山东省烟台市2019-2020学年高二下学期期末考试数学试题
2020-2021学年山东省烟台市高二下学期期末考试数学试题

烟台市2020-2021学年度第二学期期末学业水平诊断高二数学注意事项:1.本试题满分150分,考试时间为120分钟. 2.答卷前,务必将姓名和准考证号填涂在答题卡上.3.使用答题纸时,必须使用0.5毫米的黑色签字笔书写,要字迹工整,笔迹清晰;超出答题区书写的答案无效;在草稿纸、试题卷上答题无效.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1A x x =<,{}13B x x =-<<,则()RA B ⋂=()A .{}3x x < B .{}13x x <<C .{}1x x ≥D .{}13x x ≤<2.“11x<”是“1x >”的() A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.已知()()21,11,1x x f x f x x ⎧+≤⎪=⎨->⎪⎩,则()2021f =()A .2B .1C .0D .不确定4.函数()2221x xf x x --=+的图象可能为() A . B . C . D .5.若函数()21f x ax x=-在[)1,+∞上单调递减,则实数a 的取值范围是() A .[)0,+∞ B .()0,+∞C .1,2⎛⎤-∞- ⎥⎝⎦D .1,2⎛⎫-∞-⎪⎝⎭6.某种放射性物质在其衰变过程中,每经过一年,剩余质量约是原来的23.若该物质的剩余质量变为原来的14,则经过的时间大约为()(lg 20.301≈,lg30.477≈) A .2.74年B .3.42年C .3.76年D .4.56年7.已知函数()ln ,02,0x x f x x x >⎧=⎨+≤⎩,若()()f m f n =且n m <,则m n -的最小值为()A .2B .3C .21e -D .2e8.已知奇函数()f x 的定义域为()(),00,-∞⋃+∞,()10f -=,且()f x 在(),0-∞上单调递增,则不等式()()210xf x ->的解集为()A .()(),10,1-∞-⋃B .()()1,01,-⋃+∞C .()()1,00,1-⋃D .()(),11,-∞-⋃+∞二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合要求,全部选对的得5分,部分选对的得2分,有选错的得0分. 9.下列说法正确的有()A .“()0,x ∀∈+∞,21x>”的否定为“()0,x ∃∈+∞,21x≤”B .“()0,x ∀∈+∞,21x>”的否定为“(],0x ∃∈-∞,21x≤”C .“0x ∃>,210x x -->”的否定为“0x ∀>,210x x --≤”D .“0x ∃>,210x x -->”的否定为“0x ∀≤,210x x --≤”10.已知函数()1212xxf x -=+,())lg g x x =,则()A .函数()f x 为偶函数B .函数()g x 为奇函数C .函数()()()F x f x g x =+在区间[]1,1-上的最大值与最小值之和为0D .设()()()F x f x g x =+,则()()210F a F a +--<的解集为()1,+∞ 11.已知函数()1xf x x =-,()()g x x a a R =-∈,则() A .()f x 在()1,+∞单调递减 B .()f x 的图象关于点()1,0对称C .若方程()()f x g x =仅有1个实数根,则04a <<D .当0a <或4a >时,方程()()f x g x =有3个实数根12.若函数()g x 在区间D 上有定义,且对,,a b c D ∀∈,()g a ,()g b ,()g c 均可作为一个三角形的三边长,则称()g x 在区间D 上为“M 函数”.已知函数()1ln x f x x k x-=-+在区间1,e e ⎡⎤⎢⎥⎣⎦为“M 函数”,则实数k 的值可能为() A .4e -B .1e -C .25e -D .214e三、填空题,本题共4小题,每小题5分,共20分. 13.函数()f x =的定义域为______.14.已知()272,11,1x a x f x x ax x -+≥⎧=⎨-+<⎩是R 上的减函数,则实数a 的取值范围为______.15.若函数23x y e =-在0x =处的切线与ln y x ax =+的图象相切,则实数a 的值为______. 16.已知函数()(20f x a xx =-<<在其图象上任意一点()(),P t f t 处的切线,与x 轴、y 轴的正半轴分别交于M ,N 两点,设OMN △(O 处坐标原点)的面积为()S t ,当0t t =时,()S t取得最小值,则t 的值为______.四、解答题,本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知()f x 是定义在R 上的偶函数,当0x ≥时,()sin f x x x =-. (1)当0x <时,求函数()f x 的解析式; (2)解关于m 的不等式()()21f m f m >-. 18.(12分)已知函数()31413f x x x =-+. (1)求函数()f x 的极值;(2)讨论方程()()f x a R =∈实数解的个数.19.(12分)已知函数()()()ln 421x xf x k k R =+⋅+∈,()ln2g x x =.(1)若()f x 的定义域为R ,求k 的取值范围; (2)若不等式()()f x g x <有解,求k 的取值范围.20.(12分)如图,将一张长为a ,宽为58a 的矩形铁皮的四角分别截去一个大小相同的小正方形,然后折起,可以做成一个无盖长方体容器.设截去的小正方形的边长为x ,所得容器的体积为V .(1)将V 表示为x 的函数()V x(2)x 为何值时,容积V 最大?求出最大容积. 21.(12分)已知函数()()ln f x x x x m m R =-+∈. (1)若()y f x =的图象恒在x 轴上方,求m 的取值范围;(2)若存在正数1x ,2x ()12x x <,满足()()12f x f x =,证明:122x x +>. 22.(12分)已知函数()xf x xe -=.(1)求()f x 的单调区间; (2)令()()()()ln ag x f x a R f x =+∈,对任意1x ≥,()1g x ≥-.求a 的取值范围. 2020-2021学年度第二学期期末学业水平诊断 高二数学参考答案 一、单选题 DBAA CBBD二、多选题 9.AC 10.BCD11.ACD12.BD三、填空题13.(]0,2 14.[]2,315.116四、解答题17.解:(1)当0x <时,0x ->,()()()sin sin f x x x x x -=---=-+, 又()f x 为偶函数,所以()()sin f x f x x x =-=-+. (2)当0x ≥时,()()sin 1cos 0f x x x x ''=-=-≥, 所以()f x 在[)0,+∞单调递增.又()f x 为偶函数,所以()()()()2121f m f m fm f m >-⇔>-.所以21m m >-,两边平方,整理得()()3110m m -+>, 解得1m <-或13m >.18.解:(1)()24f x x '=-.令()0f x '=,解得2x =-或2x =.因此,当2x =-时,()f x 有极大值,且极大值为()23f -=. 当2x =时,()f x 有极小值,且极小值为()1323f =-. (2)方程()f x a =的实数解的个数,即为函数()y f x =的图象与直线y a =的交点的个数. 当x →-∞时,()f x →-∞,当x →+∞时,()f x →+∞, 结合(1)知()f x 的大致图象如图所示.所以,当193a >或133a <-时,解为1个; 当193a =或133a =-时,解为2个;当131933a -<<时,解为3个. 19.解:(1)要使()f x 的定义域为R ,只需4210x xk +⋅+>在R 上恒成立.令20x t =>,只需210y t kt =++>在0t >上恒成立.当02k-≤,即0k ≥时,()y t 在()0,+∞单增,恒有()()010y t y >=>, 因此,对任意0k ≥均成立.当02k ->,即0k <时,()y t 在0,2k ⎛⎫- ⎪⎝⎭单减,,2k ⎛⎫-+∞ ⎪⎝⎭单增,只需02k f ⎛⎫-> ⎪⎝⎭, 即221042k k -+>,解得22k -<<,所以20k -<<.综上,k 的取值范围为()2,-+∞.(2)若不等式()()f x g x <有解,即()ln 421ln 2ln 2x x xk x +⋅+<=,可得04212x x x k <+⋅+<有解.因为当x →+∞时,421x x k +⋅+→+∞,所以,对任意实数k ,总存在00x >,使得004210x x k +⋅+>,即4210x x k +⋅+>有解.由4212x x x k +⋅+<可得,1122x x k ⎛⎫-<-+⎪⎝⎭. 令20x t =>,1y t t=--,()()221111t t y t t-+'=-+=, 显然当()0,1t ∈时,函数单调递增,当()1,t ∈+∞时,函数单调递减, 所以当1t =时,y 取最大值2-, 所以12k -<-,即1k <-.20.解:(1)由题意知,长方体容器的长、宽、高分别为2a x -,528a x -,x , 容器的体积()5228V a x a x x ⎛⎫=-- ⎪⎝⎭. 令20a x ->,5208a x ->,0x >,可得5016x a <<. 故函数()()3225135224848V x a x a x x x ax a x ⎛⎫=--=-+ ⎪⎝⎭,5016x a <<.