§5隐函数的求导公式

合集下载

5 第五节 隐函数的求导公式 (定理 两个方程确定两个一元隐函数 定理 两个方程确定两个二元隐函数

5    第五节    隐函数的求导公式 (定理  两个方程确定两个一元隐函数  定理  两个方程确定两个二元隐函数

x 2 y 2 z 2 1, z xy
确定了
1 x2 1 x2 和 , 它们是连续函数, 且有连续 z x 1 x2 1 x2 2x
1 x
3 2 2
1 x
2
, z x
x4 2x2 1
1 x
3 2 2
, 满足
2
1 x
4

x
47 6 7 47 5, y 2 . 3 4 3 4 7 6 7 6
例 (补) (1) (2)
x 2 y 2 z 2 1, 设 求 z xy.
y x 和 zx ; x 2 y 2 z 2 1, 在点 0, 1, 0 附近所确定的隐 z xy
x 2 y 2 z 2 1, z xy
在点 P x0 , y0 , z0 的某一邻域
内能够唯一确定一对连续且有连续导数的函数 y y x 和
z z x , 它们满足 y0 y x0 , z0 z x0 . 在 x 2 y 2 z 2 1 的两边对 x 求导, 则 x yy x zz x 0 , 从而 yy x zz x x . 在 z xy 的两边对 x 求导, 则 z x y xy x , 从而 xy x z x y .
x0 , y0 , z0

2 y 2z x 1 x , y
0 0 , z0
2 y0 2 x0 z0 0

(这等价于 x0 , y0 , z0 1, 0, 0 , 1, 0, 0 . 理由是: 因
x0 y0 z0 0 , 故 2 y0 2 x0 z0 2 2

大学高数课件 6.5第五节 隐函数的求导公式

大学高数课件 6.5第五节  隐函数的求导公式
x y Fx e y y x y , Fy e x dz sec2 ( x y )(1 y ) dx e x y y (1 x y ) sec2 ( x y ). e x
xy y . 说明: 此题中的y还可表示为:y xy x
定理可推广到三元及三元以上方程的情形.
2. F (x, y, z) = 0
隐函数存在定理2 设C(1)类函数F(x,y,z)在点P(x0,y0,z0)
的某一邻域内满足: ① F(x0, y0, z0)=0, ② Fz(x0, y0,z0)0,
则方程F(x, y, z) =0在点P(x0, y0, z0 )的某一邻域内能唯一
( F , G ) Fy 由 F、G 的偏导数组成的行列式 J ( y, z ) G y 称为F、G 的雅可比( Jacobi )行列式.
Fz Gz
(1) 隐函数存在定理3 设C(1)类函数F(x,y,z) 、G(x,y,z)
在点P (x0,y0,z0)的某一邻域内满足: ① F(x0,y0,z0)=0, G(x0, y0,z0)=0,
隐函数的求导公式
设 y=y(x) 为F (x,y) =0所确定的隐函数, 则有 F (x, y(x)) 0,
F
x y
dy 上式两边对 x 求导, 得 Fx Fy 0, dx dy Fx 在 (x0 , y0 ) 的某邻域内 Fy 0 , . dx Fy
x
例 1 验证sin y e x y 1 0 在点(0,0)某邻域可唯一确
F ( x, y, z ) 0 则方程组 在点(x0,y0,z0)的某一邻域内唯一 G ( x , y , z ) 0 y0 y( x0 ) y y ( x ) , 且满足 , 确定一对C(1)类一元函数 z z( x ) z 0 z ( x0 ) 并有: Fy Fx Fx Fz (F ,G ) (F ,G )

隐函数的求导公式.

隐函数的求导公式.

=
1
1 2y 3z2 2y
4
yz
例4

x2 xy
y2 u2
uv v2
0 0
,求
u x
,
v x
解 设 u u( x, y), v v( x, y).
方程组两端同时对x 求偏导,得
2x + 0 ( u v + u v ) = 0
x
x
y
2u u
+
2v v
x
x
=0

v u x
+ u v
x
v
x
x x
u v 0 y y
u v
1 x v
0 y v
J x 1 u
= 1 y
J v
y 0 u
J
= 1 y
J u
同理,可得 u 1 x y J v v 1 x y J u
作业
P89 2, 4, 6, 7, 9, 10, 11
知识回顾 Knowledge Review
祝您成功
u0 u(x0, y0 ), v0 v(x0, y0 ), 并有
Fx Fv u 1 (F ,G) Gx Gv x J ( x, v) Fu Fv
Gu Gv
Fu Fx
v 1 (F ,G) Gu Gx x J (u, x) Fu Fv
Gu Gv
Fy Fv
u 1 (F ,G) G y Gv
Fz (x0 , y0 , z0 ) 0 ,则方程F(x,y,z)=0在点 (x0, y0, z0 ) 的某一邻域内恒能唯一确定一个连续且具有连续偏
导数的函数 z=f(x,y),它满足条件 z0 f (x0, y0),并有

