湖北省黄冈市2021届新高考四诊数学试题含解析

合集下载

2021年湖北省新高考数学模拟试卷及答案解析

2021年湖北省新高考数学模拟试卷及答案解析

第 1 页 共 21 页2021年湖北省新高考数学模拟试卷一.选择题(共8小题,满分40分,每小题5分)1.(5分)已知集合M ={x|y =√log 0.5(4x −3)},N ={y|y =√log 0.5(4x −3)},则M ∩N =( ) A .[34,+∞)B .[0,+∞)C .(34,1]D .[34,1]2.(5分)已知p :|m +1|<1,q :幂函数y =(m 2﹣m ﹣1)x m 在(0,+∞)上单调递减,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.(5分)某宾馆有n 间客房,客房的定价将影响住房率,每间客房的定价与每天的住房率的关系如表: 每间客房的定价 90元 80元 70元 60元 每天的住房率65%75%85%90%要使此宾馆每天收入最高,则每间客房的定价应为( ) A .90元B .80元C .70元D .60元4.(5分)已知数列{a n }是公差为d (d ≠0)的等差数列,且a 1,a 3,a 6成等比数列,则a 1d=( ) A .4B .3C .2D .15.(5分)将函数y =sin (4x −π6)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得图象向左平移π6个单位长度,得到函数f (x )的图象,则函数f (x )的解析式为( )A .f(x)=sin(2x +π6) B .f(x)=sin(2x −π3) C .f(x)=sin(8x +π6)D .f(x)=sin(8x −π3)6.(5分)已知当x ∈R 时,函数y =f (x )满足f(2.5+x)=f(1.5+x)+13,且f(1)=43,则f (2010)的值为( ) A .20103B .20143C .671D .268。

湖北省黄冈市2021届新高考数学第一次押题试卷含解析

湖北省黄冈市2021届新高考数学第一次押题试卷含解析

湖北省黄冈市2021届新高考数学第一次押题试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数1i i +=( )A .2i -B .12i C .0 D .2i【答案】C【解析】略2.若1nx ⎫⎪⎭的展开式中二项式系数和为256,则二项式展开式中有理项系数之和为( ) A .85B .84C .57D .56 【答案】A【解析】【分析】先求n ,再确定展开式中的有理项,最后求系数之和.【详解】解:1nx ⎫⎪⎭的展开式中二项式系数和为256 故2256n =,8n = 88433188r r rr rr T C x x C x ---+==要求展开式中的有理项,则258r =,,则二项式展开式中有理项系数之和为:258888++=85C C C故选:A【点睛】考查二项式的二项式系数及展开式中有理项系数的确定,基础题.3.若a R ∈,则“3a =”是“()51x ax +的展开式中3x 项的系数为90”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件 【答案】B【解析】【分析】求得()51x ax +的二项展开式的通项为15C k k k a x +⨯⋅,令2k =时,可得3x 项的系数为90,即25290C =a ⨯,求得a ,即可得出结果.【详解】若3a =则()()55=113x ax x x ++二项展开式的通项为+15C 3k k k x ⨯⋅,令13k +=,即2k =,则3x 项的系数为252C 3=90⨯,充分性成立;当()51x ax +的展开式中3x 项的系数为90,则有25290C =a ⨯,从而3a =±,必要性不成立.故选:B.【点睛】本题考查二项式定理、充分条件、必要条件及充要条件的判断知识,考查考生的分析问题的能力和计算能力,难度较易.4.已知椭圆C :()222210x y a b a b+=>>的左,右焦点分别为1F ,2F ,过1F 的直线交椭圆C 于A ,B 两点,若290ABF ∠=︒,且2ABF V 的三边长2BF ,AB ,2AF 成等差数列,则C 的离心率为( )A .12B .C .2D 【答案】C【解析】【分析】 根据等差数列的性质设出2BF ,AB ,2AF ,利用勾股定理列方程,结合椭圆的定义,求得21BF a BF ==.再利用勾股定理建立,a c 的关系式,化简后求得离心率.【详解】 由已知2BF ,AB ,2AF 成等差数列,设2BF x =,AB x d =+,22AF x d =+.由于290ABF ∠=︒,据勾股定理有22222BF AB AF +=,即()()2222x x d x d ++=+,化简得3x d =;由椭圆定义知2ABF V 的周长为233124x x d x d x d d a ++++=+==,有3a d =,所以x a =,所以21BF a BF ==;在直角21BF F V 中,由勾股定理,2224a c =,∴离心率e =. 故选:C【点睛】本小题主要考查椭圆离心率的求法,考查椭圆的定义,考查等差数列的性质,属于中档题.5.如图,在直角梯形ABCD 中,AB ∥DC ,AD ⊥DC ,AD =DC =2AB ,E 为AD 的中点,若(,)CA CE DB R λμλμ=+∈u u u r u u u r u u u r ,则λ+μ的值为( )A .65 B .85 C .2 D .83【答案】B【解析】【分析】建立平面直角坐标系,用坐标表示,,CA CE DB u u u r u u u r u u u r ,利用(,)CA CE DB R λμλμ=+∈u u u r u u u r u u u r ,列出方程组求解即可.【详解】建立如图所示的平面直角坐标系,则D(0,0).不妨设AB =1,则CD =AD =2,所以C(2,0),A(0,2),B(1,2),E(0,1),(2,2),(2,1),(1,2)CA CE DB ∴=-=-=u u u r u u u r u u u rCA CE DB λμ=+u u u r u u u r u u u r Q∴(-2,2)=λ(-2,1)+μ(1,2),2222λμλμ-+=-⎧∴⎨+=⎩解得6525λμ⎧=⎪⎪⎨⎪=⎪⎩则85λμ+=. 故选:B【点睛】本题主要考查了由平面向量线性运算的结果求参数,属于中档题.6.已知集合{}2,1,0,1,2A =--,2}2{|0B x x x =-+>,则A B =I ( )A .{}1,0-B .{}0,1C .{}1,0,1-D .{}2,1,0,1,2--【答案】D【解析】【分析】先求出集合B ,再与集合A 求交集即可.【详解】 由已知,22172()024x x x -+=-+>,故B R =,所以A B =I {}2,1,0,1,2--. 故选:D.【点睛】本题考查集合的交集运算,考查学生的基本运算能力,是一道容易题.7.如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有( )A .2对B .3对C .4对D .5对【答案】C【解析】【分析】 画出该几何体的直观图P ABCD -,易证平面PAD ⊥平面ABCD ,平面PCD ⊥平面PAD ,平面PAB ⊥平面PAD ,平面PAB ⊥平面PCD ,从而可选出答案.【详解】该几何体是一个四棱锥,直观图如下图所示,易知平面PAD ⊥平面ABCD ,作PO ⊥AD 于O ,则有PO ⊥平面ABCD ,PO ⊥CD ,又AD ⊥CD ,所以,CD ⊥平面PAD ,所以平面PCD ⊥平面PAD ,同理可证:平面PAB ⊥平面PAD ,由三视图可知:PO =AO =OD ,所以,AP ⊥PD ,又AP ⊥CD ,所以,AP ⊥平面PCD ,所以,平面PAB ⊥平面PCD ,所以该多面体各表面所在平面互相垂直的有4对.【点睛】本题考查了空间几何体的三视图,考查了四棱锥的结构特征,考查了面面垂直的证明,属于中档题. 8.已知F 为抛物线y 2=4x 的焦点,过点F 且斜率为1的直线交抛物线于A ,B 两点,则||FA|﹣|FB||的值等于( )A .82B .8C .42D .4【答案】C【解析】【分析】将直线方程1y x =-代入抛物线方程,根据根与系数的关系和抛物线的定义即可得出FA FB -的值.【详解】 F (1,0),故直线AB 的方程为y =x ﹣1,联立方程组241y x y x ⎧=⎨=-⎩,可得x 2﹣6x+1=0,设A (x 1,y 1),B (x 2,y 2),由根与系数的关系可知x 1+x 2=6,x 1x 2=1.由抛物线的定义可知:|FA|=x 1+1,|FB|=x 2+1,∴||FA|﹣|FB||=|x 1﹣x 2|=()21212436442x x x x +-=-=故选C .【点睛】本题考查了抛物线的定义,直线与抛物线的位置关系,属于中档题. 9.设不等式组2000x x y x y -≤⎧⎪+≥⎨⎪-≥⎩,表示的平面区域为Ω,在区域Ω内任取一点(),P x y ,则P 点的坐标满足不等式222x y +≤的概率为A .π8B .π4C .12π+D 2π+【解析】【分析】画出不等式组表示的区域Ω,求出其面积,再得到222x y +≤在区域Ω内的面积,根据几何概型的公式,得到答案.【详解】 画出2000x x y x y -≤⎧⎪+≥⎨⎪-≥⎩所表示的区域Ω,易知()()2,2,2,2A B -,所以AOB V 的面积为4,满足不等式222x y +≤的点,在区域Ω内是一个以原点为圆心,2为半径的14圆面,其面积为2π, 由几何概型的公式可得其概率为2==48P ππ, 故选A 项.【点睛】本题考查由约束条件画可行域,求几何概型,属于简单题.10.在ABC V 中,角,,A B C 的对边分别为,,a b c ,若cos (2)cos c a B a b A -=-,则ABC V 的形状为( )A .直角三角形B .等腰非等边三角形C .等腰或直角三角形D .钝角三角形【答案】C【解析】【分析】利用正弦定理将边化角,再由()sin sin A B C +=,化简可得sin cos sin cos B A A A =,最后分类讨论可得;解:因为cos (2)cos c a B a b A -=-所以()sin sin cos 2sin sin cos C A B A B A -=-所以sin sin cos 2sin cos sin cos C A B A A B A -=-所以()sin sin cos 2sin cos sin cos A B A B A A B A +-=-所以sin cos sin cos sin cos 2sin cos sin cos A B B A A B A A B A +-=-所以sin cos sin cos B A A A =当cos 0A =时2A π=,ABC ∆为直角三角形;当cos 0A ≠时sin sin A B =即A B =,ABC ∆为等腰三角形;ABC ∆∴的形状是等腰三角形或直角三角形故选:C .【点睛】本题考查三角形形状的判断,考查正弦定理的运用,考查学生分析解决问题的能力,属于基础题. 11.设命题:p 函数()x x f x e e -=+在R 上递增,命题:q 在ABC ∆中,cos cos A B A B >⇔<,下列为真命题的是( )A .p q ∧B .()p q ∨⌝C .()p q ⌝∧D .()()p q ⌝∧⌝ 【答案】C【解析】【分析】命题p :函数()x x f x e e -=+在(,0)-∞上单调递减,即可判断出真假.命题q :在ABC ∆中,利用余弦函数单调性判断出真假.【详解】解:命题p :函数()x x f x e e -=+,所以()x x f x e e -=-',当0x <时,()0f x '<,即函数在(,0)-∞上单调递减,因此是假命题.命题q :在ABC ∆中,,(0,),cos A B y x π∈=在(0,)π上单调递减,所以cos cos A B A B >⇔<,是真命题.则下列命题为真命题的是()p q ⌝∧.故选:C .【点睛】本题考查了函数的单调性、正弦定理、三角形边角大小关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.12.函数2sin 1x x y x+=+的部分图象大致为( ) A .B .C .D .【答案】B【解析】【分析】 图像分析采用排除法,利用奇偶性判断函数为奇函数,再利用特值确定函数的正负情况。

