求解非线性规划
实验利用Lingo求解整数规划和非线性规划问题

三、Lingo 循环编程举例
例5 用Lingo循环编程语句求解线性规划模型
max z 72x1 64x2
x1 x2 50, 132xx1 1180x0,2 480, x1 0, x2 0.
三、划 模型
max z 72x1 64x2
MODEL: SETS: person/A,B,C,D/; task/1..4/; assign(person,task):a,x; ENDSETS DATA: a=1100,800,1000,700,
600,500,300,800, 400,800,1000,900, 1100,1000,500,700; ENDDATA min=@sum(assign:a*x); @for(person(i):@sum(task(j):x(i,j))=1); @for(task(j):@sum(person(i):x(i,j))=1); @for(assign(i,j):@bin(x(i,j))); END
12,8 3,0; enddata
!数据赋值;
max=@sum(bliang(i):a(i)*x(i)); !目的函数;
@for(yshu(j):@sum(bliang(i):x(i)*c(j,i))<=b(j));
!约束条件;
例6、指派问题
企业在各地有4项业务,选定了4位业务员去处理。因为 业务能力、经验和其他情况不同,4业务员去处理4项业 务旳费用(单位:元)各不相同,见下表:
(3) 集合旳循环函数 集合旳循环函数能够使全部旳元素反复完毕某些操作.
函数
函数功能
• 形成集合全部元素需满足旳约
@for
束条件
• 计算集合中元素所在体现式旳
@sum
非线性规划问题的求解及其应用

非线性规划问题的求解及其应用非线性规划,可以说是一种非常复杂的数学问题。
在实际应用中,许多系统的优化问题,都可以被转化为非线性规划问题。
但是,由于这种问题的复杂性,非线性规划的求解一直是数学界的一个研究热点。
一、非线性规划的基本概念1. 可行域在非线性规划中,可行域指的是满足所有约束条件的点集。
在二维平面上,可行域能够很容易地表示出来,但在多维空间中,可行域的表示就变得非常困难。
2. 目标函数目标函数是一个数学公式,它用来评估在可行域中各个点的“好坏程度”。
一个非线性规划问题的求解,其实就是在可行域内寻找一个能够最大化目标函数值的点。
3. 约束条件约束条件是指规划问题中需要满足的条件。
这些条件包括函数值的范围限制、变量之间相互制约等。
通常来说,非线性规划的约束条件相对于线性规划而言更加复杂。
二、非线性规划的求解方法在非线性规划问题的求解中,有很多种方法可供选择。
下面,我们来介绍其中一些常用的方法。
1. 半定规划半定规划(Semi-definite Programming, SDP)是非线性规划的一个子集,它具有线性规划的一些特性,但可以解决一些非线性问题。
与线性规划不同的是,半定规划中的目标函数和约束条件都可以是非线性的。
2. 内点法内点法是一种非常流行的求解非线性规划问题的方法。
它是一种基于迭代的算法,可以在多项式时间内求解最优解。
内点法的一个优点是,它能够解决带有大量约束条件的规划问题。
3. 外点法外点法是另一种常用的求解非线性规划问题的方法。
外点法首先将非线性规划问题转化为一组等式和不等式约束条件的问题。
然后,采用一种迭代的方法,不断地拟合目标函数,以求得最优解。
4. 全局优化法全局优化法是非线性规划问题中最难的问题之一。
全局优化法的目标是寻找一个区域内的全局最优解,这个解要在这个区域中所有可能的解中处于最佳位置。
由于非线性规划问题的复杂性,全局优化法通常需要使用一些高级算法来求解。
三、非线性规划的应用非线性规划被广泛地应用于各种领域,下面我们来介绍其中一些应用。
非线性规划问题的求解方法[优质ppt]
![非线性规划问题的求解方法[优质ppt]](https://img.taocdn.com/s3/m/cd0d5afa0c22590102029d42.png)
3、问题:
4.1、外点法(外部惩罚函数法):
如何将此算法模块化?