隐函数的求导公式

隐函数的求导公式
Fy z xz Fx z yz , , Fz cos z xy x Fz cos z xy y
当Fz cos z xy 0时,有
例 5 设 z f ( x, y ) 是由方程
z z , . 求 x y .
sinz xyz 所确定的隐函数,
得恒等式F ( x, f ( x)) 0
F F dy 求其全导数 0 x y dx
由于F y 连续且F y ( x0 , y0 ) 0, 所以存在( x0 , y0 ) 的一个邻域,在此邻域 内F y 0
F Fx dy x 于是 F dx Fy y
Fx dy dx Fy
把复合函数 z f [ u( x , y ), x , y ] 中 中的u 及 y 看作不 的 y 看作不变而对x 的偏导数 变而对 x 的偏导数
3、复合高阶偏导数
复合一阶偏导: z f (u, v ) u u( x, y), v v( x, y)
z z u z v z z u z v , x u x v x y u y v y
z x y 例 6 设 z f ( x y z , xyz ),求 , , . x y z
解 令 u x y z , v xyz, 则 z f ( u, v ),
把z 看成x, y 的函数对x 求偏导数得 z z z f u (1 ) f v ( yz xy ), x x x
例1 验证方程 x 2 y 2 1 0 在点( 0,1) 的某邻 域内能唯一确定一个单值可导、且 x 0 时 y 1 的隐函数 y f ( x ) ,并求这函数的一阶和二阶导 数在 x 0 的值. F ( x, y) x 2 y 2 1

第五节 隐函数求导公式

第五节 隐函数求导公式
请看课本第86页, 隐函数存在定理3.
24
隐函数的求导公式
u u v v F ( x , y , u, v ) 0 求 , , , . x y x y G ( x , y , u, v ) 0 F ( x, y, u( x, y ), v( x, y )) 0 将恒等式 G( x, y, u( x, y ), v( x, y )) 0
两边关于x求偏导, 由链导法则得:
F F u F v x u x v x 0
G G u G v 0 x u x v x
u v 解这个以 为未知量的线性方程组. , x x
dy Fx ( x , y ) 隐函数的求导公式 dx Fy ( x , y ) (证明从略)仅推导公式. 将恒等式 F ( x , f ( x )) 0
两边关于x求导, 由全导数公式,得
4
隐函数的求导公式
F ( x , f ( x )) 0
dy Fx ( x , y ) Fy ( x, y ) 0 dx 所以存在 且Fy ( x0 , y0 ) 0, 由于Fy ( x, y)连续,
dz (1, 0, 1) dx 2dy
17
隐函数的求导公式
xyz x 2 y 2 z 2 2
法二 用全微分
yzdx xzdy xydz 2 xdx 2 ydy 2 zdz 0 2 x2 y2 z2 将点(1,0,1)代入上式, 得
dz (1, 0 , 1) dx 2dy
并有
Fy z Fx z . , Fz x Fz y
8
隐函数的求导公式
(证明从略)仅推导公式.

隐函数的求导公式

隐函数的求导公式
2 2
y 解 令 F ( x , y ) = ln x + y − arctan , x
2 2
x+ y y− x , Fy ( x , y ) = 2 , 则 Fx ( x , y ) = 2 2 2 x +y x +y x+ y dy Fx . =− =− y− x dx Fy
2. F ( x , y , z ) = 0
(1)
∂(F , G ) ∂(F , G ) dy ∂ ( x , z ) dz ∂ ( y, x ) , , =− =− ∂ ( F , G ) dx ∂(F , G ) dx ∂ ( y, z ) ∂ ( y, z )
x2 + y2 + z2 = 6 dy dz 例6:已知 ,求 , . dx dx 2x + 3y + z = 0
把 x 看成 z, y 的函数对 y 求偏导数得
∂x ∂x 0 = f u ⋅ ( + 1) + f v ⋅ ( xz + yz ), ∂y ∂y
整理得
∂x f u + xzf v =− , f u + yzf v ∂y
把 y 看成 x, z 的函数对z 求偏导数得
∂y ∂y 1 = f u ⋅ ( + 1) + f v ⋅ ( xy + xz ), ∂z ∂z
−u − y ∂u − v x xu + yv ∂v = = , =− 2 2 x −y ∂x ∂x x +y y x x −u yu − xv y −v , = 2 2 x −y x +y y x
求导, 将所给方程的两边对 y 求导,用同样方法得
∂u xv − yu , = 2 2 ∂y x + y

