倒数绝对值
相反数、绝对值、倒数的综合练习(一)

一、知识点1、 正数前面可以加“+”号,也可以不加“+”号。
2、 判断一个数是不是负数,要看它是不是在正数的前面加“—”号,而不是看它是不是带有“—”号。
注意“—a ”不一定是负数。
3、 相反意义的量是成对出现的。
4、 0是有理数,也是整数,也是最小的自然数。
5、 奇数、偶数也可以扩充到负数,如—1,—21,—53…等都是奇数;—2,—22,—26^等都是偶数。
6、 整数也可以看作分母为1的分数。
7、 a 的相反数是a -,但—a 不一定是负数。
8、 求一个式子的相反数,一定要将整个式子加上括号,再在括号前面加上“—”号,例如y x -的相反数是—(y x -),即x y -。
9、 多重符号的化简 化简的结果取决与正数前面负号“—”的个数,“奇负偶正”。
10、当0≥a 时,a a =,即绝对值等于它本身的是非负数;当0≤a 时,a a -=,即绝对值等于它的相反数的是非正数。
11、无论a 为正数、负数或0,0≥a ,称为绝对值的非负性。
12、几个非负数的和为0,则这几个非负数均为0.即0=++++m c b a ,0=====m c b a 则。
13、有理数加法法则:(1)同号两数相加,取相同的负号,并把绝对值相加。
(2)异号两数相加,绝对值相等时,和为0;绝对值不相等时,取绝对值较大数的符号,并把绝对值想减。
14、有理数乘法法则:先看有没有0因数,只要有一个因数是0,积就为0。
在没有0因数的情况下,先定积得符号,再把绝对值之积作为积的绝对值。
(“奇负偶正”,不要忘记写符号“—”)。
15、不是任何数都有倒数,0是没有倒数的。
倒数是它本身的有1±。
16、分数的化简: 不要忽略分数本身的符号,分数的分子、分母及分数本身的符号,改变其中任意两个,分数值不变。
17、(1)在有理数的加减混合计算过程中,先把减法转化成加法。
(2)在有理数的乘除混合计算中,先把带分数化成假分数,在把除法变成乘法。
有乘方的一定要先算乘方。
相反数,绝对值、倒数专项拓展题

相反数、绝对值、倒数专项拓展题
先练兵(1)互为相反数,则,(2)互为倒数,则
(3)相反数等于本身的数是,绝对值等于本身的数是
倒数等于本身的数是,平方等于本身的数是
立方等于本身的数是
(4)最大的负整数是最小的正整数是绝对值最小的有理数
例1、
练习1、已知a、b互为相反数,c、d互为倒数,求代数式的值
2、
3、若a,b互为相反数,c,d互为倒数,m的绝对值是3,n在有理数王国里既不是正数也不是负数,求
4、
5、,求3x-2y的值
1
例2、
练习1、
、
一:填空题:
1、已知a、b互为倒数,x、y互为相反数,|m|=2,则的值为。
2、已知a、b互为相反数,c、d互为倒数,x=2且x+|y|=5,则的值为。
3、已知a、b互为倒数,x、y互为相反数,则代数式4(x+y)+5ab+3的值为。
4、。
5。
6、。
7、。
8、。
9、为。
2
10、。
11、已知m是6的相反数,n比m的相反数小6,则m比n大
3。
新人教版初中数学七年级数学上册第一单元《有理数》检测(包含答案解析)(4)

一、选择题1.13-的倒数的绝对值( ) A .-3 B .13- C .3 D .132.定义一种新运算2x y x y x +*=,如:2212122+⨯*==.则()(42)1**-=( ) A .1 B .2 C .0 D .-23.已知n 为正整数,则()()2200111n -+-=( ) A .-2 B .-1 C .0 D .24.计算4(8)(4)(1)+-÷---的结果是( )A .2B .3C .7D .435.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >0 6.下列说法:①a -一定是负数;②||a 一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是l ;⑤平方等于它本身的数是1.其中正确的个数是( ) A .1个B .2个C .3个D .4个 7.-1+2-3+4-5+6+…-2011+2012的值等于A .1B .-1C .2012D .1006 8.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( ) A .1,2B .1,3C .4,2D .4,3 9.某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个).经过3个小时,这种细菌由1个可分裂为( )A .8个B .16个C .32个D .64个10.若|x|=7|y|=5x+y>0,,且,那么x-y 的值是 ( ) A .2或12 B .2或-12 C .-2或12D .-2或-12 11.下列四个式子,正确的是( )①33.834⎛⎫->-+ ⎪⎝⎭;②3345⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭;③ 2.5 2.5->-;④125523⎛⎫-->+ ⎪⎝⎭. A .③④ B .① C .①② D .②③ 12.下面说法中正确的是 ( )A .两数之和为正,则两数均为正B .两数之和为负,则两数均为负C .两数之和为0,则这两数互为相反数D .两数之和一定大于每一个加数二、填空题13.我们知道,海拔高度每上升100米,温度下降0.6℃,肥城市区海拔大约100米,某时刻肥城市区地面温度为16℃,泰山的海拔大约为1530米,那么此时泰山顶部的气温大约为______.℃14.在-1,2,-3,0,5这五个数中,任取两个数相除,其中商最小是________. 15.A ,B ,C 三地的海拔高度分别是50-米,70-米,20米,则最高点比最低点高______米.16.绝对值小于100的所有整数的积是______.17.点A ,B 表示数轴上互为相反数的两个数,且点A 向左平移8个单位长度到达点B ,则这两点所表示的数分别是____________和___________.18.化简﹣|+(﹣12)|=_____.19.已知2x =,3y =,且x y <,则34x y -的值为_______.20.若a ,b 互为相反数,c ,d 互为倒数,且0a ≠,则200720082009()()()a a b cd b++-=___________. 三、解答题21.阅读下列材料:(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,即当0x <时,1x x x x ==--.用这个结论可以解决下面问题:(1)已知a ,b 是有理数,当0ab ≠时,求a b a b+的值; (2)已知a ,b ,c 是有理数,0a b c ++=,0abc <,求b c a c a b a b c +++++的值. 22.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣4,+10,﹣8,﹣6,+13,﹣10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?23.计算:|﹣2|﹣32+(﹣4)×(12-)3 24.已知数轴上的点A ,B ,C ,D 所表示的数分别是a ,b ,c ,d ,且()()22141268+++=----a b c d .(1)求a ,b ,c ,d 的值;(2)点A ,C 沿数轴同时出发相向匀速运动,103秒后两点相遇,点A 的速度为每秒4个单位长度,求点C 的运动速度; (3)A ,C 两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D 点以每秒1个单位长度的速度向数轴正方向开始运动,在t 秒时有2BD AC =,求t 的值;(4)A ,C 两点以(2)中的速度从起始位置同时出发相向匀速运动,当点A 运动到点C 起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C 起始位置方向运动;当点C 运动到点A 起始位置时马上停止运动.