(2)令()221351228V x x ax a '=-+. 令()0V x '=,得11x a =,25ax =(舍去).因此,18x a =是函数()V x 的极大值点,相应的极大值398256a aV ⎛⎫= ⎪⎝⎭,也是()V x 在区间50,16a ⎛⎫⎪⎝⎭上的最大值. 答:截去的小正方形边长为18a 时,容器的容积最大,最大容积39256a .21.解:(1)()f x 的定义域为()0,+∞,()1ln 1ln f x x x x x'=+⋅-=. 当01x <<时,()0f x '<,()f x 单调递减;当1x >时,()0f x '>,()f x 单调递增. 因此,当1x =时,()()min 11f x f m ==-. 由题意,()min 0f x >,即10m ->,解得1m >. (2)由(1)及()f x 的单调性知,1201x x <<<. 构造函数()()()2g x f x f x =--,01x <<.则()()()2ln ln 2ln 11g x x x x ⎡⎤'=+-=--⎣⎦,当01x <<时,()2111x --<,()2ln 110x ⎡⎤--<⎣⎦,即()0g x '<,所以()g x 在区间()0,1上单调递减.因为11x <,所以()()110g x g >=,即()()112f x f x >-. 由题意()()21f x f x =,所以()()212f x f x >-. 因为()f x 在()1,+∞,且单调递增,21x >,121x ->, 所以212x x >-,即122x x +>. 22.解:(1)()1xxf x e -'=, 令()0f x '>,得1x <;令()0f x '<,得1x >.所以()f x 的单调增区间为(),1-∞,单调减区间为()1,+∞.(2)由题意知()ln xae g x x x x=-+. 于是()()()221111x xx ae x x e x g x a x x x e --⎛⎫'=-+=- ⎪⎝⎭, 由(1)知,在[)1,+∞上,()f x 单调道减,且()10,f x e⎛⎤∈ ⎥⎝⎦,当0a ≤时,()0g x '≤,函数()g x 在[)1,+∞上单调递减,取0x e =,显然1e >, 但()1111e g e ae e e -=-+≤-<-,因此,0a ≤不合题意.当10a e<<时,结合(1)中()f x 的单调性知,存在()01,x ∈+∞,得00x ae x =, 此时()g x 在()00,x 上单调递减,在()0,x +∞上单调递增,所以()()0000minln x ae g x g x x x x ==-+()001ln 1ln 1x x ae a =-+=+≥-,解得21a e ≥,即211a e e≤<;当1a e≥时,()0g x '≥,函数()g x 在[)1,+∞上单调道增,()()min 111g x g ae ==-≥-, 解得0a ≥,即1a e≥;综上所述,a 的取值范围21,e ⎡⎫+∞⎪⎢⎣⎭.。
潍坊市高二数学下学期期末考试试题含解析

学生
甲
乙
丙
丁
戊
己
庚
辛
壬
癸
平均
标准差
数学
88
62
物理
75
63
若这10位同学的成绩能反映全班的成绩状况,且全班成绩服从正态分布,用实线表示全班数学成绩分布曲线,虚线表示全班物理成绩分布曲线,则下列正确的是( )
∴ 面 ,又 面 ,即有 ,故B正确
选项C中,点 运动到 中点时,即在△ 中 、 均为中位线
∴Q为中位线的交点
∴根据中位线的性质有: ,故C错误
选项D中,由于 ,直线 与 所成角即为 与 所成角:
结合下图分析知:点 在 上运动时
当 在 或 上时, 最大为45°
当 在 中点上时, 最小为
∴ 不可能是30°,故D正确
故选:B
【点睛】本题主要考查利用棱柱侧面展开图求解距离最值问题,意在考查学生对该知识的理解掌握水平.
8. 在桌面上有一个正四面体 .任意选取和桌面接触的平面的三边的其中一条边,以此边为轴将正四面体翻转至另一个平面,称为一次操作.如图,现底面为 ,且每次翻转后正四面体均在桌面上,则操作3次后,平面 再度与桌面接触的概率为( )
二、多项选择题:
9。 已知复数 的共轭复数为 ,且 ,则下列结论正确的是( )
A。 B。 虚部为 C。 D.
【答案】ACD
【解析】
【分析】
先利用题目条件可求得 ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.
【详解】由 可得, ,所以 , 虚部为 ;
2020学年山东省济宁市高二下学期期末考试数学试题(解析版)

2020学年山东省济宁市高二下学期期末考试数学试题一、 单选题1. 已知集合{}2{0,1,2,3,4},|560A B x x x ==-+>,则A B =I ( )A .{0,1}B .{4}C .{0,1,4}D .{0,1,2,3,4}【答案】 C【解析】解一元二次不等式求得集合B ,由此求得两个集合的交集. 【详解】由()()256320x x x x -+=-->,解得2x <,或3x >,故{}0,1,4A B =I .故选C. 【点睛】本小题主要考查两个集合交集的运算,考查一元二次不等式的解法,属于基础题.2.计算52752C 3A +的值是( ) A .72 B .102 C .5070 D .5100【答案】B【解析】根据组合数和排列数计算公式,计算出表达式的值. 【详解】依题意,原式227576232354426010221C A ⨯=+=⨯+⨯⨯=+=⨯,故选B. 【点睛】本小题主要考查组合数和排列数的计算,属于基础题.3.设23342,log 5,log 5a b c -===,则a ,b ,c 的大小关系是( )A .a c b <<B .a b c <<C .b c a <<D .c b a <<【答案】A【解析】先根据1来分段,然后根据指数函数性质,比较出,,a b c 的大小关系. 【详解】由于203221-<=,而344log 5log 5log 41>>=,故a c b <<,所以选A. 【点睛】本小题主要考查指数函数的单调性,考查对数函数的性质,考查比较大小的方法,属于基础题.4.5(12)(1)x x ++的展开式中3x 的系数为( ) A .5 B .10 C .20 D .30【答案】D【解析】根据乘法分配律和二项式展开式的通项公式,列式求得3x 的系数. 【详解】根据乘法分配律和二项式展开式的通项公式,题目所给表达式中含有3x 的为()3322335512102030C x x C x x x ⋅+⋅=+=,故展开式中3x 的系数为30,故选D.【点睛】本小题主要考查二项式展开式通项公式的应用,考查乘法分配律,属于基础题.5.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,每天的正点率X 服从正态分布2(0.98)N σ,,且(0.97)0.005P X <=,则(0.970.99)P X <<=( )A .0.96B .0.97C .0.98D .0.99【答案】D【解析】根据正态分布的对称性,求得指定区间的概率. 【详解】由于0.98μ=,故(0.970.99)12(0.97)0.99P X P X <<=-⨯<=,故选D. 【点睛】本小题主要考查正态分布的对称性,考查正态分布指定区间的概率的求法,属于基础题.6.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( )A .1,04⎛⎫- ⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫ ⎪⎝⎭D .13,24⎛⎫ ⎪⎝⎭【答案】C【解析】先判断函数()f x 在R 上单调递增,由104102f f ⎧⎛⎫< ⎪⎪⎪⎝⎭⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,利用零点存在定理可得结果. 【详解】因为函数()43xf x e x =+-在R 上连续单调递增,且114411221143204411431022f e e f e e ⎧⎛⎫=+⨯-=-<⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=+⨯-=-> ⎪⎪⎝⎭⎩, 所以函数的零点在区间11,42⎛⎫⎪⎝⎭内,故选C.【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续. 7.已知函数()211x f x x +=-,其定义域是[)8,4--,则下列说法正确的是( ) A .()f x 有最大值53,无最小值B .()f x 有最大值53,最小值75C .()f x 有最大值75,无最小值 D .()f x 有最大值2,最小值75【答案】A【解析】试题分析:()2132()11x f x f x x x +==+⇒--在[)8,4--上是减函数()f x 有最大值5(8)3f -=,无最小值,故选A.【考点】函数的单调性.8.已知函数224,0()4,0x x x f x x x x ⎧+≥=⎨-<⎩,若()22()f a f a ->,则实数a 的取值范围是( ) A .(2,1)-B .(1,2)-C .(,1)(2,)-∞-+∞UD .(,2)(1,)-∞-+∞U【答案】A【解析】代入特殊值对选项进行验证排除,由此得出正确选项. 【详解】若0a =,()()()20212,00,120f f f -===>符合题意,由此排除C,D 两个选项.若1a =,则()()2211f f -=不符合题意,排除B 选项.故本小题选A.【点睛】本小题主要考查分段函数函数值比较大小,考查特殊值法解选择题,属于基础题.9.如下图所示的图形中,每个三角形上各有一个数字,若六个三角形上的数字之和为36,则称该图形是“和谐图形”,已知其中四个三角形上的数字之和为二项式5(31)x -的展开式的各项系数之和.现从0,1,2,3,4,5中任取两个不同的数字标在另外两个三角形上,则恰好使该图形为“和谐图形”的概率为( )A .115B .215 C .15D .415【答案】B【解析】先求得二项式5(31)x -的展开式的各项系数之和为32.然后利用列举法求得在05:一共6个数字中任选两个,和为4的概率,由此得出正确选项. 【详解】令1x =代入5(31)x -得5232=,即二项式5(31)x -的展开式的各项系数之和为32.从0,1,2,3,4,5中任取两个不同的数字方法有:01,02,03,04,05,12,13,14,15,23,24,25,34,35,45共15种,其中和为36324-=的有04,13共两种,所以恰好使该图形为“和谐图形”的概率为215,故选B. 【点睛】本小题主要考查二项式展开式各项系数之和,考查列举法求古典概型概率问题,属于基础题.10.函数()21()ln 2x f x x e -=+-的图像可能是( )A .B .C .D .【答案】A【解析】分析四个图像的不同,从而判断函数的性质,利用排除法求解。