隐函数的求导公式

隐函数的求导公式
两种方法相比,方法二较简便,因为可避免商
的求导运算,尤其是在求指定点的二阶偏导数时,
dy y 1.已知 ln x y arctan ,求 . x dx
2 2
2. 求由方程
x y
y
x
所确定的
隐函数 y f ( x)的导数.
(2)、二元隐函数求导法则
设方程 F ( x, y, z ) =0确定z是x, y的具有连续偏导 数的函数 z f ( x, y),将 z f ( x, y) 代入上述方 程,得到关于x,y 的恒等式 :
F ( x, y, f ( x, y)) 0

如果函数 F ( x, y, z ) 具有连续的偏导数,将上述 两端对x,y求偏导,根据复合函数求导法则有
F F z 0, x z x

F F z 0, y z y
Fz 0 ,得:
z Fx x Fz
②直接法
方程两边连续求导两次
方程两边对x求导得:Fx Fy 方程两边再对x求导得:
dy 0 dx
Fx
x y
x
Fy dy dy Fx Fx dy Fy d2y 1 ( 1 ) Fy 2 0 x y dx x y dx dx dx dy dy 2 d2y Fxx 2 Fxy Fyy ( ) Fy 2 0 dx dx dx 2 2 2 F F 2 F F F F F xy x y yy x 解得: d y xx y dx2 Fy3
dFy dFx Fy Fx 2 d y dx 于是 2 dx dx Fy2
Fy dx Fy dy Fx dx Fx dy ( ) Fy Fx ( ) x dx y dx x dx y dx Fy2

第五节隐函数的求导公式

第五节隐函数的求导公式

第五节隐函数的求导公式隐函数是指在一些方程中以一个变量表示另一个变量的函数,其中一个变量通常被称为自变量,另一个变量被称为因变量。

求解隐函数的导数是微积分中的重要内容,因为它可以帮助我们找到函数的变化率和切线方程等信息。

本文将介绍隐函数的求导公式。

隐函数求导的关键在于使用链式法则。

链式法则是微积分中的一个基本原理,它描述了复合函数的导数与原函数导数的关系。

在隐函数的情况下,我们可以将因变量视为自变量的函数,并运用链式法则进行导数的计算。

设有一个隐函数方程F(x, y) = 0,其中y是x的函数。

我们希望求解dy/dx,即隐函数的导数。

首先我们将隐函数方程两边对x求导,得到:dF/dx + dF/dy * dy/dx = 0由于我们求解的是dy/dx,我们可以将这个方程改写为:dy/dx = -dF/dx / dF/dy这就是隐函数的求导公式,它告诉我们如何通过对隐函数方程进行求导来获得隐函数的导数。

这个求导公式的推导并不复杂,但需要注意一些细节。

首先,我们要确保F(x, y)在求导过程中对x和y都是可导的。

换句话说,F(x, y)的偏导数存在且连续。

其次,我们要注意分母dF/dy不能为零,否则求导公式将无法成立。

以下是几个例子,以帮助理解隐函数的求导公式:例子1:设有一个隐函数方程x^2 + y^2 = 1,我们希望求解dy/dx。

首先对这个方程两边求导,得到:2x + 2y * dy/dx = 0于是,dy/dx = -2x / (2y) = -x / y这个例子告诉我们,对于圆的方程,求得的导数是-x/y。

例子2:设有一个隐函数方程e^x + ln(y) = 1,我们希望求解dy/dx。

e^x + 1/y * dy/dx = 0于是,dy/dx = -e^x / (1/y) = -y * e^x这个例子告诉我们,对于指数和对数的方程,求得的导数是-y*e^x。

