硫酸盐废水处理方法比较

合集下载

高含硫污水的处理方法

高含硫污水的处理方法

高含硫污水的处理方法一、引言高含硫污水是指含有较高浓度硫化物的废水,其处理是环境保护和工业生产中的重要课题。

本文将介绍几种常用的高含硫污水处理方法,包括化学法、生物法和物理法。

二、化学法处理1. 硫酸盐沉淀法:将含硫污水与适量的氢氧化钙反应,生成硫化钙沉淀。

反应后的溶液通过过滤或者沉淀分离,可得到去除硫化物的废水。

2. 氧化法:利用氧化剂如氯气、过氧化氢等将硫化物氧化为硫酸盐,然后通过沉淀、过滤等方法将其去除。

这种方法适合于含硫污水中硫化物浓度较高的情况。

三、生物法处理1. 厌氧消化法:利用厌氧菌将含硫污水中的硫化物转化为硫化氢气体,然后通过气体分离设备将硫化氢去除。

这种方法适合于含硫污水中硫化物浓度较低的情况。

2. 好氧生物法:利用好氧菌将含硫污水中的硫化物氧化为硫酸盐,然后通过沉淀、过滤等方法将其去除。

这种方法适合于含硫污水中硫化物浓度较高的情况。

四、物理法处理1. 吸附法:使用活性炭、沸石等吸附剂吸附含硫污水中的硫化物,然后通过再生或者处理废吸附剂来实现硫化物的去除。

2. 膜分离法:利用微滤膜、超滤膜等膜分离技术,将含硫污水中的硫化物分离出去。

这种方法适合于含硫污水中硫化物浓度较低的情况。

五、综合处理方法综合运用化学法、生物法和物理法可以达到更好的高含硫污水处理效果。

根据实际情况,可以选择不同的处理方法进行组合,以提高处理效率和降低成本。

六、结论高含硫污水的处理是一项重要的环境保护任务,本文介绍了几种常用的处理方法,包括化学法、生物法和物理法。

根据污水中硫化物的浓度和实际情况,可以选择适合的处理方法或者组合多种方法,以达到高效、经济的处理效果。

同时,为了确保处理效果和安全,需要根据相关法规和标准进行操作,并定期监测和维护处理设备。

高浓度含盐废水处理工艺

高浓度含盐废水处理工艺

高浓度含盐废水处理工艺一、高浓度含盐废水的定义及危害高浓度含盐废水是指废水中含有较高浓度的盐类(如氯化钠、硫酸盐、碳酸盐等)。

这种废水往往来自于化工、电子、矿业等行业,在生产过程中产生。

高浓度含盐废水假如直接排放到环境中,会造成以下危害:1. 对水体生态环境造成直接破坏,导致水生生物死亡和生态平衡失调。

2. 加重土地污染,对植被生长和土壤质量造成不良影响。

3. 造成大气污染,严重影响四周居民的日常生活。

因此,高浓度含盐废水的处理特别紧要,需要找寻适合的处理技术。

二、高浓度含盐废水处理技术1. 浓缩技术浓缩技术是指将高浓度含盐废水通过蒸发、冷冻结晶、扩散等方式,将废水中的水分蒸发掉,使废水中的盐分达到肯定的浓度。

这种技术可以将高浓度含盐废水中的盐分浓缩到较高的浓度,降低处理的难度和成本。

浓缩后的盐分可以进一步用于回收利用或销售。

2. 离子交换技术离子交换技术是指通过树脂对废水中的离子进行吸附和交换。

通过选择特定的吸附树脂,可以将废水中的高浓度离子快速吸附到树脂上并得到纯洁的水。

这种技术可以有效地去除废水中的高浓度盐分,得到高品质的废水。

3. 反渗透技术反渗透技术是指利用半透膜对废水进行过滤,过滤后的废水中水分较少,离子浓度较高。