外点法框图: kk1
初始 x(0),1 0,1 0,k1
以x(k)为初始点 , 解
min f ( x) k p( x)
得到 x (k 1)
No
k1k
kp(x(k1)) yes
停 x (k 1) f22=subs(fx2x2); if(double(sqrt(f1^2+f2^2))<=0.002)
a(k+1)=double(x1);b(k+1)=double(x2);f0(k+1)=double(subs(f)); break; else X=[x1 x2]'-inv([f11 f12;f21 f22])*[f1 f2]'; x1=X(1,1);x2=X(2,1); end end if(double(sqrt((a(k+1)-a(k))^2+(b(k+1)b(k))^2))<=0.001)&&(double(abs((f0(k+1)-f0(k))/f0(k)))<=0.001) a(k+1) b(k+1) k f0(k+1) break; else m(k+1)=c*m(k);
非线性规划问题的求解方法
Content
无约束非线性规划问题 有约束非线性规划问题 Matlab求解有约束非线性规划问题
一.无约束问题
• 一维搜索
指寻求一元函数在某区间上的最优值点的方法。这类方法不仅有实用 价值,而且大量多维最优化方法都依赖于一系列的一维最优化。
逐次插值逼近法 近似黄金分割法(又称0.618法) • 无约束最优化
用最速下降法求解无约束非线性规划问题

运筹学实习报告姓名: xxxxxxxxxx 学号: xxxxxxxxxxx 专业班级: xxxxxxxxxxxx 2 0 1 3年 7 月 0 4 日题目:用最速下降法求解无约束非线性规划问题 摘要:无约束最优化问题的求解方法分为解析法和直接法两大类。
解析法需要计算函数的梯度,其中最速下降法就属于解析法中的一种。
对于一个无约束非线性规划利用最速下降法求解,首先需要确定其优化方向,此优化方向应该选择为f 在当前点处的负梯度方向,利用一维搜索法找出沿此方向上的最小值及其对应点,此后将该点作为新的出发点重复上述过程,直到达到允许的误差为止。
本文通过理论的计算方法,进一步分析,最后用c++编程实现求出允许误差内的最优解。
此编程可用于计算符合下列形式的函数求最优解过程:f(x)=a[0]x1*x1+a[1]x2*x2+a[2]x1*x2+a[3]x1+a[4]x2+a[5]其中:a[i] (i=0,1,2,3,4,5) 为函数的系数。
本文以“ 李占利 主编,中国矿业大学出版社出版”的《最优化理论与方法》 第五章 “无约束最优化方法,5.1 最速下降法 ”例5—1为实例,首先利用上述迭代的方法,计算出各迭代点的函数值,梯度及其模。
然后应用c++语言编程,得到在精度范围内的精确最优解。
C++编程计算的最优解为 : T x x ]0329218.0,00823045.0[)3(*-==。
即转化为分数结果为:⎥⎦⎤⎢⎣⎡-==412432)3(*x x 。
满足精度要求的模为:1010736154.0||||)3(=<=εp 。
关键词:无约束非线性规划 解析法 最速下降法 梯度 模 最优解一、算法思想无约束最优化方法中的最速下降法首先需要确定其优化方向,此优化方向应该选择为f 在当前点处的负梯度方向,利用一维搜索法找出沿此方向上的最小值及其对应点,此后将该点作为新的出发点重复上述过程,直到达到允许的误差为止。
非线性规划的解法

非线性规划的解法非线性规划是一类重要的数学规划问题,它包含了很多实际应用场景,如金融市场中的资产配置问题,工程界中的最优设计问题等等。
由于非线性目标函数及约束条件的存在,非线性规划问题难以找到全局最优解,面对这样的问题,研究人员提出了众多的解法。