例子3:设有一个隐函数方程x^3 + 2y^2 = 5,我们希望求解dy/dx。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§8. 5 隐函数的求导公式课 题:§8.5隐函数的求导公式教学目的:通过学习,使学生掌握隐函数的求导公式教学重点:一个方程的情形隐函数的求导公式教学难点:方程组的情形隐函数的求导公式教学过程:一、一个方程的情形隐函数存在定理1设函数F (x , y )在点P (x 0, y 0)的某一邻域内具有连续偏导数, F (x 0, y 0)=0, F y (x 0, y 0)≠0, 则方程F (x , y )=0在点(x 0, y 0)的某一邻域内恒能唯一确定一个连续且具有连续导数的函数y =f (x ), 它满足条件y 0=f (x 0), 并有yx F F dx dy -=. 求导公式证明: 将y =f (x )代入F (x , y )=0, 得恒等式F (x , f (x ))≡0,等式两边对x 求导得0=⋅∂∂+∂∂dxdy y F x F , 由于F y 连续, 且F y (x 0, y 0)≠0, 所以存在(x 0, y 0)的一个邻域, 在这个邻域同F y ≠0, 于是得yx F F dx dy -=. 例1 验证方程x 2+y 2-1=0在点(0, 1)的某一邻域内能唯一确定一个有连续导数、当x =0时y =1的隐函数y =f (x ), 并求这函数的一阶与二阶导数在x =0的值. 解 设F (x , y )=x 2+y 2-1, 则F x =2x , F y =2y , F (0, 1)=0, F y (0, 1)=2≠0. 因此由定理1可知, 方程x 2+y 2-1=0在点(0, 1)的某一邻域内能唯一确定一个有连续导数、当x =0时y =1的隐函数y =f (x ).y x F F dx dy y x -=-=, 00==x dx dy ;332222221)(y y x y y y x x y y y x y dx y d -=+-=---='--=, 1022-==x dx y d . 隐函数存在定理还可以推广到多元函数. 一个二元方程F (x , y )=0可以确定一个一元隐函数, 一个三元方程F (x , y , z )=0可以确定一个二元隐函数.隐函数存在定理2设函数F (x , y , z )在点P (x 0, y 0, z 0)的某一邻域内具有连续的偏导数, 且F (x 0, y 0, z 0)=0, F z (x 0, y 0, z 0)≠0 , 则方程F (x , y , z )=0在点(x 0, y 0, z 0)的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数z =f (x , y ), 它满足条件z 0=f (x 0, y 0), 并有z x F F x z -=∂∂, z y F F yz -=∂∂. 公式的证明: 将z =f (x , y )代入F (x , y , z )=0, 得F (x , y , f (x , y ))≡0,将上式两端分别对x 和y 求导, 得0=∂∂⋅+xz F F z x , 0=∂∂⋅+y z F F z y . 因为F z 连续且F z (x 0, y 0, z 0)≠0, 所以存在点(x 0, y 0, z 0)的一个邻域, 使F z ≠0, 于是得z x F F x z -=∂∂, z y F F yz -=∂∂. 例2. 设x 2+y 2+z 2-4z =0, 求22x z ∂∂. 解 设F (x , y , z )= x 2+y 2+z 2-4z , 则F x =2x , F y =2z -4, zx z x F F x z z x -=--=-=∂∂2422, 3222222)2()2()2()2()2()2()2(z x x z z x x x z x z x x x z -+-=--+-=-∂∂+-=∂∂. 二、方程组的情形在一定条件下, 由个方程组F (x , y , u , v )=0, G (x , y , u , v )=0可以确定一对二元函数u =u (x , y ), v =v (x , y ), 例如方程xu -yv =0和yu +xv =1可以确定两个二元函数22y x y u +=,22y x x v +=. 事实上, xu -yv =0 ⇒u y x v =⇒1=⋅+u y x x yu ⇒22yx y u +=, 2222yx x y x y y x v +=+⋅=. 如何根据原方程组求u , v 的偏导数?