湖北省黄冈市2021届高三9月质量检测数学试题 含答案

湖北省黄冈市2021届高三9月质量检测数学试题 含答案
20.(本小题满分12分)在锐角 中,角A,B,C所对的边分别为a,b,c,若 的图象在点 处的切线与直线 垂直.
(1)求C角与c边;
(2)求 面积的最大值.
21.(本小题满分12分)如图,有一生态农庄的平面图是一个半圆形,其中直径长为 ,C、D两点在半圆弧上满足 ,设 ,现要在此农庄铺设一条观光通道,由 和 组成.
12.一副三角板由一块有一个内角为60°的直角三角形和一块等腰直角三角形组成,如图所示, , , , ,现将两块三角形板拼接在一起,得三棱锥 ,取 中点O与 中点M,则下列判断中正确的是()
A.直线 平面 B. 与平面 所成的角为定值
C.三棱锥 体积为定值D.设平面 平面 ,则有
三、填空题:本题共4小题,每小题5分,共20分.
解得 ,令 ,得 ,
从而 在 上的单调减区间为 .10分
18.(1)由 知,

从而有: ,
4分
(2)由(1)同理可得:
从而 8分
从而 12分
19.(1) ,两边同时除以 得:
2分
从而有: ,
…………
叠加可得: ,
又 满足等式,从而 6分
10.已知曲线C的方程为 ,则下列结论正确的是()
A.当 时,曲线C为圆
B.存在实数k使得曲线C为双曲线,其离心率为
C.当 时,曲线C为双曲线,其渐近线方程为
D.“ ”是“曲线C为焦点在x轴上的椭圆”的充分而不必要条件
11.已知函数 则下列说法正确的是()
A. 的值域是 B. 在 上有2个零点
C. 在区间 上单调递增D. 是以 为最小正周期的周期函数
(2)若函数 ,当 时, 恒成立,求实数m的取值范围.
高三9月调考数学参考答案及评分标准