2019-2020学年高二下学期期中考试数学(理)试题 Word版含解析

2019—2020学年第二学期南昌市八一中学高二理科数学期中考试试卷第Ⅰ卷(选择题:共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数z 满足1i 1i z +=-,则||z =( ) A. 2iB. 2C. iD. 1 【★答案★】D【解析】【分析】 根据复数的运算法则,求得复数zi ,即可得到复数的模,得到★答案★. 【详解】由题意,复数11i i z +=-,解得()()()()111111i i i z i i i i +++===--+,所以1z =,故选D . 【点睛】本题主要考查了复数的运算,以及复数的模的求解,其中解答中熟记复数的运算法则是解答的关键,着重考查了推理与运算能力,属于基础题.2. 已知平面α内一条直线l 及平面β,则“l β⊥”是“αβ⊥”的( )A. 充分必要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件【★答案★】B【解析】【分析】根据面面垂直和线面垂直的定义,结合充分条件和必要条件的定义进行判断即可.【详解】解:由面面垂直的定义知,当“l ⊥β”时,“α⊥β”成立,当αβ⊥时,l β⊥不一定成立,即“l β⊥”是“αβ⊥”的充分不必要条件,故选:B .【点睛】本题考查命题充分性和必要性的判断,涉及线面垂直和面面垂直的判定,属基础题.3. 已知水平放置的△ABC 是按“斜二测画法”得到如图所示的直观图,其中B ′O ′=C ′O ′=1,A′O′=32,那么原△ABC的面积是( )A. 3B. 22C.32D.34【★答案★】A【解析】【分析】先根据已知求出原△ABC的高为AO=3,再求原△ABC的面积. 【详解】由题图可知原△ABC的高为AO=3,∴S△ABC=12×BC×OA=12×2×3=3,故★答案★为A【点睛】本题主要考查斜二测画法的定义和三角形面积的计算,意在考察学生对这些知识的掌握水平和分析推理能力.4. 某几何体的三视图如图所示,则这个几何体的体积等于()A. 4B. 6C. 8D. 12【★答案★】A【解析】由三视图复原几何体,是如图所示的四棱锥,它的底面是直角梯形,梯形的上底长为2,下底长为4,高为2,棱锥的一条侧棱垂直底面高为2,所以这个几何体的体积:12422432V+=⨯⨯⨯=,故选A.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.5. 下列命题中,正确的是()A. 经过不同的三点有且只有一个平面B. 分别在两个平面的两条直线一定是异面直线C. 垂直于同一个平面的两条直线是平行直线D. 垂直于同一个平面的两个平面平行【★答案★】C【解析】【分析】根据不在一条直线上的三点确定一个平面,来判断A是否正确;根据分别在两个平面内的两条直线的位置关系不确定,来判断B是否正确;根据垂直于同一平面的两直线平行,来判断C是否正确;根据垂直于同一条直线的两条直线的位置关系是平行、相交或异面,来判断D是否正确.【详解】解:对A,当三点在一条直线上时,平面不唯一,∴A错误;对B,分别在两个平面内的两条直线的位置关系不确定,∴B错误;对C,根据垂直于同一平面的两直线平行,∴C正确;对D,垂直于同一平面的两平面的位置关系是平行、相交,∴D错误.故选C.【点睛】本题考查了空间直线与直线的位置关系及线面垂直的判定与性质,考查了学生的空间想象能力.6. 实数a 使得复数1a i i +-是纯虚数,10b xdx =⎰,1201c x dx =-⎰则a ,b ,c 的大小关系是( ) A. a b c <<B. a c b <<C. b c a <<D. c b a <<【★答案★】C【解析】【分析】 利用复数的乘除运算求出a ,再利用微积分基本定理以及定积分的定义即可求出b ,c ,从而比较其大小关系. 【详解】()()()()11111122a i i a i a a i i i i +++-+==+--+, 1a i i +-是纯虚数, 102a -∴=,1a , 121001122b xdx x ⎛⎫===⎪⎝⎭⎰, 1201c x dx =-⎰表示是以()0,0为圆心, 以1为半径的圆在第一象限的部分与坐标轴围成的14个圆的面积, 21144c ππ∴=⨯⨯=,所以b c a <<. 故选:C【点睛】本题考查了复数的乘除运算、微积分基本定理求定积分、定积分的定义,考查了基本运算求解能力,属于基础题.7. 已知正四棱柱''''ABCD A B C D -的底面是边长为1的正方形,若平面ABCD 内有且仅有1个点到顶点A '的距离为1,则异面直线,AA BC '' 所成的角为 ( ) A. 6π B. 4π C. 3π D. 512π 【★答案★】B【解析】由题意可知,只有点A 到'A 距离为1,即高为1,所以该几何体是个正方体,异面直线11,AA BC 所成的角是4π,故选B.8. 函数3xeyx=的部分图象可能是()A. B.C. D.【★答案★】C【解析】分析:根据函数的奇偶性,及x=1和x=2处的函数值进行排除即可得解.详解:易知函数3xeyx=为奇函数,图象关于原点对称,排除B,当x=1时,y=<1,排除A,当x=4时,4112ey=>,排除D,故选C.点睛:已知函数的解析式判断函数的图象时,可从以下几个方面考虑:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.9. 如图所示,三棱锥P ABC -的底面在平面α内,且AC PC ⊥,平面PAC ⊥平面PBC ,点P A B ,,是定点,则动点C 的轨迹是( )A. 一条线段B. 一条直线C. 一个圆D. 一个圆,但要去掉两个点【★答案★】D【解析】 因为平面PAC⊥平面PBC ,AC⊥PC,平面PAC∩平面PBC=PC ,AC ⊂平面PAC ,所以AC⊥平面PBC.又因为BC ⊂平面PBC ,所以AC⊥BC.所以∠ACB=90°.所以动点C 的轨迹是以AB 为直径的圆,除去A 和B 两点.选D.点睛:求轨迹实质是研究线面关系,本题根据面面垂直转化得到线线垂直,再根据圆的定义可得轨迹,注意轨迹纯粹性.10. 如图,以等腰直角三角形ABC 的斜边BC 上的高AD 为折痕,把△ABD 和△ACD 折成互相垂直的两个平面后,某学生得出下列四个结论:①BD ⊥AC ;②△BAC 等边三角形;③三棱锥D -ABC 是正三棱锥;④平面ADC ⊥平面AB C.其中正确的是( )A. ①②④B. ①②③C. ②③④D. ①③④【★答案★】B【解析】【分析】根据翻折后垂直关系得BD ⊥平面ADC ,即得BD ⊥AC ,再根据计算得△BAC 是等边三角形,最后可确定选项.【详解】由题意知,BD ⊥平面ADC ,故BD ⊥AC ,①正确;AD 为等腰直角三角形斜边BC 上的高,平面ABD ⊥平面ACD ,所以AB =AC =BC ,△BAC 是等边三角形,②正确;易知DA =DB =DC ,又由②知③正确;由①知④错.故选B .【点睛】本题考查线面垂直判定与性质,考查推理论证求解能力,属中档题.11. 如图所示,在正三棱锥S —ABC 中,M 、N 分别是SC .BC 的中点,且MN AM ⊥,若侧棱23SA =,则正三棱锥S —ABC 外接球的表面积是()A. 12πB. 32πC. 36πD. 48π【★答案★】C【解析】分析】 根据题目条件可得∠ASB =∠BSC =∠ASC =90∘,以SA ,SB ,SC 为棱构造正方体,即为球的内接正方体,正方体对角线即为球的直径,即可求出球的表面积.【详解】∵M ,N 分别为棱SC ,BC 的中点,∴MN ∥SB∵三棱锥S −ABC 为正棱锥,∴SB ⊥AC (对棱互相垂直)∴MN ⊥AC又∵MN ⊥AM ,而AM ∩AC =A ,∴MN ⊥平面SAC ,∴SB ⊥平面SAC∴∠ASB =∠BSC =∠ASC =90∘以SA ,SB ,SC 为从同一定点S 出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的对角线就是球的直径. ∴236R SA ==,∴R =3,∴V =36π.故选:C【点睛】本题主要考查了三棱锥的外接球的表面积,考查空间想象能力,由三棱锥构造正方体,它的对角线长就是外接球的直径,是解决本题的关键. 12. 已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,64ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆离心率e 的取值范围为( ) A. 2,312⎡⎤-⎢⎥⎣⎦B. 2,12⎡⎫⎪⎢⎪⎣⎭C. 23,22⎡⎤⎢⎥⎣⎦D. 36,33⎡⎤⎢⎥⎣⎦【★答案★】A【解析】【分析】 根据直角三角形性质得A 在圆上,解得A 点横坐标,再根据条件确定A 横坐标满足条件,解得离心率.