本文将从梯度法、牛顿法、共轭梯度法、拟牛顿法等方法进行介绍,着重讨论它们的优劣性和适用范围。
一、梯度法首先介绍的是梯度法,在非线性规划中,它是最简单的方法之一。
梯度法的核心思想是通过寻找函数的下降方向来不断地优化目标函数。
特别是在解决单峰函数或弱凸函数方面优势明显。
然而,梯度算法也存在一些不足之处,例如:当函数的梯度下降速度过慢时,算法可能会陷入局部最小值中无法跳出,还需要关注梯度方向更新的频率。
当目标函数的梯度非常大,梯度法在求解时可能会遇到局部性和发散性问题。
因此,它并不适合解决多峰、强凸函数。
二、牛顿法在牛顿法中,通过多项式函数的二阶导数信息对目标函数进行近似,寻找下降方向,以求取第一个局部极小值,有时还可以找到全局最小值。
牛顿法在计算方向时充分利用二阶导数的信息,使梯度下降速度更快,收敛更快。
因此,牛顿法适用于单峰性函数问题,同时由于牛顿法已经充分利用二阶信息,因此在解决问题时更加精确,准确性更高。
但牛顿法的计算量比梯度法大,所以不适合大规模的非线性规划问题。
此外,当一些细节信息不准确时,牛顿法可能会导致计算数值不稳定和影响收敛性。
三、共轭梯度法共轭梯度法是非线性规划的另一种解法方法。
共轭梯度法沿预定义的方向向梯度下降,使梯度下降的方向具有共轭性,从而避免了梯度下降法中的副作用。
基于共轭梯度的方法需要存储早期的梯度,随着迭代的进行,每个轴线性搜索方向的计算都会存储预定的轴单位向量。
共轭梯度方法的收敛速度比梯度方法快,是求解非线性规划的有效方法。
四、拟牛顿法拟牛顿法与牛顿法的思路不同,它在目标函数中利用Broyden、Fletcher、Goldfarb、Shanno(BFGS)算法或拟牛顿法更新的方法来寻找下降方向。
MATLAB求解非线性规划

MATLAB求解非线性规划非线性规划是一类涉及非线性目标函数或非线性约束条件的数学规划问题。
MATLAB是一种强大的数学计算软件,可以用来求解非线性规划问题。
本文将介绍MATLAB中求解非线性规划问题的方法。
1. 目标函数和约束条件在MATLAB中,非线性规划问题可以表示为以下形式:minimize f(x)subject to c(x)≤0ceq(x)=0lb≤x≤ub其中f(x)是目标函数,c(x)和ceq(x)是不等式和等式约束条件,lb和ub是变量的下限和上限。
2. 求解器MATLAB提供了多种求解器可以用来求解非线性规划问题。
其中常用的有fmincon和lsqnonlin。
lsqnonlin可以用来求解非线性最小二乘问题。
它使用的是Levenberg-Marquardt算法,能够有效地求解非线性最小二乘问题,并且具有较好的收敛性。
3. 示例下面我们来看一个求解非线性规划问题的示例。
假设我们要求解以下非线性规划问题:首先,我们需要定义目标函数和约束条件。
在MATLAB中,我们可以使用anonymous function来定义目标函数和约束条件。
代码如下:f = @(x)x(1)^2+2*x(2)^2+3*x(3)^2;c = @(x)[x(1)+x(2)+x(3)-4, x(1)*x(2)+x(1)*x(3)+x(2)*x(3)-3];ceq = [];lb = [0,0,0];接下来,我们使用fmincon求解非线性规划问题。
代码如下:[x,fval,exitflag,output] = fmincon(f,[1,1,1],[],[],[],[],lb,[],@(x)c(x));其中,第一个参数是目标函数,第二个参数是变量的初值,第三个参数是不等式约束条件,第四个参数是等式约束条件,第五个参数是变量的下限,第六个参数是变量的上限,第七个参数是非线性约束条件,最后一个参数是opts,可以设置其他求解参数。
chapter 6 非线性规划

– 3. 函数的凸性的判别 – 定理6.1(一阶条件) 设R是n维欧式空间上的开凸