湖北省黄石市2021届新高考数学第四次押题试卷含解析

湖北省黄石市2021届新高考数学第四次押题试卷含解析

湖北省黄石市2021届新高考数学第四次押题试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知复数()11z ai a R =+∈,212z i =+(i 为虚数单位),若12z z 为纯虚数,则a =( ) A .2-B .2C .12-D .12 【答案】C【解析】【分析】把()12112z ai a R z i =+∈=+,代入12z z ,利用复数代数形式的除法运算化简,由实部为0且虚部不为0求解即可.【详解】∵()12112z ai a R z i =+∈=+,, ∴121(1)(12)12212(12)(12)55z ai ai i a a i z i i i ++-+-===+++-, ∵12z z 为纯虚数, ∴12020a a +=⎧⎨-≠⎩,解得12a =-. 故选C .【点睛】本题考查复数代数形式的除法运算,考查复数的基本概念,是基础题.2.若复数2(2)(32)m m m m i -+-+是纯虚数,则实数m 的值为( )A .0或2B .2C .0D .1或2【答案】C【解析】试题分析:因为复数2(2)(32)m m m m i -+-+是纯虚数,所以(2)0m m -=且2320m m -+≠,因此0.m =注意不要忽视虚部不为零这一隐含条件.考点:纯虚数3.若x ,y 满足约束条件0,2,10,x y x y x -≤⎧⎪+≤⎨⎪+≥⎩,则4z x y =+的取值范围为( )A .[]5,1--B .[]5,5-C .[]1,5-D .[]7,3-【答案】B【解析】【分析】 根据约束条件作出可行域,找到使直线4y x z =-+的截距取最值得点,相应坐标代入4z x y =+即可求得取值范围.【详解】画出可行域,如图所示:由图可知,当直线4z x y =+经过点()1,1A --时,z 取得最小值-5;经过点()1,1B 时,z 取得最大值5,故55z -剟. 故选:B【点睛】本题考查根据线性规划求范围,属于基础题.4.设全集U=R ,集合2{|340}A x x x =-->,则U A =ð( )A .{x|-1 <x<4}B .{x|-4<x<1}C .{x|-1≤x≤4}D .{x|-4≤x≤1}【答案】C【解析】【分析】解一元二次不等式求得集合A ,由此求得U A ð【详解】由()()234410x x x x --=-+>,解得1x <-或4x >. 因为{|1A x x =<-或4}x >,所以U {|14}x x A =-≤≤ð.故选:C【点睛】本小题主要考查一元二次不等式的解法,考查集合补集的概念和运算,属于基础题.5.在ABC ∆中,,A B C ∠∠∠所对的边分别是,,a b c ,若3,4,120a b C ︒==∠=,则c =( )A .37B .13C D【答案】D【解析】【分析】直接根据余弦定理求解即可.【详解】解:∵3,4,120a b C ︒==∠=,∴2222cos 9161237c a b ab C =+-=++=,∴c =故选:D .【点睛】本题主要考查余弦定理解三角形,属于基础题. 6.已知双曲线()2222:10,0x y C a b a b-=>>的实轴长为2,离心率为2,1F 、2F 分别为双曲线C 的左、右焦点,点P 在双曲线C 上运动,若12F PF △为锐角三角形,则12PF PF +的取值范围是( )A .()B .()C .()D .()【答案】A【解析】【分析】 由已知先确定出双曲线方程为2213y x -=,再分别找到12F PF △为直角三角形的两种情况,最后再结合122PF PF -=即可解决.【详解】由已知可得22a =,2c a=,所以1,2,a c b ==== 2213y x -=,不妨设点P 在双曲线C 右支上运动,则122PF PF -=,当12PF PF ⊥时, 此时221216PF PF +==122()2PF PF -+12PF PF ,所以126PF PF =,122()PF PF +=22122PF PF ++1228PF PF =,所以12PF PF+= 当2PF x ⊥轴时,221216PF PF =+,所以121682PF PF =+=,又12F PF △为锐角三 角形,所以12PF PF+()∈.故选:A.【点睛】本题考查双曲线的性质及其应用,本题的关键是找到12F PF △为锐角三角形的临界情况,即12F PF △为直角三角形,是一道中档题.7.已知过点(1,1)P 且与曲线3y x =相切的直线的条数有( ).A .0B .1C .2D .3【答案】C【解析】【分析】设切点为()00x ,y ,则300y x =,由于直线l 经过点()1,1,可得切线的斜率,再根据导数的几何意义求出曲线在点0x 处的切线斜率,建立关于0x 的方程,从而可求方程.【详解】若直线与曲线切于点()()000x ,y x 0≠,则32000000y 1x 1k x x 1x 1x 1--===++--, 又∵2y'3x =,∴200y'x x 3x ==,∴2002x x 10--=,解得0x 1=,01x 2=-, ∴过点()P 1,1与曲线3C :y x =相切的直线方程为3x y 20--=或3x 4y 10-+=,故选C .【点睛】本题主要考查了利用导数求曲线上过某点切线方程的斜率,求解曲线的切线的方程,其中解答中熟记利用导数的几何意义求解切线的方程是解答的关键,着重考查了运算与求解能力,属于基础题.8.甲乙两人有三个不同的学习小组A , B , C 可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为( )A .13B .14C .15D .16【答案】A 【解析】依题意,基本事件的总数有339⨯=种,两个人参加同一个小组,方法数有3种,故概率为3193=. 9.执行如下的程序框图,则输出的S 是( )A .36B .45C .36-D .45-【答案】A【解析】【分析】 列出每一步算法循环,可得出输出结果S 的值.【详解】18i =≤满足,执行第一次循环,()120111S =+-⨯=-,112i =+=;28i =≤成立,执行第二次循环,()221123S =-+-⨯=,213i =+=;38i =≤成立,执行第三次循环,()323136S =+-⨯=-,314i =+=;48i =≤成立,执行第四次循环,()4261410S =-+-⨯=,415i =+=;58i =≤成立,执行第五次循环,()52101515S =+-⨯=-,516i =+=;68i =≤成立,执行第六次循环,()62151621S =-+-⨯=,617i =+=;78i =≤成立,执行第七次循环,()72211728S =+-⨯=-,718i =+=;88i =≤成立,执行第八次循环,()82281836S =-+-⨯=,819i =+=;98i =≤不成立,跳出循环体,输出S 的值为36,故选:A.【点睛】本题考查算法与程序框图的计算,解题时要根据算法框图计算出算法的每一步,考查分析问题和计算能力,属于中等题. 10.如图,2AB =是圆O 的一条直径,,C D 为半圆弧的两个三等分点,则()AB AC AD ⋅+=u u u r u u u r u u u r ( )A.52B.4C.2D.13+【答案】B【解析】【分析】连接CD、OD,即可得到60CAB DOB︒∠=∠=,1AC=,再根据平面向量的数量积及运算律计算可得;【详解】解:连接CD、OD,CQ,D是半圆弧的两个三等分点,//CD AB∴,且2AB CD=,60CAB DOB︒∠=∠=所以四边形AODC为棱形,1cos1212AC AB AC AB BAC∴=∠=⨯⨯=u u u r u u u r u u u r u u u rg g∴()11222AB AC AD AB AC AC AB AB AC AB⎡⎤⎛⎫⎛⎫+=++=+⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u rg g g2122AC AB AB=+u u u r u u u r u u u rg.2121242=⨯+⨯=故选:B【点睛】本题考查平面向量的数量积及其运算律的应用,属于基础题.11.《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“- ”当作数字“1”,把阴爻“--”当作数字“0”,则八卦所代表的数表示如下:卦名符号表示的二进制数表示的十进制数坤 000 0震 001 1 坎010 2 兑 011 3依此类推,则六十四卦中的“屯”卦,符号“ ”表示的十进制数是( )A .18B .17C .16D .15 【答案】B【解析】【分析】由题意可知“屯”卦符号“”表示二进制数字010001,将其转化为十进制数即可. 【详解】由题意类推,可知六十四卦中的“屯”卦符号“”表示二进制数字010001,转化为十进制数的计算为1×20+1×24=1.故选:B .【点睛】 本题主要考查数制是转化,新定义知识的应用等,意在考查学生的转化能力和计算求解能力.12.设函数()f x 定义域为全体实数,令()(||)|()|g x f x f x =-.有以下6个论断:①()f x 是奇函数时,()g x 是奇函数;②()f x 是偶函数时,()g x 是奇函数;③()f x 是偶函数时,()g x 是偶函数;④()f x 是奇函数时,()g x 是偶函数⑤()g x 是偶函数;⑥对任意的实数x ,()0g x ….那么正确论断的编号是( )A .③④B .①②⑥C .③④⑥D .③④⑤【答案】A【解析】【分析】根据函数奇偶性的定义即可判断函数()g x 的奇偶性并证明.【详解】当()f x 是偶函数,则()()f x f x -=,所以()()(||)|()|(||)|()|g x f x f x f x f x g x -=---=-=,所以()g x 是偶函数;当()f x 是奇函数时,则()()f x f x -=-,所以()()(||)|()|(||)|()|g x f x f x f x f x g x -=---=-=,所以()g x 是偶函数;当()f x 为非奇非偶函数时,例如:()5f x x =+, 则()27f -=,()23f -=,此时(2)0g ->,故⑥错误;故③④正确.故选:A【点睛】本题考查了函数的奇偶性定义,掌握奇偶性定义是解题的关键,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。