【详解】由题意得OA OB OF c ===,所以A 在圆222=x y c +上,与22221x y a b +=联立解得22222()Aa cb xc -=, 因为ABF α∠=,且,64ππα⎡⎤∈⎢⎥⎣⎦, 所以22sin 22sin ()2sin [,]A A a a c a c a c AF c e x c x c e e eααα---=∴-=∴=∈因此2222222()()()a c a c b a c e c e---≤≤, 解得22222222(2)()(2)2()a c c b a c a c c a a c -≤-≤--≤-≤-,,即222,20a c a c ac ≤--≥,即2212,120312e e e e ≤--≥∴≤≤-,选A. 【点睛】本题考查椭圆离心率,考查基本分析化简求解能力,属中档题.第Ⅱ卷(非选择题:共90分)二、填空题:本大题共4小题,每小题5分,共20分.请将★答案★填在答题卡的相应位置.13. ()ππsin cos x x dx -+=⎰__________. 【★答案★】0【解析】【分析】求出被积函数的原函数,然后分别代入积分上限和积分下限作差得出★答案★.【详解】()()ππsin cos cos sin x x dx x x ππ--+=-+⎰()()()cos sin cos sin 110ππππ=-+---+-=-=⎡⎤⎣⎦.故★答案★为:0【点睛】本题主要考查了定积分的计算,解题的关键是确定原函数,属于基础题.14. 在三棱锥P ABC -中,6,3PB AC ==,G 为PAC ∆的重心,过点G 作三棱锥的一个截面,使截面平行于直线PB 和AC ,则截面的周长为_________.【★答案★】8【解析】【分析】如图所示,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F .过点F 作FM ∥PB 交BC 于点M ,过点E 作EN ∥PB 交AB 于点N .可得四点EFMN 共面,进而得到23EF MN AC AC ==,根据比例可求出截面各边长度,进而得到周长. 【详解】解:如图所示,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F过点F 作FM ∥PB 交BC 于点M ,过点E 作EN ∥PB 交AB 于点N .由作图可知:EN ∥FM ,∴四点EFMN 共面可得MN ∥AC ∥EF ,EN ∥PB ∥FM . ∴23EF MN AC AC == 可得EF =MN =2.同理可得:EN =FM =2.∴截面的周长为8.故★答案★为:8.【点睛】本题考查了三角形重心的性质、线面平行的判定与性质定理、平行线分线段成比例定理,属于中档题.15. 已知一个正三棱柱,一个体积为4π3的球体与棱柱的所有面均相切,那么这个正三棱柱的表面积是______. 【★答案★】183【解析】【分析】由球的体积可以求出半径,从而得到棱柱的高;由球体与棱柱的所有面均相切,得出球的半径和棱柱底面正三角形边长的关系,求出边长,即求出底面正三角形的面积,得出棱柱的表面积.【详解】由球的体积公式可得24433R ππ=,1R ∴=, ∴正三棱柱的高22h R ==,设正三棱柱的底面边长为a , 则其内切圆的半径为:13132a ⋅=,23a ∴=,∴该正三棱柱的表面积为:21333226183222a R a a a a ⋅+⨯⨯=+=. 故★答案★为:183【点睛】本题考查了球的体积公式、多面体的表面积求法,属于基础题.16. 如图,在矩形ABCD 中,E 为边AB 的中点,将ADE ∆沿直线DE 翻转成1A DE ∆.若M 为线段1A C 的中点,则在ADE ∆翻转过程中,正确的命题是______.(填序号)①BM 是定值;②点M 在圆上运动;③一定存在某个位置,使1DE A C ⊥;④一定存在某个位置,使MB平面1A DE .【★答案★】①②④【解析】【分析】取DC 中点N 再根据直线与平面的平行垂直关系判断即可.【详解】对①, 取DC 中点N ,连接,MN BN ,则1//MN A D ,//NB DE .因为MN NB N ⋂=,1A D DE D ⋂=,故平面1//MNB A DE .易得1MNB A DE ∠=∠为定值,故在ADE ∆翻转过程中MNB ∆的形状不变.故BM 是定值.故①正确.对②,由①得, 在ADE ∆翻转过程中MNB ∆沿着NB 翻折,作MO NB ⊥交NB 于O ,则点M 在以O 为圆心,半径为MO 的圆上运动.故②正确.对③,在DE 上取一点P 使得AP DE ⊥,则1A P DE ⊥,若1DE A C ⊥则因为111A P A C A ⋂=,故DE ⊥面1A CP ,故DE PC ⊥,不一定成立.故③错误.对④,由①有1//MNB A DE ,故MB平面1A DE 成立.综上所述,①②④正确.故★答案★为:①②④ 【点睛】本题主要考查了翻折中线面垂直平行的判定,需要画出对应的辅助线分析平行垂直关系,属于中等题型.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17. 如图,已知点P 是平行四边形ABCD 所在平面外的一点,E ,F 分别是PA ,BD 上的点且PE ∶EA =BF ∶FD ,求证:EF ∥平面PBC .【★答案★】见解析【解析】试题分析:连接AF 并延长交BC 于M .连接PM ,因为AD ∥BC ,∴BF MF FD FA =,又BF PE FD EA =,∴PE MF EA FA=, 所以EF ∥PM ,从而得证.试题解析:连接AF 并延长交BC 于M .连接PM .因为AD ∥BC ,所以=. 又由已知=,所以=. 由平面几何知识可得EF ∥PM ,又EF ⊄平面PBC ,PM ⊂平面PBC ,所以EF ∥平面PBC .18. 如图所示,在长方体ABCD ﹣A 1B 1C 1D 1中,AB =AD =1,AA 1=2,M 是棱CC 1的中点.证明:平面ABM ⊥平面A 1B 1M .【★答案★】证明见解析【解析】【分析】通过长方体的几何性质证得11BM A B ⊥,通过计算证明证得1BM B M ⊥,由此证得BM ⊥平面11A B M ,从而证得平面ABM ⊥平面11A B M .【详解】由长方体的性质可知A 1B 1⊥平面BCC 1B 1,又BM ⊂平面BCC 1B 1,∴A 1B 1⊥BM .又CC 1=2,M 为CC 1的中点,∴C 1M =CM =1.在Rt△B 1C 1M 中,B 1M 2212C M CM =+=, 同理BM 222BC CM =+=,又B 1B =2, ∴B 1M 2+BM 2=B 1B 2,从而BM ⊥B 1M .又A 1B 1∩B 1M =B 1,∴BM ⊥平面A 1B 1M ,∵BM ⊂平面ABM ,∴平面ABM ⊥平面A 1B 1M .【点睛】本小题主要考查面面垂直的证明,考查空间想象能力和逻辑推理能力,属于中档题.19. 以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点M 的直角坐标为()1,0,若直线l 的极坐标方程为2cos 104ρθπ⎛⎫+-= ⎪⎝⎭,曲线C 的参数方程是244x m y m ⎧=⎨=⎩,(m 为参数).(1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)设直线l 与曲线C 交于,A B 两点,求11MA MB +. 【★答案★】(1)10x y --=,24y x =;(2)1【解析】【试题分析】(1) 2cos 104πρθ⎛⎫+-= ⎪⎝⎭展开后利用公式直接转化为直角坐标方程.对C 消去m 后得到直角坐标方程.(2)求出直线l 的参数方程,代入抛物线,利用直线参数的几何意义求得11MA MB+的值. 【试题解析】(1)由2cos 104πρθ⎛⎫+-= ⎪⎝⎭,得cos sin 10ρθρθ--=, 令cos x ρθ=,sin y ρθ=,得10x y --=.因为244x m y m⎧=⎨=⎩,消去m 得24y x =, 所以直线l 的直角坐标方程为10x y --=,曲线C 的普通方程为24y x =.(2)点M 的直角坐标为()1,0,点M 在直线l 上. 设直线l 的参数方程为21222t x ty ⎧=+⎪⎪⎨⎪=⎪⎩,(t 为参数),代入24y x =,得24280t t --=.设点,A B 对应的参数分别为1t ,2t ,则1242t t +=,128t t =-,所以121211t t MA MB t t -+== ()21212224323218t t t t t t +-+==. 20. 如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,090ADC ∠=,平面PAD ⊥底面ABCD ,为AD 中点,M 是棱PC 上的点,.(1)求证:平面POB ⊥平面PAD ;(2)若点M 是棱的中点,求证://PA 平面.【★答案★】(1)见解析;(2)见解析【解析】【详解】(1)证明: ∵AD 中点,且,∴DO BC =又//AD BC ,090ADC ∠=,∴ 四边形BCDO 是矩形,∴BO OD ⊥,又平面PAD ⊥平面ABCD ,且平面PAD 平面ABCD OD =,BO ⊂平面ABCD ,∴BO ⊥平面PAD ,又BO ⊂平面POB ,∴ 平面POB ⊥平面PAD .(2)如下图,连接AC 交BO 于点E ,连接EM ,由(1)知四边形BCDO 是矩形,∴//OB CD ,又为AD 中点,∴E 为AC 中点,又是棱AC 的中点,∴//EM PA ,又EM ⊂平面,平面, ∴//PA 平面21. 