通过这种技术,可以将废水中的高浓度离子和溶解物分别出来。

反渗透技术一般需要高压和高能耗,但是可以得到纯洁的废水,是一种特别有效的处理方法。

4. 气浮沉淀技术气浮沉淀技术是指将高浓度含盐废水中的悬浮物通过气浮或沉淀的方式分别出来。

这种技术特别适用于处理含大量悬浮物的高浓度废水,可以有效地去除废水中的物质,得到更纯洁的水。

5. 生物处理技术生物处理技术是指通过生物菌群对废水进行分解、转化和吸附,以去除其中的污染物。

这种技术可以完成一些常规的废水处理,如去除有机物和氨氮等污染物。

但是,对于高浓度含盐废水,生物处理技术往往只能起到辅佑襄助作用。

三、综合处理方案针对高浓度含盐废水的特点,综合采纳多种处理技术是特别有效的。

硫酸盐废水处理工艺

硫酸盐废水处理工艺

硫酸盐废水处理工艺一、引言随着工业化进程的加快,硫酸盐废水的排放量也不断增加,给环境带来了严重的污染问题。

硫酸盐废水中含有大量的硫酸盐离子,如果直接排放到水体中会对水环境造成严重的危害。

因此,针对硫酸盐废水的处理工艺显得尤为重要。

二、硫酸盐废水的性质及危害硫酸盐废水主要是指含有硫酸盐离子的废水,其中较为常见的有硫酸钠、硫酸铵等。

硫酸盐废水的主要危害有以下几个方面:1. 对水体的直接污染:硫酸盐废水中的硫酸盐离子会降低水体的pH值,破坏水体的酸碱平衡,对水生生物造成毒害。

2. 对大气环境的污染:硫酸盐废水中的硫酸盐会通过蒸发等方式释放到大气中,形成酸雨,对大气环境造成污染。

3. 对土壤的污染:硫酸盐废水中的硫酸盐会渗入土壤,对土壤的结构和肥力造成破坏。

三、硫酸盐废水处理工艺为了有效处理硫酸盐废水,目前常用的处理工艺主要有以下几种:1. 混凝沉淀法:该方法通过加入适量的混凝剂,使废水中的硫酸盐离子与混凝剂发生反应,生成沉淀物,然后通过沉淀和过滤等工艺将废水中的硫酸盐离子去除。

2. 离子交换法:该方法利用离子交换树脂对废水中的硫酸盐离子进行吸附和交换,将废水中的硫酸盐离子去除,同时可以对废水进行再生和回用。

3. 活性炭吸附法:该方法利用活性炭对废水中的硫酸盐离子进行吸附,通过物理吸附作用将废水中的硫酸盐离子去除。

4. 膜分离法:该方法利用膜技术对废水进行分离,通过膜的选择性通透性,将废水中的硫酸盐离子分离出来,达到去除硫酸盐的目的。

四、硫酸盐废水处理工艺的选择与优化在选择硫酸盐废水处理工艺时,应根据废水的具体性质、处理效果要求、经济性和可操作性等因素进行综合考虑。

同时,针对不同的硫酸盐废水,可以根据实际情况进行工艺的优化和改进,以提高处理效果和降低处理成本。

五、硫酸盐废水处理工艺的应用与展望硫酸盐废水处理工艺已经在许多工业领域得到了广泛应用,取得了较好的处理效果。

随着科学技术的不断发展和进步,硫酸盐废水处理工艺也在不断创新和完善。

硫酸盐的去除原理及方法

硫酸盐的去除原理及方法

硫酸盐的去除原理及方法1、硫酸盐在污水处理中的危害:厌氧过程中的硫酸盐还原菌竞争产甲烷菌所需要的二氧化碳,影响甲烷的产生,同时硫酸盐还原菌不仅具有转化有机酸和乙酸的功能,同时,将硫酸盐还原为硫化物,对产甲烷菌造成危害。