湖北省黄石市2021届新高考四诊数学试题含解析

湖北省黄石市2021届新高考四诊数学试题含解析

湖北省黄石市2021届新高考四诊数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.某四棱锥的三视图如图所示,则该四棱锥的体积为( )A .23B .43C .2D .4【答案】B 【解析】 【分析】由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,由此求出四棱锥的体积. 【详解】由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,画出四棱锥的直观图,如图所示:则该四棱锥的体积为211421333ABCD V S PA =⋅=⨯⨯=正方形. 故选:B. 【点睛】本题考查了利用三视图求几何体体积的问题,是基础题.2.若函数()ln f x x x h =-++,在区间1,e e ⎡⎤⎢⎥⎣⎦上任取三个实数a ,b ,c 均存在以()f a ,()f b ,()f c 为边长的三角形,则实数h 的取值范围是( )A .11,1e ⎛⎫-- ⎪⎝⎭B .11,3e e ⎛⎫--⎪⎝⎭C .11,e ⎛⎫-+∞⎪⎝⎭D .()3,e -+∞【答案】D 【解析】 【分析】利用导数求得()f x 在区间1,e e ⎡⎤⎢⎥⎣⎦上的最大值和最小,根据三角形两边的和大于第三边列不等式,由此求得h 的取值范围. 【详解】()f x 的定义域为()0,∞+,()'111x f x x x-=-+=,所以()f x 在1,1e ⎛⎫⎪⎝⎭上递减,在()1,e 上递增,()f x 在1x =处取得极小值也即是最小值,()1ln111f h h =-++=+,1111ln 1f h h e e e e ⎛⎫=-++=++ ⎪⎝⎭,()ln 1f e e e h e h =-++=-+,()1f f e e ⎛⎫< ⎪⎝⎭, 所以()f x 在区间1,e e ⎡⎤⎢⎥⎣⎦上的最大值为()1f e e h =-+.要使在区间1,e e⎡⎤⎢⎥⎣⎦上任取三个实数a ,b ,c 均存在以()f a ,()f b ,()f c 为边长的三角形,则需()()()f a f b f c +>恒成立,且()10f >,也即()()()max min f a f b f c +>⎡⎤⎣⎦,也即当1a b ==、c e =时,()()21e f f >成立, 即()211h e h +>-+,且()10f >,解得3h e >-.所以h 的取值范围是()3,e -+∞. 故选:D 【点睛】本小题主要考查利用导数研究函数的最值,考查恒成立问题的求解,属于中档题. 3.函数()sin (0)f x x ωω=>的图象向右平移12π个单位得到函数()y g x =的图象,并且函数()g x 在区间[,]63ππ上单调递增,在区间[,]32ππ上单调递减,则实数ω的值为( ) A .74B .32C .2D .54【答案】C 【解析】由函数()sin (0)f x x ωω=>的图象向右平移12π个单位得到[]1212g x sin x sin x πωπωω=-=-()()(),函数()g x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,可得3x π=时,()g x 取得最大值,即23122k πωππωπ⨯-=+(),k Z ∈,0ω>,当0k =时,解得2ω=,故选C.点睛:本题主要考查了三角函数图象的平移变换和性质的灵活运用,属于基础题;据平移变换“左加右减,上加下减”的规律求解出()g x ,根据函数()g x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减可得3x π=时,()g x 取得最大值,求解可得实数ω的值.4.函数()sin()(0)4f x A x πωω=+>的图象与x 轴交点的横坐标构成一个公差为3π的等差数列,要得到函数()cos g x A x ω=的图象,只需将()f x 的图象( )A .向左平移12π个单位 B .向右平移4π个单位 C .向左平移4π个单位 D .向右平移34π个单位 【答案】A 【解析】依题意有()f x 的周期为()22ππ,3,sin 334T f x A x πωω⎛⎫====+ ⎪⎝⎭.而()πππππsin 3sin 3sin 3244124g x A x A x A x ⎡⎤⎛⎫⎛⎫⎛⎫=+=++=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故应左移π12.5.在5678(1)(1)(1)(1)x x x x -+-+-+-的展开式中,含3x 的项的系数是( ) A .74 B .121 C .74- D .121-【答案】D 【解析】 【分析】根据5678(1)(1)(1)(1)x x x x -+-+-+-,利用通项公式得到含3x 的项为:()+++-333335678()C C C C x ,进而得到其系数,【详解】因为在5678(1)(1)(1)(1)x x x x -+-+-+-,所以含3x 的项为:()+++-333335678()C C C C x ,所以含3x 的项的系数是的系数是33335678()C C C C -+++,()10203556121=-+++=-,故选:D 【点睛】本题主要考查二项展开式及通项公式和项的系数,还考查了运算求解的能力,属于基础题,6.为比较甲、乙两名高中学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为100分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述不正确的是( )A .甲的数据分析素养优于乙B .乙的数据分析素养优于数学建模素养C .甲的六大素养整体水平优于乙D .甲的六大素养中数学运算最强【答案】D 【解析】 【分析】根据所给的雷达图逐个选项分析即可. 【详解】对于A ,甲的数据分析素养为100分,乙的数据分析素养为80分, 故甲的数据分析素养优于乙,故A 正确;对于B ,乙的数据分析素养为80分,数学建模素养为60分, 故乙的数据分析素养优于数学建模素养,故B 正确; 对于C ,甲的六大素养整体水平平均得分为10080100801008031063+++++=,乙的六大素养整体水平均得分为806080606010025063+++++=,故C 正确;对于D ,甲的六大素养中数学运算为80分,不是最强的,故D 错误; 故选:D 【点睛】本题考查了样本数据的特征、平均数的计算,考查了学生的数据处理能力,属于基础题. 7.()f x 是定义在()0,∞+上的增函数,且满足:()f x 的导函数存在,且()()f x x f x '<,则下列不等式成立的是( ) A .()()221f f < B .()()3344ff <C .()()2334f f <D .()()3223f f <【答案】D 【解析】 【分析】根据()f x 是定义在()0,∞+上的增函数及()()f x f x '有意义可得()0f x '>,构建新函数()()f x g x x=,利用导数可得()g x 为()0,∞+上的增函数,从而可得正确的选项. 【详解】因为()f x 是定义在()0,∞+上的增函数,故()0f x '≥.又()()f x f x '有意义,故()0f x '≠,故()0f x '>,所以()()f x f x x <'. 令()()f xg x x =,则()()()20'-'=>xf x f x g x x, 故()g x 在()0,∞+上为增函数,所以()()32g g >即()()3232f f >, 整理得到()()2332f f >. 故选:D. 【点睛】本题考查导数在函数单调性中的应用,一般地,数的大小比较,可根据数的特点和题设中给出的原函数与导数的关系构建新函数,本题属于中档题. 8.已知数列{}n a 对任意的*n N ∈有111(1)n n a a n n +=-++成立,若11a =,则10a 等于( )A .10110B .9110C .11111D .12211【答案】B【解析】 【分析】观察已知条件,对111(1)n n a a n n +=-++进行化简,运用累加法和裂项法求出结果.【详解】 已知111(1)n n a a n n +=-++,则1111111()11()(1)11n n a a n n n n n n +--+=--+=--+++=,所以有21111()12a a ---=,32111()23a a ---=,43111()34a a ---=,L109111()910a a ---=,两边同时相加得10119(1)10a a ---=,又因为11a =,所以101919(11)1010a --==+.故选:B 【点睛】本题考查了求数列某一项的值,运用了累加法和裂项法,遇到形如1n(n 1)+时就可以采用裂项法进行求和,需要掌握数列中的方法,并能熟练运用对应方法求解. 9.已知i 为虚数单位,若复数z 满足5i 12iz =-+,则z =( ) A .1i + B .1i -+C .12i -D .12i +【答案】A 【解析】分析:题设中复数满足的等式可以化为512z i i=++,利用复数的四则运算可以求出z . 详解:由题设有512112z i i i i i=+=-+=-+,故1z i =+,故选A. 点睛:本题考查复数的四则运算和复数概念中的共轭复数,属于基础题. 10.函数()1ln1xf x x-=+的大致图像为( ) A . B .C .D .【答案】D 【解析】 【分析】通过取特殊值逐项排除即可得到正确结果. 【详解】 函数()1ln1x f x x -=+的定义域为{|1}x x ≠±,当12x =时,1()ln 302f =-<,排除B 和C ; 当2x =-时,(2)ln 30f -=>,排除A. 故选:D. 【点睛】本题考查图象的判断,取特殊值排除选项是基本手段,属中档题.11.已知集合{}|0A x x =<,{}2|120B x x mx =+-=,若{}2A B =-I ,则m =( )A .4B .-4C .8D .-8【答案】B 【解析】 【分析】根据交集的定义,{}2A B =-I ,可知2B -∈,代入计算即可求出m . 【详解】由{}2A B =-I ,可知2B -∈, 又因为{}2|120B x x mx =+-=, 所以2x =-时,2(2)2120m ---=, 解得4m =-. 故选:B. 【点睛】本题考查交集的概念,属于基础题.12.根据如图所示的程序框图,当输入的x 值为3时,输出的y 值等于( )A .1B .eC .1e -D .2e -【答案】C 【解析】 【分析】根据程序图,当x<0时结束对x 的计算,可得y 值. 【详解】由题x=3,x=x-2=3-1,此时x>0继续运行,x=1-2=-1<0,程序运行结束,得1y e -=,故选C . 【点睛】本题考查程序框图,是基础题.二、填空题:本题共4小题,每小题5分,共20分。

2021届湖北省黄冈市高三上学期9月调研考试数学试题(解析版)

2021届湖北省黄冈市高三上学期9月调研考试数学试题(解析版)
A. B. C. D.
【答案】C
【解析】根据题意可得三项等比数列的中项可由首项和末项表示,四项等比数列的第2、第3项均可由首项和末项表示,从而类比出正项等比数列 中的 可由首项 和末项 表示.
【详解】
因为三项等比数列的中项可由首项和末项表示,
四项等比数列的第2、第3项均可由首项和末项表示,
所以正项等比数列 中的 可由首项 和末项 表示,
A.直线 面
B. 与面 所成的角为定值
C.设面 面 ,则有 ∥
D.三棱锥 体积为定值.
【答案】ABC
【解析】对于A,利用线面垂直的判定定理即可解决;对于B,C,依托于选项A即可较容易得到.点 到平面 的距离不等确定,即可判断选项D.
【详解】
对于A,由 中点 与 中点 ,得 ,
得 ,
由 为等腰直角三角形得 ,由 ,
.
.
当 时, .
当 时,上式成立.
故数列 的通项公式为 .
故答案为: .
【点睛】
本题考查数列的通项公式的求法,考查等差数列的性质,考查转化思想,分析问题能力,属于中档题.
15.若 ,则 =____________.
【答案】2020
【解析】由条件求出 ,化简待求式为 的形式即可求解.
【详解】
因为 ,
解得 ,
19.已知数列 满足 ,且 .
(1)求数列 的通项公式;
(2)若数列 满足 ,求数列 的前 项和 .
【答案】(1) ;(2) .
【解析】(1)由题意,左右同除 得: ,利用累加法即可求得数列 的通项公式;
(2)由(1)可得 ,代入可得 ,利用错位相减求和法,即可求得数列 的前 项和 .
【详解】
(1)由 ,两边同时除以 得:

湖北省黄冈市2021届新高考一诊数学试题含解析

湖北省黄冈市2021届新高考一诊数学试题含解析

湖北省黄冈市2021届新高考一诊数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知复数z ,满足(34)5z i i -=,则z =( )A .1B .CD .5 【答案】A【解析】【分析】首先根据复数代数形式的除法运算求出z ,求出z 的模即可.【详解】 解:55(34)4334255i i i i z i +-+===-,1z ∴==,故选:A【点睛】本题考查了复数求模问题,考查复数的除法运算,属于基础题.2.i 为虚数单位,则32i 1i-的虚部为( ) A .i -B .iC .1-D .1【答案】C【解析】【分析】利用复数的运算法则计算即可.【详解】 ()()()()32122111111i i i i i i i i i i i -+-===-+=----+,故虚部为1-. 故选:C.【点睛】本题考查复数的运算以及复数的概念,注意复数(),a bi a b R +∈的虚部为b ,不是bi ,本题为基础题,也是易错题.3.我们熟悉的卡通形象“哆啦A 梦”.在东方文化中通常称这个比例为“白银比例”,该比例在设计和建筑领域有着广泛的应用.已知某电波塔自下而上依次建有第一展望台和第二展望台,塔顶到塔底的高度与第二展望台到塔底的高度之比,第二展望台到塔底的高度与第一展望台到塔底的高度之比皆等于“白银比例”,若两展望台间高度差为100米,则下列选项中与该塔的实际高度最接近的是( ) A .400米B .480米C .520米D .600米【答案】B【解析】【分析】根据题意,画出几何关系,结合各线段比例可先求得第一展望台和第二展望台的距离,进而由比例即可求得该塔的实际高度.【详解】设第一展望台到塔底的高度为x 米,塔的实际高度为y 米,几何关系如下图所示:由题意可得1002x x+=,解得()10021x =; 且满足2100y x =+ 故解得塔高()100220021480y x =+=≈米,即塔高约为480米. 故选:B【点睛】 本题考查了对中国文化的理解与简单应用,属于基础题.4.达芬奇的经典之作《蒙娜丽莎》举世闻名.如图,画中女子神秘的微笑,,数百年来让无数观赏者人迷.某业余爱好者对《蒙娜丽莎》的缩小影像作品进行了粗略测绘,将画中女子的嘴唇近似看作一个圆弧,在嘴角,A C 处作圆弧的切线,两条切线交于B 点,测得如下数据:6,6,10.392AB cm BC cm AC cm ===(其中30.8662≈).根据测量得到的结果推算:将《蒙娜丽莎》中女子的嘴唇视作的圆弧对应的圆心角大约等于( )A .3πB .4πC .2πD .23π 【答案】A【解析】【分析】由已知6AB BC ==,设2ABC θ∠=.可得 5.196sin 0.8667θ==.于是可得θ,进而得出结论. 【详解】解:依题意6AB BC ==,设2ABC θ∠=. 则 5.1963sin 0.8667θ==. 3πθ∴=,223πθ=. 设《蒙娜丽莎》中女子的嘴唇视作的圆弧对应的圆心角为α.则2αθπ+=,3πα∴=.故选:A .【点睛】本题考查了直角三角形的边角关系、三角函数的单调性、切线的性质,考查了推理能力与计算能力,属于中档题.5.设集合{}12M x x =<≤,{}N x x a =<,若M N M ⋂=,则a 的取值范围是( ) A .(),1-∞B .(],1-∞C .()2,+∞D .[)2,+∞ 【答案】C【解析】【分析】由M N M ⋂=得出M N ⊆,利用集合的包含关系可得出实数a 的取值范围.【详解】 {}12M x x =<≤Q ,{}N x x a =<且M N M ⋂=,M N ∴⊆,2a ∴>.因此,实数a 的取值范围是()2,+∞.故选:C.【点睛】本题考查利用集合的包含关系求参数,考查计算能力,属于基础题.6.一个圆锥的底面和一个半球底面完全重合,如果圆锥的表面积与半球的表面积相等,那么这个圆锥轴截面底角的大小是( )A .15︒B .30︒C .45︒D .60︒ 【答案】D【解析】【分析】设圆锥的母线长为l,底面半径为R,再表达圆锥表面积与球的表面积公式,进而求得2l R =即可得圆锥轴截面底角的大小.【详解】设圆锥的母线长为l,底面半径为R,则有2222R Rl R R ππππ+=+,解得2l R =,所以圆锥轴截面底角的余弦值是12R l =,底角大小为60︒. 故选:D【点睛】本题考查圆锥的表面积和球的表面积公式,属于基础题.7.双曲线2212y x -=的渐近线方程为( )A .2y x =±B .y x =±C .y =D .y =【答案】C【解析】【分析】根据双曲线的标准方程,即可写出渐近线方程.【详解】Q 双曲线2212y x -=,∴双曲线的渐近线方程为y =,故选:C【点睛】本题主要考查了双曲线的简单几何性质,属于容易题.8.若关于x 的不等式1127k xx ⎛⎫≤ ⎪⎝⎭有正整数解,则实数k 的最小值为( ) A .9B .8C .7D .6【答案】A【解析】【分析】 根据题意可将1127k x x ⎛⎫≤ ⎪⎝⎭转化为ln 3ln 3x x k ≥,令()ln x f x x=,利用导数,判断其单调性即可得到实数k 的最小值.【详解】因为不等式有正整数解,所以0x >,于是1127k x x ⎛⎫≤ ⎪⎝⎭转化为ln 3ln 3k x x≥, 1x =显然不是不等式的解,当1x >时,ln 0x >,所以ln 3ln 3k x x ≥可变形为ln 3ln 3x x k≥. 令()ln x f x x =,则()21ln x f x x -'=, ∴函数()f x 在()0,e 上单调递增,在(),e +∞上单调递减,而23e <<,所以当*x ∈N 时,()(){}max ln 3max 2,33f f f ==,故ln 33ln 33k ≥,解得9k ≥. 故选:A .【点睛】本题主要考查不等式能成立问题的解法,涉及到对数函数的单调性的应用,构造函数法的应用,导数的应用等,意在考查学生的转化能力,属于中档题.9.已知数列{}n a 满足()12347324n a a a n a n ++++-=L ,则23342122a a a a a a +++=L ( ) A .58 B .34 C .54 D .52【答案】C【解析】【分析】利用()32n n a -的前n 项和求出数列(){}32n n a -的通项公式,可计算出n a ,然后利用裂项法可求出23342122a a a a a a +++L 的值.【详解】()12347324n a a a n a n ++++-=Q L .当1n =时,14a =;当2n ≥时,由()12347324n a a a n a n ++++-=L ,可得()()1231473541n a a a n a n -++++-⋅=-L ,两式相减,可得()324n n a -=,故432n a n =-, 因为14a =也适合上式,所以432n a n =-. 依题意,()()12161611313433134n n a a n n n n ++⎛⎫==- ⎪++++⎝⎭, 故233421221611111111161153477101013616434644a a a a a a ⎛⎫⎛⎫+++=-+-+-++-=-= ⎪ ⎪⎝⎭⎝⎭L L . 故选:C.【点睛】本题考查利用n S 求n a ,同时也考查了裂项求和法,考查计算能力,属于中等题.10.函数sin y x x =+在[]2,2x ππ∈-上的大致图象是( )A .B .C .D .【答案】D【解析】【分析】讨论x 的取值范围,然后对函数进行求导,利用导数的几何意义即可判断.【详解】当0x ≥时,sin y x x =+,则cos 10y x '=+≥,所以函数在[]0,2π上单调递增,令()cos 1g x x =+,则()sin g x x '=-,根据三角函数的性质,当[]0,x π∈时,()sin 0g x x '=-<,故切线的斜率变小,当[],2x ππ∈时,()sin 0g x x '=->,故切线的斜率变大,可排除A 、B ;当0x <时,sin y x x =-+,则cos 10y x '=-+≥,所以函数在[]2,0π-上单调递增,令 ()cos 1h x x =-+,()sin h x x '=,当[]2,x ππ∈--时,()sin 0h x x '=>,故切线的斜率变大,当[],0x π∈-时,()sin 0h x x '=<,故切线的斜率变小,可排除C ,故选:D【点睛】本题考查了识别函数的图像,考查了导数与函数单调性的关系以及导数的几何意义,属于中档题.11.已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,1,03A ⎛⎫ ⎪⎝⎭为()f x 图象的对称中心,若图象上相邻两个极值点1x ,2x 满足121x x -=,则下列区间中存在极值点的是( )A .,06π⎛⎫- ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .1,3π⎛⎫ ⎪⎝⎭D .,32ππ⎛⎫ ⎪⎝⎭【答案】A【解析】【分析】 结合已知可知,112T =可求T ,进而可求ω,代入()f x ,结合1()03f =,可求ϕ,即可判断. 【详解】Q 图象上相邻两个极值点1x ,2x 满足12||1x x -=, ∴112T =即2T =,ωπ∴=,()sin()f x x πϕ=+,且11()sin()033f πϕ=+=, ∴13k πϕπ+=,k Z ∈,1||2ϕπ<Q ,13ϕπ∴=-,1()sin()3f x x ππ=-, 当16x =-时,1()16f -=-为函数的一个极小值点,而1(,0)66π-∈-. 故选:A .【点睛】本题主要考查了正弦函数的图象及性质的简单应用,解题的关键是性质的灵活应用.12.过点P 的直线l 与曲线y =交于A B ,两点,若25PA AB =u u u r u u u r ,则直线l 的斜率为( )A .2B .2+C .2或2D .21 【答案】A【解析】【分析】 利用切割线定理求得,PA AB ,利用勾股定理求得圆心到弦AB 的距离,从而求得30APO ∠=︒,结合45POx ∠=o ,求得直线l 的倾斜角为15o ,进而求得l 的斜率.【详解】曲线y 为圆2213x y +=的上半部分,圆心为()0,0设PQ 与曲线y =Q , 则()2PQ PA PB PA PA AB =⋅=⋅+2225375PA PO OQ -=== 所以5,2PA AB ==,O 到弦AB =1sin 2APO ===∠,所以30APO ∠=︒,由于45POx ∠=o ,所以直线l 的倾斜角为453015-=o o o ,斜率为()tan 45tan 30tan15tan 453021tan 45tan 30-=-==+⨯o oo o oo o 故选:A【点睛】本小题主要考查直线和圆的位置关系,考查数形结合的数学思想方法,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。