如图,四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,底面ABCD 为梯形,//AB CD ,223AB DC ==,AC BD F ⋂=.且PAD ∆与ABD ∆均为正三角形,E 为AD 的中点,G 为PAD ∆重心.(1)求证://GF 平面PDC ;(2)求异面直线GF 与BC 的夹角的余弦值.【★答案★】(1)证明见解析;(2)33952. 【解析】试题分析:(1)连接AG 交PD 于H ,连接GH ,由重心性质推导出GFHC ,根据线面平行的判定定理可得GF 平面PDC ;(2)取线段AB 上一点Q ,使得13BQ AB =,可证GFQ ∠ 即是异面直线GF 与BC 的夹角,由余弦定理可得结果.试题解析:(1)方法一:连AG 交PD 于H ,连接CH .由梯形ABCD ,//AB CD 且2AB DC =,知21AF FC = 又E 为AD 的中点,G 为PAD ∆的重心,∴21AG GH =,在AFC ∆中,21AG AF GH FC ==,故GF //HC . 又HC ⊆平面PCD ,GF ⊄ 平面PCD ,∴GF //平面PDC .方法二:过G 作//GN AD 交PD 于N ,过F 作//FM AD 交CD 于M ,连接MN ,G 为PAD ∆的重心,23GN PG ED PE ==,22333GN ED ∴==,又ABCD 为梯形,//AB CD ,12CD AB =,12CF AF ∴=13MF AD ∴=,233MF ∴= ∴GN FM = 又由所作,//FM AD 得GN //FM ,GNMF ∴为平行四边形.//GN AD //,GF MN GF PCD MN PCD ⊄⊆面,面,∴ //GF 面PDC(2) 取线段AB 上一点Q ,使得13BQ AB =,连FQ ,则223FQ BC ==, 1013,33EF GF ==,1316,33EQ GQ == ,在GFQ ∆中 222339cos 2?52GF FQ GQ GFQ GF FQ +-∠== ,则异面直线GF 与BC 的夹角的余弦值为33952. 角函数和等差数列综合起来命题,也正体现了这种命题特点.【方法点晴】本题主要考查线面平行的判定定理、异面直线所成的角、余弦定理,属于中挡题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面. 本题(1)是就是利用方法①证明的.22. 已知函数()1ln (2)(1),f x a x a a R x=+-+∈.(Ⅰ)试求函数()f x 的单调区间;(Ⅱ)若不等式()(ln )x f x a x e ≥-对任意的(0,)x ∈+∞恒成立,求实数a 的取值范围. 【★答案★】(1) 见解析(2) 1,1e ⎡⎫+∞⎪⎢-⎣⎭【解析】 【详解】(Ⅰ)因为()()1ln 21,(,0).f x a x a a R x x ⎛⎫=+-+∈> ⎪⎝⎭所以()()2211.ax a a a f x x x x'-++=-= ①若10a -≤≤,则()0f x '<,即()f x 在区间∞(0,+)上单调递减; ②若0a >,则当10a x a +<<时,()0f x '< ;当1a x a +>时,()0f x '>; 所以()f x 在区间10,a a +⎛⎫ ⎪⎝⎭上单调递减,在区间1,a a +⎛⎫+∞ ⎪⎝⎭上单调递增; ③若1a <-,则当10a x a +<<时,()0f x '>;当1a x a+>时,()0f x '<; 所以函数在区间上单调递增,在区间1,a a +⎛⎫+∞⎪⎝⎭上单调递减. 综上所述,若10a -≤≤,函数在区间上单调递减;; 若,函数在区间上单调递减,在区间1,a a +⎛⎫+∞ ⎪⎝⎭上单调递增; 若1a <-,函数在区间上单调递增,在区间1,a a +⎛⎫+∞⎪⎝⎭上单调递减. (Ⅱ)依题意得()()()1ln 210x x f x a x e ae a x ⎛⎫≥-⇔+-+≥ ⎪⎝⎭, 令()()121x h x ae a x ⎛⎫=+-+ ⎪⎝⎭.因为()10h ≥,则()11a e -≥,即101a e ≥>-. 于是,由()1210x ae a x ⎛⎫+-+≥ ⎪⎝⎭,得1201x a e a x +-≥+, 即211x a x a xe-≥+对任意0x >恒成立. 设函数()21(0)x x F x x xe -=>,则()()()2211x x x F x x e +-='-. 当01x <<时,()0F x '>;当1x >时,()0F x '<;所以函数()F x 在()0,1上单调递增,在()1,+∞上单调递减;所以()()max 11F x F e ⎡⎤==⎣⎦. 于,可知11a a e ≥+,解得11a e ≥-.故a 的取值范围是1,1e ⎡⎫+∞⎪⎢-⎣⎭感谢您的下载!快乐分享,知识无限!不积跬步无以至千里,不积小流无以成江海!。
日照市高二化学下学期期末考试试题含解析

C.V原子的配位数为与V原子紧邻的O原子数,V原子的配位数为6,V与O原子个数之比为1∶2,则V原子的配位数与O的配位数之比为2∶1,故C错误;
D.一个晶胞的质量为 g,体积为(a×10—10)3cm3,该晶胞的密度为 g/cm3,故D正确;
A. 该钒的氧化物的化学式为VO2B. V原子在该晶体中的堆积方式为体心立方
C。 V原子的配位数与O的配位数之比为1:2D。 该晶胞的密度为 g/cm3
【答案】C
【解析】
【详解】A。 该晶胞中V原子个数=1+8× =2、O原子个数=2+4× =4,则V、O原子个数之比=2∶4=1∶2,化学式为VO2,故A正确;
【答案】A
【解析】
【详解】A。醛基和碳碳双键所连的原子在同一平面上,a分子醛基和碳碳双键直接相连,则所有原子都能共面,故A正确;
B。与羟基相连的碳原子上含有氢原子的醇能够与酸性高锰酸钾溶液发生氧化反应,使酸性高锰酸钾溶液褪色,c分子中与羟基相连的碳原子上含有氢原子,则c能使酸性高锰酸钾溶液褪色,故B错误;
【答案】D
【解析】
【详解】A.O与S的基态原子电子排布式分别为2s22p4和3s23p4,最高能级均为p能级,故A正确;
B.H2S分子中含有极性键,空间结构为V形,正负电荷的中心不重合,属于极性分子,H2O2分子的空间结构不是直线形的,两个氢在犹如在半展开的书的两页上,氧原子则在书的夹缝上,分子结构不对称,正负电荷重心不重合,为极性分子,故B正确;
答案选C。
8。 实验室中模拟“海带提碘”过程如下图所示,图中①~⑥过程,一定用不到的仪器是
A. 分液漏斗B. 蒸发皿C。 蒸馏烧瓶D。 漏斗
山东省烟台市2023-2024学年高二下学期7月期末学业水平诊断数学答案

2023~2024学年度第二学期期末学业水平诊断高二数学参考答案及评分标准一、选择题C C AD B D C A 二、选择题9. ABD 10.BCD 11.AC 三、填空题12.80− 13.1(,]e −∞ 14.14()3n L −2L 四、解答题15.解:(1)根据已知条件,可得:······················································ 3分零假设为0H :创新作文比赛获奖与选修阅读课程无关联, 根据列联表中数据计算得到,2250(828212)25==8.3337.879203010403χ××−×≈>×××. ······························· 6分 根据小概率值0.005α=的独立性检验,推断0H 不成立,即认为创新作文比赛获奖与选修阅读课程有关联,此推断犯错误的概率不大于0.005.···························· 7分 (2)由题意可知X 的可能取值为1,2,3,则 ··································· 8分12823101(1)15C C P X C ===,21823107(2)15C C P X C ===, 383107(3)15C P X C ===, ········································ 11分 所以,随机变量X 的分布列为:所以17712()1231515155E X =×+×+×=. ·························· 13分 16.解:(1)当2a =−时,2()(21)e xf x x x =−+,所以2()(1)e x f x x ′=−. ········· 1分 设切点为00(,)x y ,则02000(21)e xy x x =−+,020(1)e xk x =−, 获奖 没有获奖 合计 选修阅读课程 8 12 20 不选阅读课程2 28 30 合计104050所以,切线方程为00220000(21)e(1)e ()x x y x x x x x −−+=−−. ························ 3分将(1,0)代入得200(1)0x x −=,解得00x =或01x =. ····························· 5分 故过(1,)0的切线方程为0y =或10x y +−=. ················································ 7分(2)2()(2)e (1)e (1)(1)e x x x f x x a x ax x a x ′=++++=+++. ····················· 8分当0a =时,2()(1)e x f x x ′=+,恒有()0f x ′≥,函数()f x 单调递增. ········· 10分 当0a >时,11a −−<−,当(,1)x a ∈−∞−−,或(1,)x ∈−+∞时,()0f x ′>,函数()f x 单调递增,当(1,1)x a ∈−−−时,()0f x ′<,函数()f x 单调递减. ···· 12分 当0a <时,11a −−>−,当(,1)x ∈−∞−,或(1,)x a ∈−−+∞时,()0f x ′>,函数()f x 单调递增,当(1,1)x a ∈−−−时,()0f x ′<,函数()f x 单调递减. ······· 14分综上,当0a =时,()f x 在R 上单调递增,当0a >时,()f x 在(,1)a −∞−−,(1,)−+∞上单调递增,在(1,1)a −−−上单调递减,当0a <时,()f x 在(,1)−∞−,(1,)a −−+∞上单调递增,在(1,1)a −−−上单调递减. ······························ 15分17.