工业有机废水中由于硫酸盐的存在而产生的主要问题包括:含硫酸盐的工业废水,如果不经处理就直接被排入水体中,会产生具有腐蚀性和恶臭味的硫化氢气体,不仅如此,硫化氢还具较强的毒性,会直接危害人体健康和影响生态平衡。

含高浓度硫酸盐的工业有机废水,在应用厌氧处理工艺时,高浓度的硫酸盐对产甲烷菌(MPB)产生强烈的抑制,将会致使消化过程难以进行。

硫酸盐的还原是在SRB(硫酸盐还原菌)的作用下完成。

SRB是属专性厌氧菌,属于在厌氧消化过程起主要作用的4种微生物种群中的产氢产乙酸菌。

在不存在硫酸盐的厌氧环境中,SRB则呈现产氢产乙酸菌的功能;当厌氧消化中存在硫酸盐时,则SRB不仅具有了产氢产乙酸菌转化有机酸和乙酸的功能,而且具有还原硫酸盐为H2S的特性。

存在硫酸盐的厌氧消化过程中,本可能被MPB(产甲烷菌)利用还原二氧化碳生成甲烷的一切分子氢均被SRB所竞争利用,从而使还原二氧化碳生成甲烷的反应受阻。

硫酸盐在SRB的作用下还原成硫化物,是污泥驯化的过程,硫化物浓度超过100mg/L时,对甲烷菌细胞的功能产生直接抑制作用。

相关的实验研究和工程实践表明,当原水SO42-含量≥400mg/L时就有可能转化为较高浓度的硫化物,并且是不可避免的。

2、硫酸盐的去除和转化:利用水解酸化池的厌氧环境,硫酸盐还原菌工艺的流程如下图所示:微电解反应器管道混合器曝气池沉淀池水解池该工艺是将水解池和微电解组合,微电解反应器通过微电解反应将产生大量的Fe2+,水解池中的硫酸盐还原菌(SRB)将硫酸盐还原成硫化物,含有大量硫化物的水解池出水回流,和微电解反应器的出水在管道混合器内混合,硫化物与Fe2+结合成FeS不溶于水的沉淀物,再通过后续的沉淀池将FeS沉淀,从而完成废水废水中硫酸盐的去除;曝气池的作用则是将剩余的Fe2+,通过曝气氧化成Fe3+,然后和碱生成Fe(OH)3,新生态的Fe3+经碱中和后,生成的Fe(OH)3是胶体凝聚剂,它的吸附能力高于一般药剂水解法得到的Fe(OH)3的吸附能力,这样污水中原有的悬浮物以及通过微电解产生的不溶物和部分构成色度的有机物可被吸附凝聚,从而得以去除。

硫酸盐的去除原理及方法

硫酸盐的去除原理及方法

硫酸盐的去除原理及方法1、硫酸盐在污水处理中的危害:厌氧过程中的硫酸盐还原菌竞争产甲烷菌所需要的二氧化碳,影响甲烷的产生,同时硫酸盐还原菌不仅具有转化有机酸和乙酸的功能,同时,将硫酸盐还原为硫化物,对产甲烷菌造成危害。

工业有机废水中由于硫酸盐的存在而产生的主要问题包括:含硫酸盐的工业废水,如果不经处理就直接被排入水体中,会产生具有腐蚀性和恶臭味的硫化氢气体,不仅如此,硫化氢还具较强的毒性,会直接危害人体健康和影响生态平衡。

含高浓度硫酸盐的工业有机废水,在应用厌氧处理工艺时,高浓度的硫酸盐对产甲烷菌(MPB)产生强烈的抑制,将会致使消化过程难以进行。

硫酸盐的还原是在SRB(硫酸盐还原菌) 的作用下完成。

SRB是属专性厌氧菌,属于在厌氧消化过程起主要作用的4 种微生物种群中的产氢产乙酸菌。

在不存在硫酸盐的厌氧环境中,SRB则呈现产氢产乙酸菌的功能;当厌氧消化中存在硫酸盐时,则SRB不仅具有了产氢产乙酸菌转化有机酸和乙酸的功能,而且具有还原硫酸盐为H2S的特性。