当点C 停止运动时,点A 也停止运动.在此运动过程中,A ,C 两点相遇,求点A ,C 相遇时在数轴上对应的数(请直接写出答案).25.计算(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦26.计算:(1)412115(2)5⎡⎤⎛⎫----⨯-÷- ⎪⎢⎥⎝⎭⎣⎦(2)1111243812⎛⎫÷-+- ⎪⎝⎭(要求简便方法计算)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】 首先求13-的倒数,然后根据绝对值的含义直接求解即可.【详解】 13-的倒数为-3,-3绝对值是3, 故答案为:C .【点睛】本题考查了倒数和绝对值的概念,熟练掌握概念是解题的关键.2.C解析:C【分析】先根据新定义计算出4*2=2,然后再根据新定义计算2*(-1)即可.【详解】4*2=4224+⨯=2, 2*(-1)=()2212+⨯-=0.故(4*2)*(-1)=0.故答案为C.【点睛】定义新运算是近几年的热门题型,首先要根据新运算正确列出算式,本题考查了有理数混合运算,根据新运算定义正确列出算式并熟练掌握有理数的运算法则是解答本题的关键. 3.C解析:C【解析】【分析】根据-1的偶次幂等于1,奇次幂等于-1,即可求得答案.【详解】∵n为正整数,∴2n为偶数.∴(-1)2n+(-1)2001=1+(-1)=0故选C.【点睛】此题考查了有理数的乘方,关键点是正确的判定-1的偶次幂等于1,奇次幂等于-1. 4.C解析:C【分析】先计算除法、将减法转化为加法,再计算加法可得答案.【详解】解:原式421=++7=,故选:C.【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.5.B解析:B【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.6.A解析:A【分析】根据正数与负数的意义对①进行判断即可;根据绝对值的性质对②与④进行判断即可;根据倒数的意义对③进行判断即可;根据平方的意义对⑤进行判断即可.【详解】-不一定是负数,故该说法错误;①a②||a一定是非负数,故该说法错误;③倒数等于它本身的数是±1,故该说法正确;④绝对值等于它本身的数是非负数,故该说法错误;⑤平方等于它本身的数是0或1,故该说法错误.综上所述,共1个正确,故选:A.【点睛】本题主要考查了有理数的性质,熟练掌握相关概念是解题关键.7.D解析:D【解析】解:原式=(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2011+2012)=+1+1+1+…+1=1006.故选D.点睛:本题考查了有理数的混合运算,正确根据式子的特点进行正确分组是关键.8.A解析:A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,30+4×3=42,故选A.点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.9.D解析:D【分析】每半小时分裂一次,一个变为2个,实际是21个.分裂第二次时,2个就变为了22个.那么经过3小时,就要分裂6次.根据有理数的乘方的定义可得.【详解】26=2×2×2×2×2×2=64.故选D .【点睛】本题考查了有理数的乘方在实际生活中的应用,应注意观察问题得到规律.10.A解析:A【分析】由绝对值性质可知x 和y 均有两种可能取值,再根据x+y>0排除不可能取值,代入求值即可.【详解】 由x 7=可得x=±7,由y 5=可得y=±5,由x+y>0可知:当x=7时,y=5;当x=7时,y=-5,则x y 75122-=±=或,故选A【点睛】绝对值具有非负性,因此去绝对值时要根据题干条件全面考虑.11.D解析:D【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案.【详解】①∵33 3.754⎛⎫-+=- ⎪⎝⎭, 33.83 3.754>=, ∴33.834⎛⎫-<-+ ⎪⎝⎭,故①错误;②∵33154420⎛⎫--== ⎪⎝⎭,21335502⎛⎫--== ⎪⎝⎭,1512 2020>,∴3345⎛⎫⎛⎫-->--⎪ ⎪⎝⎭⎝⎭,故②正确;③∵ 2.5 2.5-=,2.5 2.5>-,∴ 2.5 2.5->-,故③正确;④∵111523623⎛⎫--==⎪⎝⎭,217533346+==,3334 66<,∴125523⎛⎫-->+⎪⎝⎭,故④错误.综上,正确的有:②③.故选:D.【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.12.C解析:C【详解】A. 两数之和为正,则两数均为正,错误,如-2+3=1;B. 两数之和为负,则两数均为负,错误,如-3+1=-2;C. 两数之和为0,则这两数互为相反数,正确;D. 两数之和一定大于每一个加数,错误,如-1+0=-1,故选C.【点睛】根据有理数加法法则:绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0.可得出结果.二、填空题13.【分析】首先用泰山的海拔减去肥城市区海拔求出泰山的海拔比肥城市区海拔高多少米进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可【详解】解:解析:7.42【分析】首先用泰山的海拔减去肥城市区海拔,求出泰山的海拔比肥城市区海拔高多少米,进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可.【详解】解:()1615301001000.6--÷⨯1614301000.6=-÷⨯168.58=-7.42=(℃);答:此时泰山顶部的气温大约为7.42℃.故答案为:7.42.【点睛】此题主要考查了有理数混合运算的实际应用,正确理解题意并列出算式是解题的关键. 14.-5【分析】所给的五个数中最大的数是5绝对值最小的负数是-1所以取两个相除其中商最小的是:5÷(-1)=-5【详解】∵-3<-1<0<2<5所给的五个数中最大的数是5绝对值最小的负数是-1∴任取两个解析:-5【分析】所给的五个数中,最大的数是5,绝对值最小的负数是-1,所以取两个相除,其中商最小的是:5÷(-1)=-5.【详解】∵-3<-1<0<2<5,所给的五个数中,最大的数是5,绝对值最小的负数是-1,∴任取两个相除,其中商最小的是:5÷(-1)=-5,故答案为:-5.【点睛】本题主要考查有理数的大小比较和有理数除法,解决本题的关键是要熟练掌握有理数大小比较和有理数除法法则.15.90【分析】先根据有理数的大小比较法则得出最高点和最低点再列出运算式子计算有理数的减法即可得【详解】因为所以最高点的海拔高度为20米最低点的海拔高度米则(米)即最高点比最低点高90米故答案为:90【解析:90【分析】先根据有理数的大小比较法则得出最高点和最低点,再列出运算式子,计算有理数的减法即可得.【详解】因为205070>->-,所以最高点的海拔高度为20米,最低点的海拔高度70-米,则20(70)207090--=+=(米),即最高点比最低点高90米,故答案为:90.【点睛】本题考查了有理数的大小比较法则、有理数减法的实际应用,依据题意,正确列出运算式子是解题关键.16.0【分析】先找出绝对值小于100的所有整数再求它们的乘积【详解】:绝对值小于100的所有整数为:0±1±2±3…±100因为在因数中有0所以其积为0故答案为0【点睛】本题考查了绝对值的性质要求掌握绝解析:0【分析】先找出绝对值小于100的所有整数,再求它们的乘积.