隐函数存在定理3设F (x , y , u , v )、G (x , y , u , v )在点P (x 0, y 0, u 0, v 0)的某一邻域内具有对各个变量的连续偏导数, 又F (x 0, y 0, u 0, v 0)=0, G (x 0, y 0, u 0, v 0)=0, 且偏导数所组成的函数行列式:vG u Gv F u F v u G F J ∂∂∂∂∂∂∂∂=∂∂=),(),( 在点P (x 0, y 0, u 0, v 0)不等于零, 则方程组F (x , y , u , v )=0, G (x , y , u , v )=0在点P (x 0, y 0, u 0, v 0)的某一邻域内恒能唯一确定一组连续且具有连续偏导数的函数u =u (x , y ), v =v (x , y ), 它们满足条件u 0=u (x 0, y 0), v 0=v (x 0, y 0), 并有vu v u v x v x G G F F G G F F v x G F J x u -=∂∂-=∂∂),(),(1, vu v u x u x u G G F F G G F F x u G F J x v -=∂∂-=∂∂),(),(1, vu v u v y v y G G F F G G F F v y G F J y u -=∂∂-=∂∂),(),(1, vu v u y u y u G G F F G G F F y u G F J y v -=∂∂-=∂∂),(),(1.隐函数的偏导数:设方程组F (x , y , u , v )=0, G (x , y , u , v )=0确定一对具有连续偏导数的二元函数u =u (x , y ), v =v (x , y ), 则偏导数x u ∂∂, x v ∂∂由方程组⎪⎩⎪⎨⎧=∂∂+∂∂+=∂∂+∂∂+.0,0x v G x u G G x v F x u F F v u x v u x 确定; 偏导数y u ∂∂, y v ∂∂由方程组⎪⎩⎪⎨⎧=∂∂+∂∂+=∂∂+∂∂+.0,0y v G y u G G y v F y u F F v u y v u y 确定. 例3 设xu -yv =0, yu +xv =1, 求x u ∂∂, x v ∂∂, yu ∂∂和y v ∂∂. 解 两个方程两边分别对x 求偏导, 得关于xu ∂∂和x v ∂∂的方程组 ⎪⎩⎪⎨⎧=∂∂++∂∂=∂∂-∂∂+00x v x v xu y x v y x u x u , 当x 2+y 2 ≠0时, 解之得22yx yv xu x u ++-=∂∂, 22y x xv yu x v +-=∂∂. 两个方程两边分别对x 求偏导, 得关于yu ∂∂和y v ∂∂的方程组 ⎪⎩⎪⎨⎧=∂∂+∂∂+=∂∂--∂∂00y v x y u y u y v y v y u x , 当x 2+y 2 ≠0时, 解之得22y x yu xv y u +-=∂∂, 22yx yv xu y v ++-=∂∂. 另解 将两个方程的两边微分得⎩⎨⎧=+++=--+00xdv vdx ydu udy ydv vdy xdu udx , 即⎩⎨⎧--=+-=-vdxudy xdv ydu udx vdy ydv xdu . 解之得 dy y x yu xv dx y x yv xu du 2222+-+++-=,dy yx yv xu dx y x xv yu dv 2222++-+-=. 于是 22yx yv xu x u ++-=∂∂, 22y x yu xv y u +-=∂∂, 22y x xv yu x v +-=∂∂, 22yx yv xu y v ++-=∂∂. 例4 设函数x =x (u , v ), y =y (u , v )在点(u , v )的某一领域内连续且有连续偏导数, 又0),(),(≠∂∂v u y x . (1)证明方程组⎩⎨⎧==),(),(v u y y v u x x 在点(x , y , u , v )的某一领域内唯一确定一组单值连续且有连续偏导数的反函数u =u (x , y ), v =v (x , y ).(2)求反函数u =u (x , y ), v =v (x , y )对x , y 的偏导数.解 (1)将方程组改写成下面的形式⎩⎨⎧=-≡=-≡0),(),,,(0),(),,,(v u y y v u y x G v u x x v u y x F , 则按假设 .0),(),(),(),(≠∂∂=∂∂=v u y x v u G F J 由隐函数存在定理3, 即得所要证的结论.(2)将方程组(7)所确定的反函数u =u (x , y ),v =v (x , y )代入(7), 即得⎩⎨⎧≡≡)],(),,([)],(),,([y x v y x u y y y x v y x u x x , 将上述恒等式两边分别对x 求偏导数,得⎪⎩⎪⎨⎧∂∂⋅∂∂+∂∂⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=xvv y x u u y x v v x x u u x 01.由于J ≠0, 故可解得v y J x u ∂∂=∂∂1, uy J x v ∂∂-=∂∂1. 同理, 可得 v x J y u ∂∂-=∂∂1, u x J y v ∂∂=∂∂1.。

相关文档
最新文档