存在硫酸盐的厌氧消化过程中,本可能被MPB产( 甲烷菌) 利用还原二氧化碳生成甲烷的一切分子氢均被SRB所竞争利用,从而使还原二氧化碳生成甲烷的反应受阻。

硫酸盐在SRB的作用下还原成硫化物,是污泥驯化的过程,硫化物浓度超过100mg/L 时,对甲烷菌细胞的功能产生直接抑制作用。

相关的实验研究和工程实践表明,当原水SO42-含量≥ 400mg/L时就有可能转化为较高浓度的硫化物,并且是不可避免的。

2、硫酸盐的去除和转化:利用水解酸化池的厌氧环境,硫酸盐还原菌工艺的流程如下图所示:微电解反应器管道混合器曝气池沉淀池水解池该工艺是将水解池和微电解组合,微电解反应器通过微电解反应将产生大量的Fe2+,水解池中的硫酸盐还原菌(SRB)将硫酸盐还原成硫化物,含有大量硫化物的水解池出水回流,和微电解反应器的出水在管道混合器内混合,硫化物与Fe2+结合成FeS 不溶于水的沉淀物,再通过后续的沉淀池将FeS沉淀,从而完成废水废水中硫酸盐的去除;曝气池的作用则是将剩余的Fe2+,通过曝气氧化成Fe3+,然后和碱生成Fe(OH)3,新生态的Fe3+经碱中和后,生成的Fe(OH)3 是胶体凝聚剂,它的吸附能力高于一般药剂水解法得到的Fe(OH)3 的吸附能力,这样污水中原有的悬浮物以及通过微电解产生的不溶物和部分构成色度的有机物可被吸附凝聚,从而得以去除。