【详解】:绝对值小于100的所有整数为:0,±1,±2,±3,…,±100,因为在因数中有0所以其积为0.故答案为0.【点睛】本题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.17.-4【解析】试题解析:-4【解析】试题两点的距离为8,则点A、B距离原点的距离是4,∵点A,B互为相反数,A在B的右侧,∴A、B表示的数是4,-4.18.﹣12;【分析】利用绝对值的定义化简即可【详解】﹣|+(﹣12)|=故答案为﹣12【点睛】本题考查了绝对值化简熟练掌握绝对值的定义是解题关键解析:﹣12;【分析】利用绝对值的定义化简即可.【详解】--=-﹣|+(﹣12)|=|12|12故答案为﹣12.【点睛】本题考查了绝对值化简,熟练掌握绝对值的定义是解题关键.19.-6或-18【分析】先依据绝对值的性质求得xy的值然后再代入计算即可【详解】解:∵∴∵∴当x=2y=3时;当x=-2y=3时故答案为:-6或-18【点睛】此题考查了有理数的混合运算以及绝对值熟练掌握解析:-6或-18【分析】先依据绝对值的性质求得x 、y 的值,然后再代入计算即可.【详解】解:∵2x =,3y =,∴2x =±,3=±y .∵x y <,∴2x =±,3y =,当x=2,y=3时,346x y -=-;当x=-2,y=3时,3418x y -=-.故答案为:-6或-18.【点睛】此题考查了有理数的混合运算以及绝对值,熟练掌握绝对值的代数意义是解本题的关键. 20.2【分析】利用相反数倒数的性质确定出a+bcd 的值代入原式计算即可求出值【详解】解:根据题意得:a+b=0cd=1则原式=0+1-(-1)=2故答案为:2【点睛】此题考查了有理数的混合运算熟练掌握运解析:2【分析】利用相反数,倒数的性质确定出a+b ,cd 的值,代入原式计算即可求出值.【详解】解:根据题意得:a+b=0,cd=1,1a b=- 则原式=0+1-(-1)=2.故答案为:2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 三、解答题21.(1)2或2-或0;(2)-1.【分析】(1)分三种情况讨论,①0,0a b >>,②0,0a b <<,③0ab <,分别根据题意化简即可;(2)由0a b c ++=整理出,,a b c b c a a c b +=-+=-+=-,判断a b c ,,中有两正一负,再整体代入,结合题意计算即可.【详解】(1)0ab ≠∴①0,0a b >>,==1+1=2a b a b a b a b++; ②0,0a b <<,==11=2a b a b a b a b+-----; ③0ab <,=1+1=0a b a b+-, 综上所述,当0ab ≠时,a b a b +的值为:2或2-或0; (2)0a b c ++=,0abc <,,a b c b c a a c b ∴+=-+=-+=-即a b c ,,中有两正一负, ∴==()1b c a c a b a b c a b c a b c a b c a b c+++---++++-++=-. 【点睛】本题考查绝对值的非负性以及有理数的运算等知识,是重要考点,难度一般,掌握相关知识是解题关键.22.(1)回到了球门线的位置;(2)11米;(3)56米【分析】(1)由于守门员从球门线出发练习折返跑,问最后是否回到了球门线的位置,只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)求出所有数的绝对值的和即可.【详解】解:(1)(+5)+(﹣4)+(+10)+(﹣8)+(﹣6)+(+13)+(﹣10)=(5+10+13)-(4+8+6+10)=28-28=0.答:守门员最后回到了球门线的位置;(2)(3)|+5|+|﹣4|+|+10|+|﹣8|+|﹣6|+|+13|+|﹣10|=5+4+10+8+6+13+10=56(米).答:守门员全部练习结束后,他共跑了56米.【点睛】本题考查了正数和负数以及有理数加减运算的应用等知识点,解题的关键是理解“正”和“负”的相对性,确定具有相反意义的量.23.162- 【分析】有理数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:|﹣2|﹣32+(﹣4)×(12-)3 =2﹣9+(﹣4)×(﹣18) =2+(﹣9)+12=162-. 【点睛】 本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 24.(1)14a =-,12b =-,6c =,8d =;(2)点C 的运动速度为每秒2个单位;(3)4t =或20;(4)23-,223-,10-. 【分析】(1)根据平方数和绝对值的非负性计算即可;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==,即可得解; (3)根据题意分别表示出AC ,BD ,在进行分类讨论计算即可;(4)根据点A ,C 相遇的时间不同进行分类讨论并计算即可;【详解】(1)∵()()22141268+++=----a b c d ,∴()()221412+6+80+++--=a b c d , ∴14a =-,12b =-,6c =,8d =;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==, 解得:2x =,∴点C 的运动速度为每秒2个单位;(3)t 秒时,点A 数为144t -+,点B 数为-12,点C 数为62t +,点D 数为8t +,∴()62144202AC t t t =+--+=-,()81220BD t t =+--=+,∵2BD AC =,∴①2020t -≥时,()2022202t t +=-,解得:4t =; ②20-2t <0时,即t >10,()202220t t +=-,解得:20t =; ∴4t =或20.(4)C 点运动到A 点所需时间为()614102s --=,所以A ,C 相遇时间10t ≤,由(2)得103t =时,A ,C 相遇点为102144-33-+⨯=,A 到C 再从C 返回到A ,用时()()()6146147.548s ----+=; ①第一次从点C 出发时,若与C 相遇,根据题意得()852t t ⨯-=,203t =<10,此时相遇数为20226233-⨯=-;②第二次与C 点相遇,得()()87.52614t t ⨯-+=--,解得8t =<10,此时相遇点为68210-⨯=-; ∴A ,C 相遇时对应的数为:23-,223-,10-. 【点睛】本题主要考查了数轴的动点问题,准确分析计算是解题的关键.25.(1)-6;(2)52-【分析】(1)根据加法运算律计算即可;(2)先算括号里面,再算括号外面的即可;【详解】(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭, ()1140363177⎛⎫=-++-+ ⎪⎝⎭, 42=--,=-6;(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦, 111923=--⨯⨯, 312=--,52=-. 【点睛】本题主要考查了有理数的混合运算,准确应用加法运算律解题的关键. 26.(1)-21;(2)17-【分析】(1)先进行幂的运算,再算括号里面的,去括号应注意括号前的负号,再算加减. (2)除数和被除数同时乘24可得1111243812⎡⎤⎛⎫÷⨯-+- ⎪⎢⎥⎝⎭⎣⎦再算括号里的可得出答案. 【详解】解:(1)原式=﹣16﹣[-11+1]÷(-2)=﹣16-5=-21;(2)原式=1111243812⎡⎤⎛⎫÷⨯-+- ⎪⎢⎥⎝⎭⎣⎦ =[]1832÷-+-1(7)=÷- =17- 【点睛】本题考查的是有理数的加减、乘除以及乘方的运算,熟练掌握运算法则是解题的关键.。