湖北省新2021年高考数学试卷和答案解析(新课标Ⅰ)

湖北省新2021年高考数学试卷和答案解析(新课标Ⅰ)

2021年湖北省新高考数学试卷(新课标Ⅰ)1.设集合,,则()A. B.C. D.2.已知,则()A. B.C. D.3.已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2B.C.4D.4.下列区间中,函数单调递增的区间是()A. B.C. D.5.已知,是椭圆的两个焦点,点M 在C 上,则的最大值为()A.13B.12C.9D.66.若,则()A. B.C.D.7.若过点可以作曲线的两条切线,则()A. B. C. D.8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立9.有一组样本数据,,…,,由这组数据得到新样本数据,,…,,其中为非零常数,则()A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样本数据的样本极差相同10.已知O 为坐标原点,点,,,,则()A. B.C.D.11.已知点P 在圆上,点,,则()A.点P 到直线AB 的距离小于10B.点P 到直线AB 的距离大于2C.当最小时,D.当最大时,12.在正三棱柱中,,点P 满足,其中,,则()A.当时,的周长为定值B.当时,三棱锥的体积为定值C.当时,有且仅有一个点P,使得D.当时,有且仅有一个点P,使得平面13.已知函数是偶函数,则__________.14.已知O为坐标原点,抛物线C:的焦点为F,P为C上一点,PF与x轴垂直,Q为x轴上一点,且若,则C的准线方程为______.15.函数的最小值为__________.16.某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为的长方形纸,对折1次共可以得到,两种规格的图形,它们的面积之和,对折2次共可以得到,,三种规格的图形,它们的面积之和,以此类推.则对折4次共可以得到不同规格图形的种数为__________;如果对折n次,那么__________17.已知数列满足,记,写出,,并求数列的通项公式;求的前20项和.18.某学校组织“一带一路”知识竞赛,有A,B两类问题.每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分.已知小明能正确回答A类问题的概率为,能正确回答B类问题的概率为,且能正确回答问题的概率与回答次序无关.若小明先回答A类问题,记X为小明的累计得分,求X的分布列;为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.19.记的内角A,B,C的对边分别为a,b,已知,点D在边AC上,证明:;若,求20.如图,在三棱锥中,平面平面BCD,,O为BD的中点.证明:;若是边长为1的等边三角形,点E在棱AD上,,且二面角的大小为,求三棱锥的体积.21.在平面直角坐标系xOy中,已知点,,点M满足记M的轨迹为求C的方程;设点T在直线上,过T的两条直线分别交C于A,B两点和P,Q两点,且,求直线AB的斜率与直线PQ的斜率之和.22.已知函数讨论的单调性;设a,b为两个不相等的正数,且,证明:答案和解析1.【答案】B 【解析】【分析】本题考查集合的交集运算,属于简单题.直接利用交集运算可得答案.【解答】解:,,故选:2.【答案】C 【解析】【分析】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.把代入,再由复数代数形式的乘除运算化简得答案.【解答】解:,故选:3.【答案】B 【解析】解:由题意,设母线长为l,因为圆锥底面周长即为侧面展开图半圆的弧长,圆锥的母线长即为侧面展开图半圆的半径,则有,解得,所以该圆锥的母线长为故选:设母线长为l,利用圆锥底面周长即为侧面展开图半圆的弧长,圆锥的母线长即为侧面展开图半圆的半径,列出方程,求解即可.本题考查了旋转体的理解和应用,解题的关键是掌握圆锥底面周长即为侧面展开图半圆的弧长,圆锥的母线长即为侧面展开图半圆的半径,考查了逻辑推理能力与运算能力,属于基础题.4.【答案】A 【解析】【分析】本题考查正弦型函数单调性,是简单题.本题需要借助正弦函数单调增区间的相关知识点求解.【解答】解:令,则,当时,,,故选:5.【答案】C【解析】【分析】利用椭圆的定义,结合基本不等式,转化求解即可.本题考查椭圆的简单性质的应用,基本不等式的应用.【解答】解:,是椭圆C:的两个焦点,点M在C上,,所以,当且仅当时,取等号,所以的最大值为故选:6.【答案】C【解析】【分析】本题主要考查同角三角函数基本关系,三角函数式的求值等知识,属于基础题.由题意化简所给的三角函数式,然后利用齐次式的特征将其“弦化切”即可求得三角函数式的值.【解答】解:由题意可得:故选7.【答案】D【解析】解:函数是增函数,恒成立,函数的图象如图,,即取得坐标在x轴上方,如果在x轴下方,连线的斜率小于0,不成立.点在x轴或下方时,只有一条切线.如果在曲线上,只有一条切线;在曲线上侧,没有切线;由图象可知在图象的下方,并且在x轴上方时,有两条切线,可知故选:画出函数的图象,判断与函数的图象的位置关系,即可得到选项.本题考查曲线与方程的应用,函数的单调性以及切线的关系,考查数形结合思想,是中档题.8.【答案】B 【解析】【分析】本题考查相互独立事件的应用,要求能够列举出所有事件和发生事件的个数,属于中档题.分别列出甲、乙、丙、丁可能的情况,然后根据独立事件的定义判断即可.【解答】解:由题意可知,两次取出的球的数字之和是8的所有可能为:,,,,,两次取出的球的数字之和是7的所有可能为,,,,,,甲,乙,丙,丁,A:甲丙甲丙,B:甲丁甲丁,C:乙丙乙丙,D:丙丁丙丁,故选:9.【答案】CD 【解析】【分析】本题考查平均数、中位数、标准差、极差,是基础题.利用平均数、中位数、标准差、极差的定义直接判断即可.【解答】解:对于A,两组数据的平均数的差为c,故A错误;对于B,两组样本数据的样本中位数的差是c,故B错误;对于C,设原样本数据的样本方差和标准差分别为,,新数据的样本方差和标准差分别为,,因为…,,,,即,两组样本数据的样本标准差相同,故C正确;对于D,…,,c为非零常数,原数据组的样本极差为,新数据组的样本极差为,两组样本数据的样本极差相同,故D正确.故选:10.【答案】AC【解析】【分析】本题考查平面向量数量积的性质及运算,考查同角三角函数基本关系式及两角和的三角函数,是中档题.由已知点的坐标分别求得对应向量的坐标,然后逐一验证四个选项得答案.【解答】解:,,,,,,,,,,则,,则,故A正确;,,不能恒成立,故B错误;,,,故C正确;,,不能恒成立,故D错误.故选:11.【答案】ACD【解析】【分析】求出过AB的直线方程,再求出圆心到直线AB的距离,得到圆上的点P到直线AB的距离范围,判断A与B;画出图形,由图可知,当过B的直线与圆相切时,满足最小或最大,求出圆心与B点间的距离,再由勾股定理求得判断C与本题考查直线与圆的位置关系,考查转化思想与数形结合思想,是中档题.【解答】解:,,过A、B的直线方程为,即,圆的圆心坐标为,圆心到直线的距离,点P到直线AB的距离的范围为,,,,点P到直线AB的距离小于10,但不一定大于2,故A正确,B错误;如图,当过B的直线与圆相切时,满足最小或最大点位于时最小,位于时最大,此时,,故CD正确.故选:12.【答案】BD【解析】【分析】本题考查了动点轨迹,线面平行与线面垂直的判定,锥体的体积问题等,综合性强,考查了逻辑推理能力与空间想象能力,属于拔高题.判断当时,点P在线段上,分别计算点P为两个特殊点时的周长,即可判断选项A;当时,点P在线段上,利用线面平行的性质以及锥体的体积公式,即可判断选项B;当时,取线段BC,的中点分别为M,,连结,则点P在线段上,分别取点P在,M处,得到均满足,即可判断选项C;当时,取的中点,的中点D,则点P在线的上,证明当点P在点处时,平面,利用过定点A与定直线垂直的平面有且只有一个,即可判断选项【解答】解:对于A,当时,,即,所以,故点P在线段上,此时的周长为,当点P为的中点时,的周长为,当点P在点处时,的周长为,故周长不为定值,故选项A错误;对于B,当时,,即,所以,故点P在线段上,因为平面,所以直线上的点到平面的距离相等,又的面积为定值,所以三棱锥的体积为定值,故选项B正确;对于C,当时,取线段BC,的中点分别为M,,连结,因为,即,所以,则点P在线段上,当点P在处时,,,又,所以平面,又平面,所以,即,同理,当点P在M处,,故选项C错误;对于D,当时,取的中点,的中点D,因为,即,所以,则点P在线的上,当点P在点处时,取AC的中点E,连结,BE,因为平面,又平面,所以,在正方形中,,又,BE,平面,故平面,又平面,所以,在正方体形中,,又,,平面,所以平面,因为过定点A与定直线垂直的平面有且只有一个,故有且仅有一个点P,使得平面,故选项D正确.