集,f(X)在R上具有一阶连续偏导数,则f(X)为R上 的凸函数的充分必要条件是,对于任意两个不同点 X(1)∈R和X(2)∈R,恒有
– 此外,若将上述关于凸函数定义中两个不等式中 的不等号改为“≥”和“>”,则分别称f(X)为凸集R 上的凹函数和严格凹函数。
– 2. 凸函数的性质
(1)若f(X)为凸函数,则-f(X)必为凹函数,反之亦 然;
(2)若f(X)为凸集R上的凸函数,则对于任意非负实 数α,函数αf(X)亦为凸集R上的凸函数;
chapter 6 非线性规划
chapter 6 非线性规划
概述
一、问题提出
– 生产管理中很多问题的运行过程都是以非线性形式运 行的,如生产成本往往是生产量的非线性函数,产品 的需求量是其价格的非线性函数等等。这样,我们在 建立一个决策问题的数学模型时,目标函数或者约束 条件常常会出现非线性形式。
f ( X (2) ) f ( X (1) ) f ( X (1) )T ( X (2) X (1) )
定理6.2(二阶条件) 设R是n维欧式空间上的某一 开凸集,f(X)在R上具有二阶连续偏导数,则f(X)为 R上的凸函数的充分必要条件是:f(X)的海森矩阵 H(X)在R上处处半正定。
– 6. 全局最优解——对于非线性规划min f = f(X),gi(X) ≥ 0 (i = 1,2,…,l;),设X0∈R,对于任何X∈R均有f(X0) ≤ f(X), 则称X0为非线性规划问题在R上的一个全局最优解。若
X0≠X时,f(X0) < f(X)严格成立,称X0为严格全局最优解。
非线性规划问题的求解方法研究

非线性规划问题的求解方法研究随着科技的不断发展,各行各业也在不断发展变化。
非线性规划问题的求解方法也成为了当下热门的话题之一。
非线性规划是指优化问题中目标函数或约束条件是非线性的情况,这类问题在实际应用中很常见。
解决非线性规划问题的数学方法又被称为非线性规划算法。
非线性规划算法主要分为两类:确定性算法和随机算法。
确定性算法是通过一系列有规律的计算来达到问题的最优解。
而随机算法则是简单而暴力的方法,通过一些随机序列来优化思路,最终达到问题的最优解。
下面将介绍几类典型的非线性规划算法。
一、传统算法1. 信赖域算法信赖域算法是一种可应用于大规模非线性规划问题的优化方法。
它考虑了简单的限制条件,以期得到最优解。
它是迭代求解算法,通过寻找限制条件来达到最优解。
2. 罚函数算法罚函数算法的思想是将限制条件进行“惩罚”,使其变得更加强烈。
它可以转化为一个无限制最优化问题来求解原问题。
3. 共轭梯度法共轭梯度法是一种求解大规模非线性规划问题的高效算法。
它是迭代法,通过寻找相互垂直的方向来达到最优解。
二、元启发式算法元启发式搜索(也称为群智能)是一种通过模拟自然界的行为以解决优化问题的算法,包括蚁群算法、粒子群算法、遗传算法等。
1. 蚁群算法蚁群算法是一种基于蚂蚁行为的元启发式算法。
它通过模拟蚂蚁寻找食物的方式来优化问题,即将蚂蚁的行为规则应用于优化问题中。
2. 粒子群算法粒子群算法是一种仿照群体行为的元启发式算法。
它通过模拟鸟群、鱼群等集体行为来寻找最优解。
3. 遗传算法遗传算法是一种模拟自然选择和遗传机制的元启发式算法。
它通过模仿生物进化的过程来寻找最优解。
遗传算法适用于搜索空间大、目标函数复杂的优化问题。
三、其他算法除了传统算法和元启发式算法,还有一些其他的算法也被应用于非线性规划问题中,包括模拟退火算法、蒙特卡罗方法等。
1. 模拟退火算法模拟退火算法是一种随机退火过程,通过在优化问题的解空间中随机地搜索来寻找最优解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求解非线性规划