倒数、相反数、绝对值

二、概念、比较大小、平方、绝对值、相反数、倒数有关知识1、正数和负数正数和负数是表示两个具有相反意义的量,即正数和负数是相对的,规定不同,则正数和负数的表示不一样。
2、任何一个数字母(未知数)都要分三种情况来分析(例如a a是正数a>0a是0 a=0a是负数a<0)3 相反数:1、互为相反数的两个数到原点的距离相等2、a的相反数是-a3、-a不一定是负数,-a是a的相反数。
(a=-3,则-a=3)4、相反数和为0(即ab互为相反数,则a+b=0或a= -b)4、绝对值:1正数的绝对值是他本身(|a|=a |A-B|=A-B(A>B))2负数的绝对值是他的相反数(|a|=-a |A-B|=B-A(A<B))3、0的绝对值是0 (|A-B|=0(A=B))4、绝对值要考虑两种情况|a| =3,则a= +3或-35、倒数:⑴a的倒数是1 a2、1a的倒数是a3、倒数积为1,(即ab互为倒数则ab=1,a=1 b)6、平方:y2=9 y= +3或-37、七年级中不能为负的数只有两种情况即1、(|a|>=0 )2、y 2 >=08、比较大小的方法一般有三种情况:1,数轴比较法:(数轴上右边的数总比左边的大、正数大于0、负数小于0、正数大于负数)(一般适用于数字间的比较)2、绝对值比较:两个负数比较大小,绝对值大的反而小3、做差法:一般用于多项式之间的比较(A-B>0则A>B ,A-B<0则A<B 。
A-B=0则A=B )例如2x-3和2x+1比较大小,(2x-3)-(2x+1)=-4所以2x-3<2x+14、平方法:一般用于幂次数之间的比较32 和23比较大小 练习题讲解1、-9的倒数的相反数是______ ;2、平方等于9的数是__________ ;(y2=9 y= +3或-3)3、比较各对数的大小: -0.5____-2/3 ;(两个负数比较大小,绝对值大的反而小,分数化小数)4、如果把长江的水位比警戒水位高0.2米,记作+0.2米,那么比警戒水位低0.15米,记作____米5、在数轴上,距原点2个单位长度的点表示的数是 。
七年级数学上册专题提分精练绝对值、相反数、倒数综合(解析版)

专题06 绝对值、相反数、倒数综合1.已知、互为相反数且,、互为倒数,的绝对值是最小的正整数,求()220102011a b a m cd b +-+-的值. (注:cd =c d ⨯) 解:∵、互为相反数且, ∴a b += ,ab= ; 又 ∵、互为倒数, ∴cd = ;又 ∵的绝对值是最小的正整数, ∴m = ,∴2m = ;∴原式= . 【答案】见解析 【解析】 【详解】试题分析:根据相反数、倒数的性质及绝对值是最小的正整数即可得到结果. ∵、互为相反数且, ∴a b +=0,ab=1-; 又 ∵、互为 ∴cd =1;又 ∵的绝对值是最小的正整数, ∴m =1±,∴2m =1;∴原式=1(1)011--+-=. 考点:相反数,倒数,绝对值点评:解题的关键熟练掌握互为相反数的两个数的和为0,互为倒数的两个数的积为1. 2.若a 与b 互为相反数,x 与y 互为倒数,|m |=2,则式子2a b m m x xy+-+的值为多少? 【答案】6或2 【解析】 【分析】利用a 与b 互为相反数,x 与y 互为倒数可得a +b =0,xy =1,因为 |m |=2,所以分情况讨论当m =2时,当m =﹣2时,分别计算即可. 【详解】解:∵a 与b 互为相反数,x 与y 互为倒数,|m |=2, ∴a +b =0,xy =1,m =±2, 当m =2时,原式=2﹣0+4=6, 当m =﹣2时,原式=﹣2﹣0+4=2,综上可得:式子2||+-+a b m m x xy的值为6或2. 【点睛】本题考查相反数,倒数,绝对值,解题的关键是掌握相反数的性质,倒数的性质以及绝对值的性质.3.已知:a与b互为相反数且a、b均不为零,c是最大的负整数,d是倒数等于本身的数,x是平方等于9的数,试求x+ab+2c﹣a bd+【答案】0或﹣6##-6或0【解析】【分析】根据a与b互为相反数且a、b均不为零,c是最大的负整数,d是倒数等于本身的数,x是平方等于9的数,可以得到a+b=0,ab=﹣1,c=﹣1,d=±1,x=±3,然后代入所求式子计算即可.【详解】解:由题意得,a+b=0,ab=﹣1,c=﹣1,d=±1,x=±3,当x=3时,x+ab+2c﹣a bd+=3+(﹣1)+2×(﹣1)﹣0 d=3+(﹣2)+(﹣1)+0=0;当x=﹣3时,x+ab+2c﹣a bd+=﹣3+(﹣1)+2×(﹣1)﹣0 d=﹣3+(﹣1)+(﹣2)+0=﹣6;由上可得,x+ab+2c﹣a bd+的值是0或﹣6.【点睛】本题考查了相反数、倒数、乘方的意义,以及有理数的混合运算,解答本题的关键是求出a+b=0,ab=﹣1,c=﹣1,d=±1,x=±3.4.已知a,b互为相反数,c,d互为倒数,m的绝对值为4,,求式子a bm cdm+++的值.【答案】5或3-【解析】根据绝对值的意义,相反数的定义和倒数的定义可得0a b +=,1cd =,4m =±,然后分情况代入所求的式子计算即可 【详解】解:a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4, 0a b ∴+=,1cd =,4m =±,当4m =时,04141054a b m cd m +++=++=++=; 当4m =-时,0-41-4103-4a b m cd m +++=++=++=-; 因此,a bm cd m+++的值是5或3-. 【点睛】本题考查了绝对值的意义,相反数的定义和倒数的定义以及代数式求值,掌握上述知识是解题的关键.5.已知a 与b 互为相反数,c 与d 互为倒数且x 的绝对值是5,求x -4cd +2a +2b 的值. 【答案】1或-9 【解析】 【分析】由题意易得a +b =0,cd =1,x =±5,进而代入求解即可. 【详解】解:∵a 与b 互为相反数,c 与d 互为倒数且x 的绝对值是5, ∴a +b =0,cd =1,x =±5,∴当x =5时,4225401x cd a b -++=-+=; 当x =-5时,则有4225409x cd a b -++=--+=-. 【点睛】本题主要考查代数式的值、相反数的意义及倒数,熟练掌握代数式的值、相反数及倒数是解题的关键.6.若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2,求式子243a b m cd m ++-的值.【答案】5或-11 【解析】 【分析】由a ,b 互为相反数,c ,d 互为倒数,可以知道0a b +=,1cd =;m 的绝对值为2可知2m =±,分别代入计算即可得到答案.解:a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2 0a b ∴+=,1cd =,2m =±∴当2m =时,原式042315=⨯-⨯=+当2m =-时,原式()0423111=⨯--⨯=-+ 【点睛】本题考查互为相反数的两数的性质、互为倒数的两数的性质、以及绝对值的定义,牢记相关知识点并准确计算是解题关键.7.已知a ,b 互为相反数,c ,d 互为倒数,|x |=2,|y |=1,且x <y ,求(a +b )x 2+cd (x +y )的值. 【答案】-1和-3 【解析】 【分析】根据a ,b 互为相反数,c ,d 互为倒数,得a +b =0,cd =1,|x |=2,|y |=1,且x <y ,得x =-2,y =1或y =-1,代入计算即可. 