高含硫污水的处理方法

高含硫污水的处理方法

高含硫污水的处理方法一、引言高含硫污水是指含有较高浓度硫化物的废水,如工业废水、生活污水中的硫化氢、硫酸盐等。

高含硫污水的处理是环境保护和水资源管理的重要任务之一。

本文将详细介绍高含硫污水的处理方法,包括物理处理、化学处理和生物处理等方面。

二、物理处理方法1. 气体吸附法通过将高含硫污水中的硫化氢气体吸附到吸附剂上,从而实现硫化氢的去除。

常用的吸附剂包括活性炭、氧化铁等。

吸附后的吸附剂可以通过再生来回收。

2. 气体膜分离法利用特殊的膜材料,将高含硫污水中的硫化氢气体与其他气体分离,达到去除硫化氢的目的。

常用的膜材料有聚合物膜、陶瓷膜等。

3. 液体氧化法通过将高含硫污水与氧气接触,利用氧化作用将硫化物氧化为硫酸盐或硫酸。

常用的液体氧化剂有过氧化氢、氯气等。

三、化学处理方法1. 化学沉淀法将高含硫污水中的硫化物与适当的金属离子反应生成难溶的金属硫化物沉淀物,从而实现硫化物的去除。

常用的金属离子包括铁离子、铝离子等。

2. 化学氧化法通过加入氧化剂,如过氧化氢、高锰酸钾等,使高含硫污水中的硫化物氧化为易溶性的硫酸盐或硫酸,从而达到去除硫化物的目的。

3. 化学沉淀-氧化法将化学沉淀法和化学氧化法结合使用,先利用化学沉淀法去除大部分硫化物,再利用化学氧化法去除剩余的硫化物。

四、生物处理方法1. 厌氧消化法将高含硫污水置于无氧环境中,利用厌氧微生物将硫化物转化为硫化氢,再将硫化氢转化为硫酸盐。

该方法适用于高浓度硫化物的处理。

2. 好氧生物处理法将高含硫污水置于含氧环境中,利用好氧微生物将硫化物氧化为硫酸盐。

该方法适用于低浓度硫化物的处理。

3. 好氧-厌氧生物处理法将高含硫污水先置于好氧环境中,利用好氧微生物将硫化物氧化为硫酸盐,然后再将硫酸盐转化为硫化氢,最后利用厌氧微生物将硫化氢转化为硫酸盐。

五、总结高含硫污水的处理是一项复杂而重要的任务,需要根据具体情况选择合适的处理方法。

物理处理方法适用于去除硫化氢气体,化学处理方法适用于去除硫化物,生物处理方法适用于将硫化物转化为硫酸盐。

过硫酸盐高级氧化技术处理废水研究

过硫酸盐高级氧化技术处理废水研究利用硫酸盐高级氧化技术处理废水
近年来,环境污染日益严重,废水处理技术也受到了越来越多的关注和科学家
以及技术人员的探索。

利用高级氧化技术处理废水的优势显著,表现在活性物质的去除率高,处理效率高,成本低等方面。

硫酸盐高级氧化技术是一种新兴的废水处理技术,它将活性物质释放到水中并
将其分解为完全氧化的终产物,从而实现废液处理、除臭及污染物去除本身的目的。

使用硫酸盐高级氧化技术可以显著提高处理水体总活性物质和抗菌作用,改善水质,有助于改善水环境。

通过硫酸盐高级氧化技术处理废水,可以有效控制废水的污染物含量,进一步
减少废水排放的污染程度,得到一定的净化效果,并有助于改善水环境。

相比于常规的废水处理技术,所耗费的成本更低,可以较好地满足多数废水处理环境的要求,具有较大的发展潜力。

另外,硫酸盐高级氧化技术还可以改变废水中各种污染物的性质,从而达到较
好的处理效果。

在废水处理过程中,利用该技术可以实现对有机物和无机物的有效降解,有效阻止有害物质的污染。

总之,硫酸盐高级氧化技术集节能、低成本、无污染等优点为一体,是当前废
水处理的有效技术手段之一,应运作因地制宜,逐步应用于各类废水处理场合,在改善水环境方面发挥着重要作用。

高浓度硫酸盐有机废水的生化处理方式小结---苗雨

高浓度硫酸盐有机废水的生化处理方式小结1.硫酸盐废水来源、危害及处理对策含硫酸盐的废水主要有采矿废水,制药废水,制革废水,造纸废水,食品加工废水,金属加工废水,化工废水等。

随着工业的飞速发展,硫酸盐废水的排放量越来越大。

大量高浓硫酸盐有机废水排入环境水体中会导致水体酸化,影响水生生物的生长;污染土壤,导致土壤生态系统失衡;还原产生的有毒有害废气H2S会污染大气环境,因此,专家学者对硫酸盐废水的研究由来已久[1]。

综合各种研究成果来看,生化法具有成本低,能耗少,无污染等优点,还可以通过驯化和强化功能细菌,提高处理效率,因此,生化法是厌处理高浓硫酸盐有机废水的首选工艺。

但是,硫酸盐废水还包括无机性硫酸盐废水和难生物降解的有机物性硫酸盐废水,这其中还含有多种重金属离子,氮磷等元素,成分非常复杂,因此对生化处理工艺提出了更高的要求[2]。

2.硫酸盐还原菌与产甲烷菌的竞争机制与硫化物毒性抑制研究废水中的硫元素主要以有机硫、SO42-、和S2-形式存在,其中SO42-是主要形式。

废水中的SO42-的生物处理一般包括还原反应和氧化反应两个过程,分别有硫酸盐还原菌(SRB)和硫化物氧化菌(SOB)完成。

在厌氧条件下,SO42-在SRB的作用下被还原为硫化物,然后在SOB作用下将硫化物氧化为单质硫,再通过剩余污泥进行单质硫回收。

在厌氧过程中,系统中同时存在的产甲烷菌(MPB)和硫酸盐还原菌(SRB)的基质竞争以及硫化物对MPB 和SRB的毒害作用,都会使厌氧降解过程受到抑制。

2.1竞争抑制理论厌氧发酵过程中产生的H2和乙酸是SRB和MPB的共同底物,但是SRB对氧化还原电位(ORP)要求小于-100mV,而MPB则要求小于-330mv,因此硫酸盐还原反应总是优先发生。