解:(1)由题意可知,212b b a −=,即211b −=−,故20b =. ························ 1分 由323b b a −=,可得31a =. ······················································ 2分 所以数列{}n a 的公差2d =,所以12(2)25n a n n =−+−=−. ······················ 3分由1n n n b b a −−=,121n n n b b a −−−−=, ,212b b a −=, 叠加可得 123(1)(125)2n n n n b b a a a −−+−−=+++=,整理可得 244(2)n b n n n =−+≥;当1n =时,满足上式,所以244n b n n =−+ ················································································ 5分(2)不妨设(,)m n a b m n ∗=∈N ,即225(2)m n −=−,可得2(2)52n m −+=, ········ 6分当2n k =时,29242m k k =−+,不合题意, 当21n k =−时,22672(3)7m k k k k ∗=−+=−+∈N , ································ 7分所以21k b −在数列{}n a 中均存在公共项,又因为1357b b b b =<<< ,所以n c =221(21)n b n +=−. ································· 9分 (3)当1n =时,1514T =<,结论成立, ············································ 10分 当2n ≥时,2111111()(21)(22)241n c n n n n n=<=−−−×−, ····················· 12分所以1111111(1)43351n T n n <+−+−++−− 111(1)4n =+− 515444n =−<, 综上,54n T <. ·················································· 15分18.解:(1)记事件A =“第2次取出的小球为黑球”;事件B =“第1次取出的小球为白球”,则333311()666520P A =×+×=, ············································ 2分 333()=6510P AB =×,所以()6(|)()11P AB P B A P A ==; ·································· 4分 (2)由题意,X 的可能取值为0,1,2,3,则 ·············································· 5分3331(0)6668P X ==××=, 33333333391(1)++655665666200P X ==××××××=, 32333233237(2)++654655665100P X ==××××××=,3211(3)65420P X ==××=,10分(3)由题意可知,前1n −次取了一个白球,第n 次取了第二个白球,则:23233333332[()()()]65665665n n n n P −−−=×+××++×× ··························· 12分233232333333=[()()()()]65565656n n n n −−−−××+×+×+ =22213555()[1()()]55666n n −−×+++ 121151()13316()2[()()]5555216n n n n −−−−−=×=×−−*(2,)n n ≥∈N . ···················· 16分 所以11312[()()]52n n n P −−=×−*(2,)n n ≥∈N . ·································· 17分19.解:(1)函数()f x 定义域为(0,)+∞,11()ln (1)1(ln )1x f x a x a x a x x x+′=++⋅+=++, ···································· 1分显然0a ≠,令()0f x ′=,可得11ln x x x a++=−, 令1()ln x t x x x +=+,由()f x 有两个不同极值点得1()t x a =−有两个不同的正根. ·· 3分 因为22111()x t x xx x−′=−=. 当(0,1)x ∈时,()0t x ′<,()t x 单减,(1,)x ∈+∞时,()0t x ′>,()t x 单增.················································································ 5分 所以()t x 的极小值即最小值(1)2t =,又当0x →时,()t x →+∞,且x →+∞时,()t x →+∞,所以12a−>,即102a −<<. ··········································· 6分(2)设12,x x 为函数()f x 的极值点,由(1),不妨设121x x <<,下证122x x +>.要证:2121x x >−>,只要证21()(2)t x t x >−.令()()(2)(01)g x t x t x x =−−<<. ···························· 8分因为22222114(1)()()(2)0(2)(2)x x x g x t x t x x x x x −−−−′′′=+−=+=<−−. ··········· 10分 所以()g x 在(0,1)上单调递减,所以()(1)0g x g >=,故21()(2)t x t x >−,即122x x +>. ························· 11分 由(1)可知,在1(0,)x 上,1()(())0f x a t x a′=+<,()f x 单调递减,在12(,)x x 上,()0f x ′>,()f x 单调递增,在2(,)x +∞上,()0f x ′<,()f x 单调递减,又因为(1)0f =,所以1()(1)0f x f <=, 因为102a −<<,所以12a <−,所以12e e 1a −<<,而11111(e )(e 1)ln e e 12e 0a a a a af a =++−=>,所以()f x 在11(e ,)ax 上存在点3x ,使得3()0f x =, ····························· 13分同理2()(1)0f x f >=,又12a−>,12e e 1a −>>, 1111(e )(e1)ln ee120aaaaf a −−−−=++−=−<,所以()f x 在12(,e )ax −上存在点4x ,使得4()0f x =, ····························· 14分故()f x 存在3个零点34,1,x x , 注意到111111()(1)ln 1((1)ln 1)()f a a x x x f x x x x x x x =++−=−++−=−, · 15分所以341x x =,所以343312x x x x +=+>. ··································· 16分所以123415x x x x ++++>,即5m n +>. ···································· 17分。
山东烟台市2019-2020学年度第一学期学段检测高一数学试题含答案(定稿)

烟台市2019-2020学年度第一学期期中学业水平诊断高一数学注意事项:1.本试题满分150分,考试时间为120分钟。
2.答卷前务必将姓名和准考证号填涂在答题纸上。
3.使用答题纸时,必须使用0.5毫米的黑色签字笔书写,要字迹工整,笔迹清晰。
超出 答题区书写的答案无效;在草稿纸、试题卷上答题无效。
一、选择题:本大题共13小题,每小题4分,共52分。
在每小题给出的四个选项中,第1~10题只有一项符合题目要求;第11~13题有多项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错的得0分。