【详解】∵a ,b 互为相反数,c ,d 互为倒数, ∴a +b =0,cd =1,∵|x |=2,|y |=1,且x <y , ∴x =-2,y =1或y =-1, 当x =-2,y =1时, (a +b )x 2+cd (x +y ) =0+(-2+1) =0+(-1) =-1当x =-2,y =-1时, (a +b )x 2+cd (x +y ) =0+(-2-1) =-3 【点睛】此题考查的知识点是代数式的化简求值,解答此题的关键是由已知a ,b 互为相反数,c ,d 互为倒数,得a +b =0,cd =1,|x |=2,|y |=1,且x <y ,得x =-2,y =1或y =-1.8.已知:a 、b 互为倒数,c 、d 互为相反数,|m |=5,n 是绝对值最小的数,求代数式5ab ﹣2021(c +d )+n +m 2的值.【解析】 【分析】根据倒数、相反数和绝对值的意义得到,1ab =,0c d +=,5m =±,0n =,则225m =,再代入252021()ab c d n m -+++计算即可得到答案. 【详解】由题可得:1ab =,0c d +=,5m =±,0n =, 225m ∴=,∴原式5120210025=⨯-⨯++,=30. 【点睛】本题考查绝对值、相反数、倒数和有理数的混合运算,解题的关键是掌握求绝对值、相反数、倒数和有理数的混合运算.9.已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值为3,求a +b +x 2-cdx 的值. 【答案】6或12 【解析】 【分析】根据a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是3,可以得到a +b =0,cd =1,x =±3,然后利用分类讨论的方法即可求得所求式子的值. 【详解】解:∵a 、b 互为相反数,c 、d x 的绝对值是3, ∴a +b =0,cd =1,x =±3, 当x =3时,a +b +x 2-cdx =0+9-1×3=6; 当x =-3时,a +b +x 2-cdx =0+9-1×(-3)=12, ∴a +b +x 2-cdx 的值为6或12. 【点睛】本题考查有理数的混合运算,绝对值的意义,相反数和倒数的定义,解答本题的关键是求出a +b =0,cd =1,x =±3.10.若a ,b 互为相反数,c ,d 互为倒数,e 的绝对值为2.求3||a be cd e++-的值. 【答案】5 【解析】 【分析】根据互为相反数的两个数的和等于0可得a +b =0,互为倒数的两个数的乘积是1可得cd=1,根据绝对值的性质求出|e |,然后代入代数式进行计算即可得解. 【详解】解:若a ,b 互为相反数c ,d 互为倒数,e 的绝对值为2, ∴0,1,||2,a b cd e +===3||0321615a be cd e++-=+⨯-=-=. 【点睛】本题考查了代数式求值,主要利用了相反数的定义,绝对值的性质,倒数的定义,熟记概念与性质是解题的关键.11. 若a 、b 互为相反数,c 、d 互为倒数,n 的绝对值为2,求代数式2a bcd n m+-++的值. 【答案】3或-5 【解析】 【分析】利用相反数,倒数,绝对值的代数意义得到0a b +=,1cd =,n=2或-2,再整体代入原式计算即可得到结果. 【详解】根据题意得:0a b +=,1cd =,n=2或-2, 当2n =时,原式=1043-++=; 当n=-2时,原式=1045-+-=-. 【点睛】本题主要考查了求代数式的值以及,相反数,倒数,绝对值,熟练掌握运算法则是解本题的关键.12.已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是5,求:22020()2021a b m cd +-+的值.【答案】26. 【解析】 【分析】由相反数,倒数,绝对值的含义求解,,a b cd m +的值,再整体代入即可得到答案. 【详解】解: a 、b 互为相反数, ∴ 0a b +=,c 、d 互为倒数,∴ 1cd =,m 的绝对值是5,∴ 5m =±,225,m =22020()202002512620212021a b m cd +⨯∴-+=-+=.【点睛】本题考查的是相反数,倒数,绝对值的含义,代数式的求值,掌握以上知识及整体代入求代数式的值是解题的关键.13.若m 、n 互为相反数,p 、q 互为倒数,且a =6,求2020()120212m n pq a +++的值.【答案】4或2- 【解析】 【分析】先根据相反数的定义,倒数的定义,绝对值的含义,求解,,m n pq a +的值,再整体代入即可得到答案. 【详解】解:,m n 互为相反数,0,m n ∴+=,p q 互为倒数,1,pq ∴=6,a = 6,a ∴=±当6a =时, 原式202001=16134,20212⨯++⨯=+= 当6a =-时, 原式()()202001=+1+6132,20212⨯⨯-=+-=- 综上:代数式的值为4或 2.- 【点睛】本题考查的是相反数的定义,倒数的定义,绝对值的含义,有理数的加减运算,掌握以上知识是解题的关键.14.已知a b 、互为倒数,、c d 互为相反数,n 的绝对值是2,m 是最大的负整数,求代数式2225242m c d mn ab +-++-的值.【答案】15-或11- 【解析】 【分析】根据倒数,相反数的定义,最大的负整数为-1,绝对值的意义,得ab =1,c +d =0,m =-1,n =±2,分别讨论n 的值进而代入求值即可得到答案. 【详解】解:∵a 、b 互为倒数,c 、d 互为相反数,n 的绝对值是2,m 是最大的负整数, ∴1,0,2,1ab c d n m =+===-, ∴2n,当2n =时,原式125(2)1522⎛⎫=-+-+-=- ⎪⎝⎭当2n =-时,原式12521122⎛⎫=-+-+=- ⎪⎝⎭∴代数式的值是15-或11-. 故答案为:-15或-11. 【点睛】本题主要考查代数式求值,掌握倒数,相反数的定义,最大的负整数为-1,绝对值的意义,正确理解倒数,相反数的定义,绝对值的意义,以及分类讨论思想是解题的关键.15.若a 、b 互为相反数,且ab≠0,c 、d 互为倒数,2x =,求()20202020202023-+⎛⎫⎛⎫++- ⎪⎪⎝⎭⎝⎭a b a cd x b 的值. 【答案】-2 【解析】 【分析】根据a 、b 互为相反数,且0ab ≠,c 、d 互为倒数,||2x =,可以得到0a b +=,1cd =,24x =,1ab=-,然后代入所求的式子,即可求得所求式子的值. 【详解】解:a 、b 互为相反数,且0ab ≠,c 、d 互为倒数,||2x =, 0a b ∴+=,1cd =,24x =,1ab=-, ∴2020202020202()()(3)a b acd x b++-+- 2019202020200()(1)(1)43=+-+-- 0114=++-2=-.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 16.已知a 与b 互为相反数,c 与d 互为倒数,m 的绝对值为2,求2||a b cd m m +-+的值. 【答案】当2m =时,原式1=,当2m =-时,原式3=- 【解析】 【分析】利用相反数,倒数,以及绝对值的代数意义求出a+b ,cd 以及m 的值,代入原式计算即可得到结果. 【详解】由题意得0a b +=,1cd =,2m =±; 当2m =时,2||0121a b cd m m +-+=-+=, 当2m =-时,2||0123a b cd m m +-+=--=-. 【点睛】本题考查了代数式求值,利用相反数,倒数,以及绝对值的代数意义求出a+b ,cd 以及m 的值是解本题的关键.17.已知a 、b 互为倒数,c 、d 互为相反数,m 为最大的负整数,n 的绝对值为2,试求3325242m c d mn ab +-++-的值. 【答案】-15或-11 【解析】 【分析】根据倒数,相反数的定义,最大的负整数为-1,绝对值的意义,得ab =1,c +d =0,m =-1,n =±2,进而代入求值即可得到答案.