Nielson 等[3]通过研究发现,SRB具有较大的比乙酸消耗速率和较低的半速度常数,因而在底物亲和力方面更有优势。

从热力学角度来看,SRB硫酸盐还原作用比产甲烷反应放出更高的能量,反应更容易发生。

生物法处理含硫酸盐酸性废水及回收单质硫工艺

生物法处理含硫酸盐酸性废水及回收单质硫工艺化工、制药、金属加工和采矿等工业部门排出的废水中以及用某些固体脱硫剂去除烟气中 SO2时固体脱硫剂再生废液中都含有高浓度的硫酸盐。

特别是硫化系矿山在开采过程中所含的硫化物被氧化为硫酸而产生的酸性矿山废水中含有高浓度的硫酸盐。

我国北方酸性矿井水主要分布在陕、宁、鲁和内蒙等省区。

我国南方煤矿大部分为高硫煤,特别是川、贵、桂等省区,矿井水多呈酸性,pH值最低至2.5~3.0,其硫酸盐含量高达3000mg/L。

含硫酸盐酸性废水不经处理直接排入水体使受纳水体酸化,降低pH,危害水生生物,并产生潜在腐蚀性。

含硫酸盐酸性废水也会破坏土壤结构,减少农作物产量。

酸性矿山废水的污染是一个全球性问题,因此酸性矿山废水处理受到国内外学者的广泛关注。

目前,国内外处理酸性矿山废水主要采用石灰石或石灰作中和剂的中和法处理。

该法的严重缺点是中和产生巨量难以处置的固体废弃物硫酸钙(石膏)地面积大,处理程度受环境影响很大,而且由于残余硫化氢从土壤中生物法处理酸性矿山废水的基本原理就是在厌氧条件下利用硫酸盐还原菌(Sulfate Reduction Bacteria, SRB)使SO42-还原为H2S,再用化学法或生物法将H2S氧化为单质硫,进而从水中回收紧缺物资单质硫。

由于单质硫的回收,使处理本身产生环境社会效益的同时又具有一定的经济效益。

只有当存在电子供体时SRB才能将SO42-还原为H2S。

酸性矿山废水中有机物含量通常很低,所以利用SRB还原SO42-的关键是选择技术源对SRB还原SO42-进行了研究,这些碳源物质有乙酸、糖蜜、乙醇、发生炉煤气、H2/CO/CO2混合气体、初沉池污泥、剩余活性污泥、橡胶废水以及经过气提的乳清废水。

上述碳源或由于成本高或由于SO42-还原能力低,限制了生产上的应用。

生活垃圾来源充足方便,生活垃圾酸性发酵成本低廉,发酵产物挥发脂肪酸浓度高,因此生活垃圾酸性发酵产物有可能成为利用SRB生物处理含SO42-废水的经济合理的碳源,使生物处理含SO42-酸性废水工艺经济可行。