1.已知集合{1,2,3,4,5}U =,={1,3,4}A ,={4,5}B ,则()=UA BA .{3}B .{1,3}C .{3,4}D .{1,3,4}2.命题“x ∀∈R ,21x >”的否定是 A .x ∃∈R ,21x ≤ B .x ∃∈R ,21x < C .x ∀∈R ,21x <D .x ∀∈R ,21x ≤3.设a ∈R ,则“0a >”是“20a >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.我们把含有限个元素的集合A 叫做有限集,用card()A 表示有限集合A 中元素的个数.例如,{,,}A x y z =,则card()=3A .若非空集合,M N 满足card()M =card()N ,且M N ⊆,则下列说法错误..的是 A .M N M = B .M N N =C .M N N =D .M N =∅5.设102x <<,则(12)x x -的最大值为A .19B .29C .18D .146.下面各组函数中表示同一个函数的是A .()f x x =,2()g x =B .()f x x =,()g xC .21()1x f x x -=-,()1g x x =+D .()x f x x =,1,0,()1,0.x g x x ≥⎧=⎨-<⎩7.已知231,0,()21,0,x x f x x x +>⎧=⎨-<⎩若()(1)8f a f +-=,则实数a 的值为 A .2-B .2C .2±D .3±8.若不等式2220mx mx +-<对一切实数x 都成立,则实数m 的取值范围为 A .(2,0)-B .(2,0]-C .(,0)-∞D .(,0]-∞9.某容器如右图所示,现从容器顶部将水匀速注入其中,注满为止. 记容器内水面的高度h 随时间t 变化的函数为()h f t =,则()h f t = 的图象可能是A .B .C .D .10.已知函数()f x 是定义在R 上的单调函数,(0,1)A ,(2,1)B -是其图象上的两点,则不等式(1)1f x ->的解集为 A .(1,1)-B .(,1)(1,)-∞-+∞ C .(1,3) D .(,1)(3,)-∞+∞11.下列结论正确的有A .函数0()(1)1f x x x =-++的定义域为(1,1)(1,)-+∞B .函数()y f x =,[1,1]x ∈-的图象与y 轴有且只有一个交点C .“1k >”是“函数()(1)+f x k x k =-(k ∈R )为增函数”的充要条件D .若奇函数()y f x =在0x =处有定义,则(0)=0f12.十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若,,a b c ∈R ,则下列命题正确的是 A .若0ab ≠且a b <,则11a b> B .若01a <<,则3a a < C .若0a b >>,则11b b a a+>+ D .若c b a <<且0ac <,则22cb ab < 13.我们把定义域为[0,)+∞且同时满足以下两个条件的函数()f x 称为“Ω函数”:(1)对任意的[0,)x ∈+∞,总有()0f x ≥;(2)若0x ≥,0y ≥,则有()()()f x y f x f y +≥+成立,下列判断正确的是 A .若()f x 为“Ω函数”,则(0)0f =B .若()f x 为“Ω函数”,则()f x 在[0,)+∞上为增函数C .函数0,,()1,x g x x ∈⎧=⎨∉⎩Q Q在[0,)+∞上是“Ω函数” D .函数2g()+x x x =在[0,)+∞上是“Ω函数”。
山东省烟台市2019-2020学年高二下学期期末考试地理试题 含答案

- 1 -山东省烟台市2019—2020学年度第二学期期末学业水平诊断高二地理试题考试说明:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(综合题)两部分。
2.请将选择题的答案代码填涂到答题纸的相应位置处。
3.考试结束只交答题纸。
考试时间90分钟。
第Ⅰ卷(选择题 50分)一、选择题(以下各小题只有一个正确答案,共25小题,每小题2分,共50分)在非洲西南部的纳米布沙漠里,生长着一种奇特的“树”名为箭袋树。
箭袋树是一种树芦荟,树枝上覆盖了一层明亮的白色粉末,叶片有一层厚厚的外皮,沙漠里没有别的树木生存,当地土著人将其砍下、掏空,做成箭袋,所以被称为箭袋树。
据说以箭袋树为背景的星空是世界上最美的星空之一,每年6~8月是该地拍摄星空的最佳时间。
下图分别为纳米布沙漠位置图和某摄影师在当地拍摄的星轨图。
据此完成1~3题。
1.为了适应极端的环境,箭袋树进化出了独特的生存方式。
下列说法正确的是- 2 -A.树枝上覆盖白色粉末,增强阳光反射B.叶片上一层厚厚外皮,抵御人类砍伐C.长成大树的芦荟品种,吸引生物传粉D.自断肢体,舍弃枝叶,长高接受水分2.每年6~8月是该地拍摄星空的最佳时间,主要原因是A.阴雨天少,大气透明度高B.避开满月,星星亮度较高C.昼短夜长,观星时间较长D.寒流流经,夜间天气凉爽3.拍摄的星轨图中,摄影师位于箭袋树的A.东南方向B.东北方向C.西南方向D.西北方向2020年6月8日是第十二个“世界海洋日”和第十三个“全国海洋宣传日”,今年的活动主题是“保护红树林,保护海洋生态”。
红树林是以红树植物为主体的常绿灌木或乔木组成的潮滩湿地木本生物群落。
中国的红树林主要分布在海岸、河口湾等滩涂浅滩地,是陆地向海洋过渡的特殊生态系统。
红树林的根系可大致分为气根和地下根两类,气根由主干或较低的分枝长出,悬垂向下生长,进入土壤后形成很多支持根。
红树林可用作建筑材料、薪柴、食物和饲料、药物等,近年来遭到了严重破坏。
下图为红树林景观图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年度第二学期期末学业水平诊断高二数学一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知全集{}0,1,2,3,4U =,{}1,3,4A =,{}0,1,2B =,则图中阴影部分表示的集合为( )A .{}0B .{}2C .{}0,2D .{}0,2,42.已知31log 2a =,1413b ⎛⎫= ⎪⎝⎭,131log 4c =,则a ,b ,c 的大小关系为( )A .c a b >>B .c b a >>C .b c a >>D .b a c >>3.函数()232lg 1x x f x x ++=+的定义域为( )A .()2,1--B .(]2,3-C .()()13,31,⋃---D .()(]12,31,⋃---4.已知函数()221f x x ax a +++=为偶函数,则()f x 在1x =处的切线方程为( )A .20x y -=B .210x y -+=C .220x y -+=D .210x y --=5.根据我国《车辆驾驶人员血液、呼气酒精含量阈值与检验》规定,车辆驾驶人员100mL 血液中酒精含量在[)20,80(单位:mg )即为酒后驾车,80mg 及以上认定为醉酒驾车.某人喝了一定量的酒后,其血液中的酒精含量上升到0.8mg/mL ,此时他停止饮酒,其血液中的酒精含量以每小时20%的速度减少,为避免酒后驾车,他至少经过n 小时才能开车,则n 的最小整数值为( )A .5B .6C .7D .86.若函数()()32213af x x a x x +-++=在其定义域上不单调,则实数a 的取值范围为( ) A .1a <或4a >B .4a ≥C .14a <<D .14a ≤≤7.函数()1ln1xf x x-+=的图象大致为( ) A . B .C .D .8.已知函数()21x xe f e x -=,若()()313log log 21f x f x f ⎛⎫-≤ ⎪⎝⎭,则x 的取值范围为( ) A .113x ≤≤ B .133x ≤≤ C .13x ≥D .03x <≤ 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合要求.全部选对的得5分,部分选对的得3分,有选错的得0分. 9.下列四个命题中,为假命题的是( ) A .()0,1x ∃∈,12x x=B .“x ∀∈R ,210x x +->”的否定是“x ∃∈R ,210x x +-<”C .“函数()f x 在(),a b 内()0f x >”是“()f x 在(),a b 内单调递增”的充要条件D .已知()f x 在0x 处存在导数,则“()00f x '=”是“0x 是函数()f x 的极值点”的必要不充分条件10.已知函数()121xf x a =+-,则( ) A .对于任意实数a ,()f x 在(),0-∞上均单调递减 B .存在实数a ,使函数()f x 为奇函数C .对任意实数a ,函数()f x 在()0,∞上函数值均大于0D .存在实数a ,使得关于x 的不等式()1f x >的解集为()0,211.为预防新冠病毒感染,某学校每天定时对教室进行喷洒消毒.教室内每立方米空气中的含药量y (单位:mg )随时间x (单位:h )的变化情况如图所示:在药物释放过程中,y 与x 成正比;药物释放完毕后,y 与x 的函数关系式为18x ay -⎛⎫⎪⎝⎭=(a 为常数),则( )A .当00.2x ≤≤时,5y x =B .当0.2x >时,0.118x y -⎛⎫⎪⎝⎭=C .2330小时后,教室内每立方米空气中的含药量可降低到0.25mg 以下D .1315小时后,教室内每立方米空气中的含药量可降低到0.25mg 以下12.已知函数()()1ln f x x x x --=,下述结论正确的是( ) A .()f x 存在唯一极值点0x ,且()01,2x ∈ B .存在实数a ,使得()2f a >C .方程()1f x =-有且仅有两个实数根,且两根互为倒数D .当1k <时,函数()f x 与()g x kx =的图象有两个交点三、填空题:本题共4小题,每小题5分,共20分.13.设集合{}02A x x =<<,{}B x x a =<,若A B ⊆,则实数a 的取值范围为________.14.高斯,德国著名数学家、物理学家、天文学家,是近代数学奠基者之一,享有“数学王子”之称.函数[]y x =称为高斯函数,其中[]x 表示不超过实数x 的最大整数,当(]1.5,3x ∈-时,函数22x y ⎡-=⎤⎢⎥⎣⎦的值域为________.15.