【详解】由题意得:ab =1,c +d =0,m =-1,n =±2,①当n =2时,原式=1-25-(-1)2-13-2-1522++⨯==, ②当n =-2时,原式=1-25-(-1)(-2)-132-1122++⨯=+=,∴3325242m c d mn ab +-++-=-15或-11. 【点睛】本题主要考查代数式求值,掌握倒数,相反数的定义,最大的负整数为-1,绝对值的意义,是解题的关键.18.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,求m 2﹣cd+||a bm +的值. 【答案】3 【解析】 【分析】根据相反数性质、倒数定义和绝对值的性质得出a+b=0、cd=1,m=2或m=-2,代入计算可得. 【详解】根据题意知a+b=0、cd=1,m=2或m=-2, 原式=0412-+ =4-1 =3 【点睛】本题主要考查有理数的混合运算,熟练掌握相反数性质、倒数定义和绝对值的性质及有理数的混合运算的顺序和法则是解题的关键19.如图,是一个“有理数转换器”(箭头是数进入转换器的路径,方框是对进入的数进行转换的转化器)(1)求当小明输入3-、95两个数时输出的结果;(2)当输出的结果为0时,求输入的数值(写两个即可);(3)在正数、0、负数中,试探究这个“有理数转化器”不可能输出的数.【答案】(1)当小明输入3-时,输出的结果为13;当小明输入95时,输出的结果为95;(2)输入的数值是0或5;(注:答案不唯一)(3)在正数、0、负数中,这个“有理数转化器”不可能输出的数是负数. 【解析】【分析】(1)根据有理数的大小比较法则、相反数、绝对值运算计算“有理数转换器”即可得; (2)根据输出结果为0,可推出这个数进入“相反数”和“绝对值”方框时是0,从而可推出进入“数大于2”方框时是0,由此即可得;(3)根据进入“相反数”方框后,有两个选择,即倒数和绝对值,再根据倒数和绝对值的运算即可得出答案.【详解】(1)32-<,进入“相反数”方框,结果为3,再进入“倒数”方框,结果为13,输出 925<,进入“相反数”方框,结果为95-,再进入“绝对值”方框,结果为95,输出 故当小明输入3-时,输出的结果为13;当小明输入95时,输出的结果为95; (2)当输入的数值是0时,02<,进入“相反数”方框,结果为0,再进入“绝对值”方框,结果为0,输出,符合要求当输入的数值是5时,52>,进入“加上5-”方框,结果为0,02<,进入“相反数”方框,结果为0,再进入“绝对值”方框,结果为0,输出,符合要求答:输入的数值是0或5;(注:答案不唯一)(3)由“有理数转换器”可知,进入“相反数”方框后,有两个选择:①当其为正数时,进入“倒数”方框,输出的结果仍是正数;②当其为非正数(即负数和0)时,进入“绝对值”方框,输出的结果是非负数(即正数和0)因此,在正数、0、负数中,这个有理数转化器”不可能输出的数是负数.【点睛】本题考查了新型程序图的有理数运算,读懂程序图,掌握相反数、倒数、绝对值运算是解题关键.20.如图是一个“有理数转换器”(箭头是表示输入的数进入转换器路径,方框是对进入的数进行转换的转换器).(1)你认为这个“有理数转换器”不可能输出 数.(2)当小羽输入6时,输出的结果是 ;当小羽输入﹣78时,输出的结果是 ;当小羽输入-2021时,输出的结果是 .(3)你认为当输入时,其输出结果是0.(4)有一次,小羽在操作的时候,输入有理数n,输出的结果是2,且知道|n|≤21,你判断一下,小羽可能输入的是什么数?请把它们都写出来,并说明理由.【答案】(1)负;(2)1;87;12021;(3)0或7n(n为正整数);(4)132或-12或2或412.【解析】【分析】(1)逆向观察转换器,从输出结果倒推求解;(2)将三个数分别代入转化器中进行计算;(3)结合绝对值和倒数的意义,从转化器倒推分析求解;(4)设输入的数为n,分4<n<7,0<n≤4,-21≤n<0,7<n≤21四种情况分析讨论,然后结合转换器中的运算程序计算求解.【详解】解:(1)观察转化器可得:当取到相反数环节后,为正数时取倒数输出,非正数时取绝对值输出,∴输出的结果一定是非负数,即这个“有理数转换器”不可能输出负数,故答案为:负;(2)当输入6时,6>4,∴6+(-7)=-1,-1<4,-1的相反数为1,1>0,∴输出1的倒数为1;当输入﹣78时,﹣78<4,∴﹣78的相反数为78,78>0,∴输出78的倒数为87;当输入-2021时,-2021<4,∴-2021的相反数为2021,2021>0,∴输出2021的倒数1 2021;故答案为:1;87;12021;(3)∵0没有倒数,0的相反数是0,0的绝对值是0,∴当输入的数小于等于4时,输入0时,输出的结果为0,当输入的数大于4时,输入7的倍数时,输出结果为0,综上,当输入0或7n(n为正整数)时,输出结果为0;(4)①当4<n<7时,n-7<0,则n-7的相反数为7-n,且7-n>0,由于输出结果为2,∴7-n=12,即n=132;②当-21≤n<0时,其相反数为-n,且-n>0,由于输出结果为2,∴-n=12,即n=-12;③当0<n≤4时,其相反数为-n,且-n<0,∴-n的绝对值为n,由于输出的结果为2,∴此时n=2;④当7<n≤21时,n-7×3=n-21,且n-21<0,n-21的相反数为21-n,且20-n>0,∵输出结果为2,∴21-n=12,即n=412,综上,小强可能输入的是132或-12或2或412.【点睛】本题考查的是倒数、绝对值及相反数的概念,解答此题的关键是弄清图表中所给的程序,在解(4)时要注意分类讨论.。
有理数基本概念(相反数、倒数、绝对值).讲义学生版

内容 基本要求略高要求较高要求有理数 理解有理数的意义会比较有理数的大小数轴能用数轴上的点表示有理数;知道实数与数轴上的点的对应关系 会借助数轴比较有理数的大小相反数 会用有理数表示具有相反意义的量,借助数轴理解相反数的意义,会求实数的相反数掌握相反数的性质绝对值借助数轴理解绝对值的意义,会求实数的绝对值会利用绝对值的知识解决简单的化简问题板块一、正数、负数、有理数随着同学们视野的拓展,小学学过的自然数、分数和小数已经不能满足认知需要了.譬如一些具有相反意义的量,收入300元和支出200元,向东50米和向西30米,零上6C ︒和零下4C ︒等等,它们不但意义相反,而且表示一定的数量,怎么表示它们呢?我们把一种意义的量规定为正的,把另一种和它意义相反的量规定为负的,这样就产生了正数和负数.正数:像3、1、0.33+等的数,叫做正数.在小学学过的数,除0外都是正数.正数都大于0. 负数:像1-、 3.12-、175-、2008-等在正数前加上“-”(读作负)号的数,叫做负数.负数都小于0. 0既不是正数,也不是负数.一个数字前面的“+”,“-”号叫做它的符号.正数前面的“+”可以省略,注意3与3+表示是同一个正数.例题精讲中考要求有理数基本概念及运算用正、负数表示相反意义的量:如果正数表示某种意义,那么负数表示它的相反的意义,反之亦然.譬如:用正数表示向南,那么向北3km可以用负数表示为3km-.“相反意义的量”包括两个方面的含意:一是相反意义;二是相反意义的基础上要有量. 有理数:按定义整数与分数统称有理数.()⎧⎧⎫⎪⎬⎪⎨⎭⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数自然数整数零有理数按定义分类负整数正分数分数负分数()()⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数按符号分类零零既不是正数,也不是负数负整数负有理数负分数注:⑴正数和零统称为非负数;⑵负数和零统称为非正数;⑶正整数和零统称为非负整数;⑷负整数和零统称为非正整数.【例1】⑴如果收入2000元,可以记作2000+元,那么支出5000元,记为.