; (2)这条船继续向正北方向航行,
问在上午或下午的什么时间小船 与灯塔 C 的距离最短?
第十三章 轴对称
第11课 有一个角为30°的直角三角形
新课学习
知识点.含30°角的直角三角形的性质
1. 在直角三角形中,如果一个锐角等于 30°,
那么它所对的直角边等于斜边的 一半 .
几何语言:
∵ AC⊥BC,∠A=30° ,
∴
BC=1AB
2
.
2. 已知在 Rt△ ABC 中,∠B=90°,
(1)∠A=30°,BC=3,AC= 6
4. 如图,在△ ABC 中,∠C=90°,∠B=30°,AD 平分∠CAB,交 BC 于点 D.若 CD=6,求 BD 的长.
解:∵∠C=90°,∠B=30°, ∴∠CAB=60°. ∵AD平分∠CAB, ∴∠CAD=∠BAD=30°=∠B. ∴BD=AD=2CD=12.
5. (例 2)如图,在△ ABC 中,∠ACB=90°,
15. 如图,在△ ABC 中,AD⊥BC 于点 D,BE
⊥AC 于点 E,AD 与 BE 相交于点 F,且
AF=DF,∠EAD=30°,求证:BF=4EF.
证明:∵BE⊥AC于点E,∴∠AEF=90°. ∵∠EAD=30°,∴AF=2EF,∠AFE=60°. ∵AF=DF,∴DF=2EF. ∵AD⊥BC于点D,∴∠BDF=90°. ∵∠AFE=∠BFD=60°, ∴∠FBD=30°. ∴BF=2FD=4EF.
重难易错 7. (例 3)如图,在 Rt△ ABC 中,∠C=90°,
∠B=15°,DE 垂直平分 AB 交 BC 于点 E, BE=4,求 AC 的长. 解:∵DE 垂直平分 AB, ∴AE=BE=4. ∴∠BAE=∠B=15°. ∴∠AEC=∠BAE+∠B=15°+15°=30°. ∵∠C=90°,∴AC=12AE=12×4=2.
BD 的长.
解:在△ABC中,∠C=90°,∠B=30°, ∴∠BAC=60°. ∵AD平分∠CAB, ∴∠DAC=∠DAB=30°. ∵CD=1,∴AD=2, ∵∠DAB=∠B,∴BD =AD=2.
14. 如图,在△ ABC 中,∠C=90°,AC=BC,点
D 在 BC 上,且∠BAD=15°.
●
9.自信让我们充满激情。有了自信, 我们才 能怀着 坚定的 信心和 希望, 开始伟 大而光 荣的事 业。自 信的人 有勇气 交往与 表达, 有信心 尝试与 坚持, 能够展 现优势 与才华 ,激发 潜能与 活力, 获得更 多的实 践机会 与创造 可能。
感谢观看,欢迎指导!
;
(2)∠C=60°,AC=8,BC= 4
.
3.(例 1)如图,在△ ABC 中,AB=AC,∠C=30°,
AB⊥AD,AD=4 cm,求 BC 的长.
解:∵AB=AC,∠C=30°, ∴∠B=30°. ∵AB⊥AD,AD=4 cm, ∴BD=8 cm. ∵∠ADB=90°-∠B=60°,∠C=30°, ∴∠DAC=∠C=30°. ∴CD=AD=4 cm. ∴BC=BD+CD=8+4=12(cm).
1.情节是叙事性文学作品内容构成的 要素之 一,是叙 事作品 中表现 人物之 间相互 关系的 一系列 生活事 件的发 展过程 。
●
2.它由一系列展示人物性格,反映人物 与人物 、人物 与环境 之间相 互关系 的具体 事件构 成。
●
3.把握好故事情节,是欣赏小说的基础,也是整 体感知 小说的 起点。 命题者 在为小 说命题 时,也必 定以情 节为出 发点,从整体 上设置 理解小 说内容 的试题 。通常 从情节 梳理、 情节作 用两方 面设题 考查。
.
10. 如图,在△ ABC 中,AB=AC,∠BAC=120°, AD⊥AC 交 BC 于点 D,AD=3,则 BC= 9 .
11. 如图,在△ ABC 中,AB=AC=8,∠BAC=120°,
AD 是△ ABC 的中线,AE 是∠BAD 的角平分
线,DF∥AB 交 AE 的延长线于点 F,则 DF
8. 如图,在△ ABC 中,AB=AC,∠BAC=120°, AB 的垂直平分线 DE 交 BC 于点 D,垂足为 点 E. (1)求∠BAD 的度数; (2)若 BD=2,试求 CD 的长度.
解:(1)∵AB=AC,∠BAC=120°, ∴∠B=∠C=30°. ∵DE是AB的垂直平分线, ∴∠BAD=∠B=30°.
(1)求从海岛 B 到灯塔 C 的距离;
解:(1)∵∠NBC=60,∠NAC=30°, ∴∠ACB=30°. ∴AB=BC. ∵AB=15×(10-8)=30(海里), ∴AB=BC=30 海里. ∴从海岛 B 到灯塔 C 的距离为 30 海里.
(2)这条船继续向正北方向航行,问在上午或 下午的什么时间小船与灯塔 C 的距离最短?
(2)若 BD=2,试求 CD 的长度.
(2)∵DE是AB的垂直平分线, ∴AD=BD=2. ∵∠BAC=120°,∠BAD=30°, ∴∠CAD=90°. 又∠C=30°, ∴CD=2AD=4.
三级检测练
一级基础巩固练
9. 如图,在△ ABC 中,∠B=90°,∠A=30°,
AC=5,则 BC= 2.5
过点 C 作 CD⊥AB 于 D,∠A=30°,BD=1,
求 AB 的长.
解:在△ABC中,∠ACB=90°,∠A=30°, ∴∠B=60°. ∵CD⊥AB,∴∠BCD=30°. 在Rt△BCD中,∠BCD=30°,BD=1, ∴BC=2BD=2. 在Rt△ABC中,∠A=30°,BC=2, ∴AB=2BC=4.
(1)求∠CABC中,∠C=90°,AC=BC, ∴∠CAB=∠CBA=45°. 又∠BAD=15°,∠CAD+∠BAD=∠CAB, ∴∠CAD=30°. (2)在Rt△ACD中,CD=2,∠CAD=30°, 则AD=2CD=4.
三级拓展延伸练