石灰法去除原水硫酸盐的方法

石灰法去除原水硫酸盐的方法概述:硫酸盐是一种常见的水质污染物,它会对人体健康和环境造成很大的威胁。

石灰法是一种常用的处理方法,通过与硫酸盐反应生成不溶性硫酸钙沉淀,从而去除水中的硫酸盐。

本文将详细介绍石灰法去除原水硫酸盐的方法及其原理。

一、石灰法去除原水硫酸盐的原理石灰法去除原水中的硫酸盐是基于硫酸盐和石灰(氢氧化钙)之间的化学反应。

硫酸盐溶解在水中会形成硫酸根离子(SO4^2-),而石灰会与硫酸根离子反应生成不溶性的硫酸钙沉淀(CaSO4)。

这种沉淀可以通过过滤等方法从水中分离出来,从而实现去除硫酸盐的目的。

二、石灰法去除原水硫酸盐的步骤1. 水质测试:首先需要对原水进行水质测试,确定硫酸盐的含量和其他水质指标,以确定石灰的加量和处理时间。

2. 加入石灰:在原水中加入适量的石灰,搅拌均匀。

石灰的加量应根据水质测试结果确定,一般来说,石灰的加入量为硫酸盐质量的1.5倍左右。

3. 混合反应:将石灰与原水充分混合,使其反应生成硫酸钙沉淀。

反应时间一般为30分钟至1小时,具体时间取决于硫酸盐的浓度和水质情况。

4. 沉淀分离:待反应结束后,硫酸钙沉淀会自然沉淀到底部。

可以通过静置或使用沉淀池等设备将其分离出来。

5. 过滤处理:将底部的硫酸钙沉淀通过过滤装置进行过滤,去除杂质和悬浮物。

过滤后的水可以直接使用或进行进一步处理。

6. 水质调整:经过石灰法处理后的水质往往碱性较高,需要进行酸碱调节,以使其符合使用要求。

7. 水质监测:对处理后的水样进行水质监测,确保水质达到相关标准。

三、石灰法去除原水硫酸盐的优缺点石灰法是一种较为成熟的水处理技术,它具有以下优点:1. 处理效果好:石灰法可以有效去除原水中的硫酸盐,处理效果可达到90%以上。

2. 操作简单:石灰法的操作相对简单,不需要复杂的设备和技术。

3. 成本低廉:石灰是一种常见的化学药剂,价格相对较低,适合大规模应用。

4. 对环境友好:石灰法不会产生有害物质,对环境无污染。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

硫酸盐废水处理方法比较
℃,反应时间60 min,溶液 pH 值
11、0, SO42-与 Al3+的物质的量比为1、1׃1、0,且各因素影响程度由大至小的顺序为:溶液 pH 值、铝盐加入量、反应时间;在最佳工艺条件下,硫酸根离子质量浓度由1720 mg/L降至100 mg/L 以下,达到生活饮用水卫生标准。

沉淀物XRD检测结果表明:其主要物相为钙矾石(Ca6Al2(SO4)3(OH)1226H2O)。

絮凝沉淀石灰-聚合氯化铝混凝法由于受石灰自身溶度积的影响对硫酸根的去除率不高; 石灰-氯化铝化学沉淀法可使硫酸根的去除率达到95%以上, 但是易引入杂质离子。

吸附法此类方法受溶液pH 值、操作温度等因素影响较大,且成本较高,尚处于实验研究阶段。

焙烧水滑石吸附、柱撑蒙脱石吸附法和针铁矿吸附法,成本低, 对水中SO42-具有良好的吸附性能,比较有前景,但这两种方法还处于实验室研究阶段,有待于进一步研究。

冷冻法该法利用硫酸盐的溶解度随着温度的变化而变化的特点而实现分离的目的。

该法优点是可得副产品硫酸盐,去除效果较好。

其缺点是投资大,能耗相当大,目前工业上应用很少见。

生物法好氧生物法高浓度硫酸盐的废水中有机物浓度也很高,好氧法处理该类废水需要大量的自来水稀释以及消耗大量的电能, 因此该方法由于很不经济而在生产中较少被采用。

厌氧生物法硫酸盐还原菌(SRB)与产甲烷菌(MPB)竞争共同底物(乙酸和H2)产生初级抑制作用;硫酸盐还原产
生的H2S 对MPB 和其他厌氧菌产生次级抑制作用。

同时, H2S对沼气的产量和利用也造成严重影响。

处理高浓度硫酸盐废水的工艺存在启动时间较长、处理速度慢、效率低、有机物消耗量大等问题。

相关文档
最新文档