⑵高于海平面300米的高度记为海拔300+米,则海拔高度为600-米表示.⑶某地区5月平均温度为20C︒,记录表上有5月份5天的记录分别为 2.7+,0,1.4+,3-,4.7-,那么这5项记录表示的实际温度分别是.⑷向南走200-米,表示.【巩固】珠穆朗玛峰海拔高度为8848米,吐鲁番盆地海拔高度为155-米,则海平面为【例2】下列说法正确的是()A.a-一定是负数B.一个数不是正数就是负数C.0-是负数D.在正数前面加“-”号,就成了负数【巩固】下列个数中:1330.70125---,,,,,中负分数有个;负整数有个;自然数有个【例3】检查篮球的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查的结果如下表:最接近标准质量的是_______号篮球;质量最大的篮球比质量最小的篮球重_______克.【巩固】 若a -是负数,则a【例4】 ⑴在下列各数:(2)--,2(2)--,2--,2(2)-,2(2)--中,负数的个数为 个.⑵①10a -;②21a --;③a -;④2(1)a -+一定是负数的是 (填序号).【巩固】 ⑴下列说法正确的是( )A .a -表示负有理数B .一个数的绝对值一定不是负数C .两个数的和一定大于每个加数D .绝对值相等的两个有理数相等 ⑵两数相加,其和小于其中一个加数而大于另一个加数,那么( ) A .这两个加数的符号都是正的 B .这两个加数的符号都是负的 C .这两个加数的符号不能相同 D .这两个加数的符号不能确定板块二、倒数【例5】 ⑴(2010朝阳二模)6的倒数是( )A .6-B .16± C .61- D .61⑵(2010东城二模)5-的倒数是( )A .-5B .5C .15-D . 15⑶(2010房山二模)4-的倒数是( )A. 4B. -4C. 14-D. 14⑷ (2010宣武二模)7-的倒数为( )A.7B.17C.17- D.7- ⑸ (2010顺义二模)5的倒数是( )A .5-B .15C D .5 ⑹(2010西城二模)2010-的倒数是( )A. 2010B. 20101-C. 20101D. -2010 【巩固】 有理数a 等于它的倒数,有理数b 等于它的相反数,则20022003a b += 【巩固】 若0a b +=,c 和d 互为倒数,m 的绝对值为2,求代数式2a bm cd a b c++-+-的值【例6】 在一列数123...a a a ,,中,已知112a =-,从第二个数起,每个数都等于“1与它前面的那个数的差的倒数”⑴ 求234a a a ,,的值⑵ 根据以上计算结果,求202007a a ,的值板块三 数轴数轴:规定了原点、正方向和单位长度的直线.注意:⑴原点、正方向、单位长度称为数轴的三要素,三者缺一不可.⑵单位长度和长度单位是两个不同的概念,前者指所取度量单位的长度,后者指所取度量单位的名称,即单位长度是一条人为规定的代表“1’的线段,这条线段可长可短,按实际情况来规定,同一数轴上的单位长度一旦确定,则不能再改变. ⑶数轴的画法及常见错误分析 ①画一条水平的直线;②在这条直线上适当位置取一实心点作为原点: ③确定向右的方向为正方向,用箭头表示;④选取适当的长度作单位长度,用细短线画出,并对应标注各数,同时要注意同一数轴的单位长度要一致.数轴画法的常见错误举例:有理数与数轴的关系:一切有理数都可以用数轴上的点表示出来.在数轴上,右边的点所对应的数总比左边的点所对应的数大. 正数都大于0,负数都小于0,正数大于一切负数. 注意:数轴上的点不都代表有理数,如π. 利用数轴比较有理数的大小:数轴上右边的数总大于左边的数.因此,正数总大于零,负数总小于零,正数大于负数.【例7】 数轴上有一点A 它表示的有理数是3-,将点A 向左移动3个单位得到点B ,再向右移动8个单位,得到点C ,则点B 表示的数是 ,点C 表示的数是 .【巩固】 如右图所示,数轴上的点M 和N 分别对应有理数m 、n ,那么以下结论正确的是( )MA .0m <,0n <,m n >B .0m <,0n >,m n >C .0m >,0n >,m n <D .0m <,0n >,m n <【例8】 数a b c d ,,,所对应的点A B C D ,,,在数轴上的位置如图所示,那么a c +与b d +的大小关系为( )A.a c b d +<+B.a c b d +=+C.a c b d +>+D.不确定的【巩固】 如图,数轴上标出若干个点,每相邻两点相距1个单位,点A B C D ,,,对应的数分别为整数a b c d ,,,,并且29b a -=,那么数轴的原点对应点为( )A .A 点B .B 点C .C 点D .D 点【巩固】在数轴上,下面说法中不正确的是( ).A.两个正数,小的离原点B.两个有理数,大数对应的点在右边C.两个负数,较大的数对应的点离原点近D.两个有理数,大的离原点较远【例9】⑴数轴上点A对应的数为3-,那么与A相距1个长度的点B所对应的数是_________.⑵数轴上的点A、B分别表示数3-和2,点C是A、B的中点,则点C所表示的数是_________.⑶一个点从数轴的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,则终点表示的数是_________.【巩固】数轴上有一点到原点的距离是5.5,那么这个点表示的数是_________.【巩固】数轴上的一个点表示一个数,当这个点表示的是整数时,我们称它是整数点.如果有一条数轴的单位长度是1厘米时,有一条2米长的线段放在数轴上它可以盖住多少个整数点?【巩固】已知数轴上有A B,之间的距离为1,点A与原点O的距离为3,那么点B所对应的,两点,A B数为【例10】一辆货车从超市出发,向东走了3km到达小彬家,继续向前走了1.5km到达小颖家,然后向西走了9.5km到达小明家,最后回到超市⑴以超市为原点,向东作为正方向,用1个单位长度表示1km,在数轴上表示出小明,小彬,小颖家的位置⑵小明家距离小彬家多远?⑶货车一共行驶了多少千米?【例11】初一(4)班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下:A队:-50分;B队:150分;C队:-300分;D队:0分;E队:100分.⑴将5个队按由低分到高分的顺序排序;⑵把每个队的得分标在数轴上,并将代表该队的字母标上;⑶从数轴上看A队与B队相差多少分?C队与E队呢?【巩固】在数轴上,点A和点B都在与154-对应的点上,若点A以每秒3个单位长度的速度向右运动,点B以每秒2个单位长度的速度向左运动,则7秒之后,点A和点B所处的位置对应的数是什么?这时线段AB的长度是多少?【例12】在数轴上任取一条长度为119999的线段,则此线段在这条数轴上最多能盖住的整数点的个数为【巩固】数轴上表示整数的点称为整点。
苏科版 )七年级上册 ★正,负数,数轴,绝对值,相反数,倒数 教案

正负数,数轴,倒数,绝对值,相反数知识点1、正数与负数;有理数与无理数【知识要点】1.正数概念:比0大的数。
用“+”表示,读作“正”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
如:“+”号读作“正”,如“+32”,读作“正三分之二”,“+” 可以省略不写. 负数概念:比0小的数 。
用“-”表示,读作“负”,不可以省略不写,所以有“-”号的数是负数。