故答案选:13.【答案】1【解析】【分析】本题考查函数的奇偶性,考查计算能力,属于基础题.根据题意,可得也为R上的奇函数,即可得解.【解答】解:函数是偶函数,为R上的奇函数,故也为R上的奇函数,所以时,,所以,经检验,满足题意,故答案为:14.【答案】【解析】解:由题意,不妨设P在第一象限,则,,所以,所以PQ的方程为:,时,,,所以,解得,所以抛物线的准线方程为:故答案为:求出点P的坐标,推出PQ方程,然后求解Q的坐标,利用,求解p,然后求解准线方程.本题考查抛物线的简单性质的应用及求抛物线的标准方程,考查转化思想以及计算能力,是中档题.15.【答案】1【解析】【分析】本题考查利用导数求最值的应用,考查运算求解能力,是中档题.求出函数定义域,对x分段去绝对值,当时,直接利用单调性求最值;当时,利用导数求最值,进一步得到的最小值.【解答】解:函数的定义域为,当时,,此时函数在上为减函数,所以;当时,,则,当时,,单调递减,当时,,单调递增,当时取得最小值,为,,函数的最小值为故答案为:16.【答案】5【解析】【分析】本题考查数列的求和,考查数学知识在生活中的具体运用,考查运算求解能力及应用意识,属于中档题.依题意,对折4次共可以得到5种不同规格图形;对折k次共有种规格,且每个面积为,则,,然后再转化求解即可.【解答】解:易知有,,共5种规格;由题可知,对折k次共有种规格,且每个面积为,故,则,记,则,,,故答案为:5;17.【答案】解:因为,,所以,,,所以,,,所以数列是以为首项,以3为公差的等差数列,所以由可得,,则,,当时,也适合上式,所以,,所以数列的奇数项和偶数项分别为等差数列,则的前20项和为……【解析】本题主要考查数列的递推式,数列的求和,考查运算求解能力,属于中档题.由数列的通项公式可求得,,从而可得求得,,由可得数列是等差数列,从而可求得数列的通项公式;由数列的通项公式可得数列的奇数项和偶数项分别为等差数列,求解即可.18.【答案】解:由已知可得,X 的所有可能取值为0,20,100,则,,所以X 的分布列为:X 020100P 由可知小明先回答A 类问题累计得分的期望为,若小明先回答B 类问题,记Y 为小明的累计得分,则Y 的所有可能取值为0,80,100,,,,则Y的期望为,因为,所以为使累计得分的期望最大,小明应选择先回答B类问题.【解析】本题主要考查离散型随机变量分布列及数学期望,考查运算求解能力,属于中档题.由已知可得,X的所有可能取值为0,20,100,分别求出对应的概率即可求解分布列;由可得,若小明先回答B类问题,记Y为小明的累计得分,Y的所有可能取值为0,80,100,分别求出对应的概率,从而可得,比较与的大小,即可得出结论.19.【答案】解:证明:由正弦定理知,,,,,,即,;由知,,,,在中,由余弦定理知,,在中,由余弦定理知,,,,即,得,,,或,在中,由余弦定理知,,当时,舍;当时,;综上所述,【解析】本题主要考查正弦定理和余弦定理,难度不大.利用正弦定理求解;要能找到隐含条件:和互补,从而列出等式关系求解.20.【答案】解:证明:因为,O为BD的中点,所以,又平面平面BCD,平面平面,平面ABD,所以平面BCD,又平面BCD,所以;方法一:取OD的中点F,因为为正三角形,所以,过O作与BC交于点M,则,所以OM,OD,OA两两垂直,以点O为坐标原点,分别以OM,OD,OA所在直线为x轴,y轴,z轴建立空间直角坐标系如图所示,则,,,设,则,因为平面BCD,故平面BCD的一个法向量为,设平面BCE的法向量为,又,所以由,得,令,则,,故,因为二面角的大小为,所以,解得,所以,又,所以,故方法二:过E作,交BD于点F,过F作于点G,连结EG,由题意可知,,又平面BCD所以平面BCD,又平面BCD,所以,又,,FG、平面EFG,所以平面EFG,又平面EFG,所以,则为二面角的平面角,即,又,所以,则,故,所以,因为,则,所以,则,所以,则,所以【解析】本题考查了面面垂直和线面垂直的性质,在求解有关空间角问题的时候,一般要建立合适的空间直角坐标系,将空间角问题转化为空间向量问题,属于中档题.利用等腰三角形中线就是高,得到,然后利用面面垂直的性质,得到平面BCD,再利用线面垂直的性质,即可证明;方法一:建立合适的空间直角坐标系,设,利用待定系数法求出平面的法向量,由向量的夹角公式求出t的值,然后利用锥体的体积公式求解即可.方法二:过E作,交BD于点F,过F作于点G,连结EG,求出,,然后利用锥体的体积公式求解即可.21.【答案】解:由双曲线的定义可知,M的轨迹C是双曲线的右支,设C的方程为,根据题意,解得,的方程为;设,设直线AB的方程为,,,由,得,整理得,,,,设,同理可得,由,得,,,,,【解析】的轨迹C是双曲线的右支,根据题意建立关于a,b,c的方程组,解出即可求得C的方程;设出直线AB的参数方程,与双曲线方程联立,由参数的几何意义可求得,同理求得,再根据,即可得出答案.本题考查双曲线的定义及其标准方程,考查直线与双曲线的位置关系,考查直线参数方程的运用,考查运算求解能力,属于中档题.22.【答案】解:由函数的解析式可得,,,单调递增,,,单调递减,则在单调递增,在单调递减.证明:由,得,即,由在单调递增,在单调递减,所以,且,令,,则,为的两根,其中不妨令,,则,先证,即证,即证,令,则在单调递减,所以,故函数在单调递增,,,得证.同理,要证,即证,根据中单调性,即证,令,,则,令,,,单调递增,,,单调递减,又,,且,故,,,恒成立,得证,则【解析】本题主要考查利用导数研究函数的单调性,利用导数研究极值点偏移问题,等价转化的数学思想,同构的数学思想等知识,属于难题.首先求得导函数的解析式,然后结合导函数的符号即可确定函数的单调性,利用同构关系将原问题转化为极值点偏移的问题,构造对称差函数分别证明左右两侧的不等式即可.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北省黄冈市2021届新高考四诊数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.函数ln ||()xx x f x e =的大致图象为( ) A . B .C .D .【答案】A 【解析】 【分析】利用特殊点的坐标代入,排除掉C ,D ;再由1()12f -<判断A 选项正确. 【详解】1.11.1ln |1.1|( 1.1)0f e --=<,排除掉C ,D ;1211ln 122()22f e e---==1ln 22e <=2e ,1()212f e ∴-=<.故选:A . 【点睛】本题考查了由函数解析式判断函数的大致图象问题,代入特殊点,采用排除法求解是解决这类问题的一种常用方法,属于中档题.2.集合{}2,A x x x R =>∈,{}2230B x x x =-->,则AB =( )A .(3,)+∞B .(,1)(3,)-∞-+∞C .(2,)+∞D .(2,3)【答案】A 【解析】 【分析】 计算()(),13,B =-∞-+∞,再计算交集得到答案.【详解】{}()()2230,13,B x x x =-->=-∞-⋃+∞,{}2,A x x x R =>∈,故(3,)A B =+∞.故选:A . 【点睛】本题考查了交集运算,属于简单题.3.已知水平放置的△ABC 是按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=1,A′O′=3,那么原△ABC 的面积是( )A 3B .2C .32 D .34【答案】A 【解析】 【分析】先根据已知求出原△ABC 的高为AO 3△ABC 的面积. 【详解】由题图可知原△ABC 的高为AO 3 ∴S △ABC =12×BC×OA =12×2×33 A 【点睛】本题主要考查斜二测画法的定义和三角形面积的计算,意在考察学生对这些知识的掌握水平和分析推理能力.4.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A .B .C .D .【答案】A 【解析】 【详解】详解:由题意知,题干中所给的是榫头,是凸出的几何体,求得是卯眼的俯视图,卯眼是凹进去的,即俯视图中应有一不可见的长方形, 且俯视图应为对称图形故俯视图为故选A.点睛:本题主要考查空间几何体的三视图,考查学生的空间想象能力,属于基础题。