设1x 满足223x x +=,2x 满足2221x x -=-,则12x x +=________.16.已知λ∈R ,函数()32,2,x x x f x x x λλ⎧->=⎨--≤⎩,当0λ=时,不等式()0f x <的解集是________;若函数()f x 恰有2个零点,则λ的取值范围是________.(本题第一空2分,第二空3分) 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合{A x y ==,{}2,03xB y y x ==<<.(1)若1m =,求A B ⋃;(2)设p :x A ∈,q :x B ∈,若q 是p 的必要不充分条件,求实数m 的取值范围. 18.(12分)已知函数()()322f x x x x a a +++=∈R .(1)求函数()f x 的极值;(2)若函数()f x 有3个零点,求a 的取值范围. 19.(12分)已知()f x 是定义域为R 的奇函数,当0x ≥时,()1xf x e x =+-.(1)求()f x 的解析式;(2)若存在[]1,1k ∈-,使不等式()()222230f t t k f t kt +++++<-成立,求实数t 的取值范围. 20.(12分)已知函数()1ln x f x ea x --=.(1)若函数()f x 在定义域上单调递增,求实数a 的取值范围; (2)当0a >时,证明:()ln f x a a a -≥. 21.(12分)某科技公司2019年实现利润8千万元,为提高产品竞争力,公司决定在2020年增加科研投入.假设2020年利润增加值y (千万元)与科研经费投入x (千万元)之间的关系满足:①y 与t x x ⎛⎫⎪⎝⎭+成正比,其中t 为常数,且[]1,16t ∈;②当2x =时,4y t =+;③2020年科研经费投入x 不低于上一年利润的25%且不高于上一年利润的75%.(1)求y 关于x 的函数表达式;(2)求2020年利润增加值y 的最大值以及相应的x 的值.22.(12分)已知函数()()2ln f x x a x x +-=,a ∈R . (1)讨论函数()f x 极值点的个数;(2)若函数()f x 有两个极值点1x ,2x ,证明:()()1234ln 2f x f x +<--.2019-2020学年度第二学期期末学业水平诊断高二数学参考答案一、单项选择题1.C 2.B 3.D 4.A 5.C 6.A 7.B 8.D 二、多选题9.BC 10.ABD 11.AD 12.ACD 三、填空题 13.2a ≥ 14.{}2,1,0-- 15.216.()2,1,2λ<-或01λ≤<注:16题第一空写作:(]()2,00,1-⋃,也给分. 四、解答题17.解:(1)若1m =,由()20x x -≤,解得02x ≤≤,所以[]0,2A =.当03x <<时,18y <<,所以()1,8B =. 所以[)0,8A B ⋃=.(2)由()()110x m m x -++≥-,可得11m x m -≤≤+,所以集合[]1,1A m m =-+, 由(1)知()1,8B =,因为q 是p 的必要不充分条件,则AB .所以1118m m ->⎧⎨+<⎩,解得27m <<.18.解:(1)()2341f x x x '++=,令()23410f x x x '++==,解得13x =-或1x =-,则有:所以,当1x =-时,()f x 取得极大值a , 当13x =-时,()f x 取得极小值427a -. (2)要使函数()f x 有3个零点,只需04027a a >⎧⎪⎨-<⎪⎩,解得4027a <<. 19.解:(1)当0x <,0x ->,又因为()f x 是奇函数,所以()()()11x x f x f x e x e x ----=-=-=-++-,所以()1,01,0xxe x xf x x e x -⎧+-≥⎪=⎨+-<⎪⎩.(2)当0x ≥时,()10xf x e =+'>,所以()f x 在[)0,+∞上是增函数.又()f x 是为R 的奇函数,所以()f x 在(),-∞+∞上是增函数. 于是()()222230f t t k f t kt +++++<-等价于()()22223f t t k f t kt +-<+-, 即22223t t k t kt ++<--. 于是原问题可化为,存在[]1,1k ∈-,使得()()21230g k t k t t +-++<=有解.只需()10g <或()10g -<,由()21340g t t ++-<=得4t >或1t <-,由()2120g t t --+<=得1t >或2t <-,故1t <-或1t >.20.(1)由题意,()10x af x e x-'-≥=在()0,+∞上恒成立. 即1x a xe -≤在()0,+∞上恒成立. 令()1x g x xe-=,则()()110x g x x e-'+>=,所以()1x g x xe-=在()0,+∞上单调递增.于是()()00g x g >=,所以0a ≤. (2)当0a >时,()11x x a xe a f x ex x---'-== 由(1)知,函数()1x g x xe-=在()0,+∞单增,且()()0,g x ∈+∞.因此,存在唯一的00x >满足010x x e a -=,且当00x x <<时,10x xe a --<,即()0f x '<; 当0x x >时,10x xe a -->,即()0f x '>.因此()0f x 为()f x 在()0,+∞上的极小值,也是最小值. 下证:()0ln f x a a a -≥. 因为010x x ea -=,所以010x ae x -=,001ln ln x a x -=-, 于是()0100ln x f x ea x --≥()0000ln 1ln a aa a x ax a a a x x =--+=+--ln ln a a a a a a ≥-=-,不等式得证.21.(1)设t x x y k ⎛⎫= ⎪⎝⎭+, 当2x =时,4y t =+,可得2k =, 所以22t y x x=+, 因为x 不低于上一年利润的25%且不高于上一年利润的75%; 所以定义域为[]2,6x ∈,所以y 关于x 的函数表达式为22ty x x=+,[]2,6x ∈. (2)令()22ty f x x x==+,[]2,6x ∈,[]1,16t ∈. 则()222222x t t y x x-'=-=. 当14t ≤≤时,0y '≥恒成立,22ty x x=+在[]2,6上单调递增, 此时,()max 6123t y f ==+. 当416t <≤时,(22x x y x -'=,()f x在⎡⎣单调递减,在⎤⎦单调递增,此时,()(){}max max 2,6y f f =. 又()24f t =+,()6123t f =+, 所以()()()262124833t t f f t +=+--=-, 当412t <≤时,2803t-≥,()()26f f >,()max 6y f =. 当1216t <≤时,2803t-<,()()26f f <,()max 2y f =.综上:当112t ≤≤时,科研经费投入6千万元,利润增加值y 的最大值为123t ⎛⎫+⎪⎝⎭千万元; 当1216t <≤时,科研经费投入2千万元,利润增加值1216t <≤的最大值为()4t +千万元.22.解:(1)()()212121ax ax f x a x x x-+'=+-=,0x >.当0a =时,()10f x x'=>, ()f x 在()0,+∞单调递增,没有极值点;当0a ≠时,令()221g x ax ax =-+,设当280a a ∆=->时,方程()221g x ax ax =-+的两根为1x ,2x ,且12x x <.若0a <,则280a a ∆=->,注意到()01g =,1212x x +=, 知()0g x =的两根1x ,2x 满足12104x x <<<. 当()20,x x ∈,()0g x >,()0f x '>,()f x 单增; 当()2,x x ∈+∞,()0g x <,()0f x '<,()f x 单减, 所以()f x 只有一个极值点;若08a <≤,则0∆≤,()2210g x ax ax =-+≥,即()0f x '≥恒成立,()f x 在()0,+∞单调递增,所以()f x 没有极值点;若8a >,则0∆>,注意到()01g =,1212x x +=, 知()0g x =的两根1x ,2x 满足12104x x <<<. 当()10,x x ∈,()0g x >,()0f x '>,()f x 单增; 当()12,x x x ∈,()0g x <,()0f x '<,()f x 单减; 当()2,x x ∈+∞,()0g x >,()0f x '>,()f x 单增; 所以()f x 有两个极值点.综上:当0a <时,()f x 有一个极值点; 当08a <≤时,()f x 没有极值点; 当8a >时,()f x 有两个极值点.(2)由(1)知,当8a >时,函数()f x 有两个极值点1x ,2x ,且1212x x +=,1212x x a=. 所以()()()()2212111222ln ln f x f x x a x x x a x x =+-++-+()()()212121212ln 2x x a x x ax x a x x =++--+ ()1ln1ln 21244a aa a =--=---,8a >, 令()()ln 214ah a a =---,8a >.则()ln 2ln 141104a a h a a '⎛⎫==--< ⎪⎭-⎝'---,所以()h a 在()8,+∞单调递减,所以()()834ln 2h a h <=--,所以()()1234ln 2f x f x +<--.。