如:“–”号读作“负”,如“–5”,读作“负五”, “–”号是不可以省略的.注意:a -不一定是负数,关键看a 是正数、负数还是0考点1:正负数分类例题1:把下列各数填入相应的集合中:-11,127,4.8,+90,73,-2.9,-61,0,45,-7.46.例题2:A 市某天的温差为7℃,如果这天的最高气温为5℃,这天的最低气温是 .2.用正,负数表示具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃考点1:相反量的表示例题1:(1)如果向北行走8km 记作+8km ,那么向南行走5km 记作什么?(2)向南走记作+8 km ,那么 –5km 表示什么?(3)如果运进粮食3 t 记作+3 t ,那么–4t 表示什么?例题2:学校对七年级女生进行立定跳远测试,以能跳1.6米为达标,超过1.6米的厘米数用正数表示,不足1.6米的厘米数用负数表示,第一组10名女生评价如下:+2 -4 0 +5 +8 -7 0 +2 +10 -3问这组有百分之几的学生达标?3.0表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
中考连接:例⒈在电视上看到天气预报中,绵阳王朗国家级自然保护区某天气温为“-5℃”表示的意思是 。
例⒉如果+10%表示“增加10%”,那么“减少8%”可以记作( )A .-18%B .-8%C .+2%D .+8%知识点2、有理数分类【知识要点】1.相关概念:整数:正整数、零和负整数统称为整数。
北师大版七年级数学上册相反数倒数绝对值

绝对值、倒数、相反数【知识要点】一、绝对值1、绝对值的几何定义:在数轴上表示一个数a的点到原点的距离叫这个数a的绝对值,记作|a|2、绝对值的代数定义:一个正数的绝对值是它本身一个负数的绝对值是它的相反数0的绝对值是0a(a>0),|a|= 0(a=0),-a(a<0),注:A、绝对值表示一个数对应的点到原点的距离,由于距离总是正数或零,则有理数的绝对值不可能事负数,即a取任意有理数,都有|a| 0B、离原点的距离越远,绝对值越大,离原点的距离越近,绝对值越小C、互为相反数的两个数绝对值相等,如:|2|=2,|-2|=23、绝对值的求法:先判断这个数是正数、负数、还是零,再根据绝对值的代数定义去掉绝对符号【典型例题】例一、绝对值去号的符号判定,看绝对值小于5的所有整数之积为()例二、已知|a|<|b|,且a>0,b<0,把a、b、-a、-b按次序由大到小排列例三、有理数a、b、c在数轴上的对应点如图,化简|a-b|+|a+b|+|c-a|-|c-b|例四、|a|+|b|=5,且a,b 都在原点的右边,则a+b=例五、|x|+|y|+|z|=0,那么,x=y=z=0【知识要点】二、倒数:乘积为1的两个有理数互为倒数注意:① 倒数的求法:求一个数的倒数,直接可写成这个数分之一② 求一个分数的倒数,只要将分子、分母颠倒即可③ 求一个带分数的倒数,应先将带分数化成假分数,再将分子、分母颠倒 ④ 求一个小数的倒数,应先将小数化成分数,然后再求倒数⑤ 零没有倒数⑥正数的倒数为正数,负数的倒数为负数【典型例题】例一、写出下列数的倒数 -1 -1.5 1.2 72 12例二、a 乘以8等于-1,则a 的值为【知识要点】三、相反数:如果两个数相加和为零,那么这两个数互为相反数(0的相反数是0)即:A+B=0,则A,B 互为相反数比如3+a=0,则3和a 互为相反数,a=-3注意:相反数的表示方法和意义如下-9的相反数是9-(-2)表示的数的意义是,-2的相反数-8表示的数的意义是8的相反数【典型例题】例一、 --()4的意义是___________,+-()4的意义是___________ 例二、若|x|=-x ,且x=1x ,则x=【课堂练习】1、下列各式中,等号不成立的是( )A 、│-4│=4B 、-│4│=-│-4│C 、│-4│=│4│D 、-│-4│=42、下列说法错误的是( )A 、一个正数的绝对值一定是正数B 、任何数的绝对值都是正数C 、一个负数的绝对值一定是正数D 、任何数的绝对值都不是负数3、绝对值大于-3而不大于3的整数的个数有( )A 、3个B 、4个C 、5个D 、6个4、若a ,b 是有理数,那么下列结论一定正确的是( )A 、若a<b ,则│a │<│b │B 、若a>b ,则│a │>│b │C 、若a=b ,则│a │=│b │D 、若a ≠b ,则│a │≠│b │5、若│a │=4,│b │=9,则│a+b │的值是( )A 、13B 、5C 、13或5D 、以上都不是6、下列说法中正确的有( )①互为相反数的两个数的绝对值相等;②正数和零的绝对值都等于它本身;③只有负数的绝对值是它的相反数;④一个数的绝对值是相反数的一定是负数A 、1个B 、2个C 、3个D 、4个7、在判断①|+2|=2 ②|-2|=2 ③-|-5|=5④|a |≥0 中正确的有( )A 、1个B 、2个C 、3个D 、4个8、|a|=-a ,则a 一定是( )A 、负数B 、正数C 、非正数D 、非负数9、一个数在数轴上对应点到原点的距离为m ,则这个数为( )A 、-mB 、mC 、±mD 、2m10、如果一个数的绝对值等于这个数的相反数,那么这个数是( )A 、正数B 、负数C 、正数、零D 、负数、零11、+7.2的相反数的绝对值是12、数轴上与原点的距离是6的点有___________个,这些点表示的数是___________;与原点的距离是9的点有___________个,这些点表示的数是___________13、 12的相反数是___________;___________的相反数是-23 414、如果一个数的相反数是负数,那么这个数一定是()A、正数B、负数C、零D、正数、负数或零15、__________的相反数是它本身16、一个数的相反数是非负数,这个数一定是()A、正数或零B、非零的数C、负数或零D、零17、下列叙述正确的是()A、符号不同的两个数是互为相反数B、一个有理数的相反数一定是负有理数C、234与2.75都是-114的相反数 D、 0没有相反数18、|a|-|b|=15,并且a,b都在原点左边,求a-b=19、2的倒数与-3的倒数的和的倒数是20、已知|a-3|+|b+2|=0,求a+b2的值21、已知∣a∣=5,∣b ∣=2, ∣c∣=4.且有理数a,b,c在数轴上的位置如下图所示,试计算a+b+c的值a b 0 c22、在数轴上表示出1531412.,,各数及它们的相反数23、如图,已知a、b、c在数轴上的位置,化简:|a-b|-|b-c|+|c-a|【课后练习】一、选择题:1、已知a≠b,a=-5,|a|=|b|,则b等于( )A、+5B、-5C、0D、+5或-52、一个数在数轴上对应的点到原点的距离为m,则这个数的绝对值为( )A、-mB、mC、±mD、2m3、绝地值相等的两个数在数轴上对应的两点距离为8,则这两个数为( )A、+8或- 8B、+4或-4C、-4或+8D、-8或+44、一个数等于它的相反数的绝对值,则这个数是( )A、正数和零B、负数或零C、一切正数D、所有负数5、已知|a|>a,|b|>b,且|a|>|b|,则( )A、a>bB、a<bC、不能确定D、a=b6、-103,π,-3.3的绝对值的大小关系是( )A、103->|π|>|-3.3| B、103->|-3.3|>|π|C、|π|>103->|-3.3| D、103->|π|>|-3.3|7、若|a|>-a,则( )A、a>0B、a<0C、a<-1D、1<a二、填空题:1、在数轴上表示一个数的点,它离开原点的距离就是这个数的2、绝对值为同一个正数的有理数有个3、一个数比它的绝对值小10,这个数是4、一个数的相反数的绝对值与这个数的绝对值的相反数的关系是5、一个数的绝对值与这个数的倒数互为相反数,则这个数是6、若a<0,b<0,且|a|>|b|,则a与b的大小关系是7、绝对值不大一3的整数是,其和为8、在有理数中,绝对值最小的数是;在负整数中,绝对值最小的数是9、设|x|<3,且x>1x,若x为整数,则x=三、判断题1、任何一个有理数的绝对值是正数()2、若两个数不相等,则这两个数的绝对值也不相等()3、如果一个数的绝对值等于它们的相反数,这个数一定是数()4、绝对值不相等的两个数一定不相等()5、若|a|>|b|时,则a>b ()6、当a为有理数时,|a|≥a ()。