5.已知复数z 满足(3)1i z i +=+,则z 的虚部为( ) A .i - B .iC .–1D .1【答案】C 【解析】 【分析】利用复数的四则运算可得2z i =--,即可得答案. 【详解】∵(3)1i z i +=+,∴131iz i i++==-, ∴2z i =--,∴复数z 的虚部为1-. 故选:C. 【点睛】本题考查复数的四则运算、虚部概念,考查运算求解能力,属于基础题.6.根据最小二乘法由一组样本点(),i i x y (其中1,2,,300i =),求得的回归方程是ˆˆˆybx a =+,则下列说法正确的是( )A .至少有一个样本点落在回归直线ˆˆˆybx a =+上 B .若所有样本点都在回归直线ˆˆˆybx a =+上,则变量同的相关系数为1 C .对所有的解释变量i x (1,2,,300i =),ˆˆibx a +的值一定与i y 有误差 D .若回归直线ˆˆˆybx a =+的斜率ˆ0b >,则变量x 与y 正相关 【答案】D 【解析】 【分析】对每一个选项逐一分析判断得解. 【详解】回归直线必过样本数据中心点,但样本点可能全部不在回归直线上﹐故A 错误;所有样本点都在回归直线ˆˆˆybx a =+上,则变量间的相关系数为1±,故B 错误; 若所有的样本点都在回归直线ˆˆˆy bx a =+上,则ˆˆbx a +的值与y i 相等,故C 错误;相关系数r 与ˆb符号相同,若回归直线ˆˆˆy bx a =+的斜率ˆ0b >,则0r >,样本点分布应从左到右是上升的,则变量x 与y 正相关,故D 正确. 故选D . 【点睛】本题主要考查线性回归方程的性质,意在考查学生对该知识的理解掌握水平和分析推理能力.7.在ABC ∆中,内角A 的平分线交BC 边于点D ,4AB =,8AC =,2BD =,则ABD ∆的面积是( )A .B .C .3D .【答案】B 【解析】 【分析】利用正弦定理求出CD ,可得出BC ,然后利用余弦定理求出cos B ,进而求出sin B ,然后利用三角形的面积公式可计算出ABD ∆的面积. 【详解】AD 为BAC ∠的角平分线,则BAD CAD ∠=∠.ADB ADC π∠+∠=,则ADC ADB π∠=-∠,()sin sin sin ADC ADB ADB π∴∠=-∠=∠,在ABD ∆中,由正弦定理得sin sin AB BDADB BAD =∠∠,即42sin sin ADB BAD =∠∠,①在ACD ∆中,由正弦定理得sin sin AC CD ADC ADC =∠∠,即8sin sin CDADC CAD=∠∠,②①÷②得212CD =,解得4CD =,6BC BD CD ∴=+=, 由余弦定理得2221cos 24AB BC AC B AB BC +-==-⋅,sin B ∴==因此,ABD ∆的面积为1sin 2ABD S AB BD B ∆=⋅=故选:B. 【点睛】本题考查三角形面积的计算,涉及正弦定理和余弦定理以及三角形面积公式的应用,考查计算能力,属于中等题.8.已知双曲线22122:1x y C a b -=与双曲线222:14y C x -=没有公共点,则双曲线1C 的离心率的取值范围是( ) A.(B.)+∞C.(D.)+∞【答案】C 【解析】 【分析】先求得2C 的渐近线方程,根据12,C C 没有公共点,判断出1C 渐近线斜率的取值范围,由此求得1C 离心率的取值范围. 【详解】双曲线222:14y C x -=的渐近线方程为2y x =±,由于双曲线22122:1x y C a b -=与双曲线222:14y C x -=没有公共点,所以双曲线1C 的渐近线的斜率2b a ≤,所以双曲线1C的离心率(e =.故选:C 【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的取值范围的求法,属于基础题.9.已知函数1,0()ln ,0x xf x x x x⎧<⎪⎪=⎨⎪>⎪⎩,若函数()()F x f x kx =-在R 上有3个零点,则实数k 的取值范围为( )A .1(0,)eB .1(0,)2eC .1(,)2e-∞ D .11(,)2e e【答案】B 【解析】 【分析】根据分段函数,分当0x <,0x >,将问题转化为()f x k x=的零点问题,用数形结合的方法研究. 【详解】 当0x <时,()21f x k xx==,令()()2312g ,'0x g x x x ==->,()g x 在()0x ∈-∞,是增函数,0k >时,()f x k x=有一个零点, 当0x >时,()2ln f x xk xx ==,令()()23ln 12ln h ,x x x h x x x -'== 当(0,)x e ∈时,'()0h x >,∴()h x 在(0,)e 上单调递增, 当(,)x e ∈+∞时,'()0h x <,∴()h x 在(,)e +∞上单调递减, 所以当x e =时,()h x 取得最大值12e, 因为()()F x f x kx =-在R 上有3个零点, 所以当0x >时,()f x k x=有2个零点, 如图所示:所以实数k 的取值范围为1(0,)2e综上可得实数k 的取值范围为1(0,)2e, 故选:B【点睛】本题主要考查了函数的零点问题,还考查了数形结合的思想和转化问题的能力,属于中档题. 10.下列函数中,既是奇函数,又在(0,1)上是增函数的是( ). A .()ln f x x x = B .()x x f x e e -=- C .()sin 2f x x = D .3()f x x x =-【答案】B 【解析】 【分析】奇函数满足定义域关于原点对称且()()0f x f x +-=,在(0,1)上()'0f x ≥即可. 【详解】A :因为()ln f x x x =定义域为0x >,所以不可能时奇函数,错误;B :()x x f x e e -=-定义域关于原点对称,且()()0xxx x f x f x e ee e --+-=-+-=满足奇函数,又()'0xxf x e e-=+>,所以在(0,1)上()'0f x ≥,正确;C :()sin 2f x x =定义域关于原点对称,且()()sin 2sin 20f x f x x x +-=+-=满足奇函数,()'2cos2f x x =,在(0,1)上,因为()()'0'122cos20f f =⨯<,所以在(0,1)上不是增函数,错误;D :3()f x x x =-定义域关于原点对称,且()()33()0f x f x x x x x +-=-+-+=,满足奇函数,()2'31f x x =-在(0,1)上很明显存在变号零点,所以在(0,1)上不是增函数,错误;故选:B 【点睛】此题考查判断函数奇偶性和单调性,注意奇偶性的前提定义域关于原点对称,属于简单题目. 11.设0.380.3log 0.2,log 4,4a b c ===,则( )A .c b a <<B .a b c <<C .a c b <<D .b a c <<【答案】D 【解析】 【分析】结合指数函数及对数函数的单调性,可判断出10a -<<,1b <-,1c >,即可选出答案. 【详解】 由0.30.310log 4log 13<=-,即1b <-,又8881log 0.125log 0.2log 10-=<<=,即10a -<<,0.341>,即1c >,所以b a c <<. 故选:D. 【点睛】本题考查了几个数的大小比较,考查了指数函数与对数函数的单调性的应用,属于基础题. 12.已知平面向量a ,b 满足()1,2a =-,()3,b t =-,且()a ab ⊥+,则b =( )A .3B .C .D .5【答案】B 【解析】 【分析】先求出a b +,再利用()0a a b ⋅+=求出t ,再求b . 【详解】解:()()()1,23,2,2t t a b -+-=-=-+ 由()a ab ⊥+,所以()0a a b ⋅+=()()()12220t ⨯-+-⨯-=,1t =,()3,1b =-,10=b故选:B 【点睛】考查向量的数量积及向量模的运算,是基础题. 二、填空题:本题共4小题,每小题5分,共20分。

相关文档
最新文档