————————————————————————————————作者: ————————————————————————————————日期:
非线性规划的实例与定义
如果目标函数或约束条件中包含非线性函数,就称这种规划问题为非线性规划问题。
一般说来,解非线性规划要比解线性规划问题困难得多。
而且,也不象线性规划有单纯形法这一通用方法,非线性规划目前还没有适于各种问题的一般算法,各个方法都有自己特定的适用范围。
1.2 线性规划与非线性规划的区别
如果线性规划的最优解存在,其最优解只能在其可行域的边界上达到(特别是可行域的顶点上达到);而非线性规划的最优解(如果最优解存在)则可能在其可行域的任意一点达到。
1.3 非线性规划的Matlab 解法
Matlab 中非线性规划的数学模型写成以下形式
)(min x f
⎪⎪⎩⎪⎪⎨⎧=≤=⋅≤0
)(0)(x Ceq x C Beq x Aeq B Ax , 其中)(x f 是标量函数,Beq Aeq B A ,,,是相应维数的矩阵和向量,)(),(x Ceq x C 是非线性向量函数。
Mat la b中的命令是
X =FM INC ON(FU N,X0,A,B,Ae q,Be q,LB ,UB,NONLCON,OP TIONS) 它的返回值是向量x ,其中FUN 是用M 文件定义的函数)(x f ;X0是x 的初始值;A,B,Aeq,B eq 定义了线性约束Beq X Aeq B X A =≤*,*,如果没有等式约束,则A=[],B=[],Aeq =[],Beq =[];LB 和U B是变量x 的下界和上界,如果上界和下界没有约束,则LB=[],UB=[],如果x 无下界,则LB=-inf,如果x 无上界,则U B=inf ;NON LCO N是用M 文件定义的非线性向量函数)(),(x Ceq x C ;O PTIONS 定义了优化参数,可以使用Ma tl ab缺省的参数设置。
例2 求下列非线性规划问题
⎪⎪⎩⎪⎪⎨⎧≥=+--≥-++=.0,0
208)( min 2
12212212221x x x x x x x x x f (i )编写M 文件f un 1.m
f unction f=f un1(x);
f=x (1)^2+x(2)^2+8;
和M 文件fun2.m
function [g,h]=fun2(x);
g=-x(1)^2+x (2);
h=-x(1)-x(2)^2+2; %等式约束
(ii )在Matlab 的命令窗口依次输入
optio ns=opt imse t;
[x,y ]=fm incon('fun1',rand(2,1),[],[],[],[],ze ros(2,1),[], ...
'fun2', opt ions)
就可以求得当1,121==x x 时,最小值10=y 。
1.4 求解非线性规划的基本迭代格式
记(NP)的可行域为K 。
若K x ∈*,并且
K x x f x f ∈∀≤),()(*
则称*x 是(NP )的整体最优解,)(*x f 是(NP)的整体最优值。
如果有
**,),()(x x K x x f x f ≠∈∀<
则称*x 是(NP)的严格整体最优解,)(*x f 是(NP)的严格整体最优值。
若K x ∈*,并且存在*x 的邻域)(*x N δ,使
K x N x x f x f )(),()(**δ∈∀≤,
则称*x 是(NP )的局部最优解,)(*x f 是(NP)的局部最优值。
如果有
K x N x x f x f )(),()(**δ∈∀<
则称*x 是(NP)的严格局部最优解,)(*x f 是(NP)的严格局部最优值。
由于线性规划的目标函数为线性函数,可行域为凸集,因而求出的最优解就是整个可行域上的全局最优解。
非线性规划却不然,有时求出的某个解虽是一部分可行域上的极值点,但并不一定是整个可行域上的全局最优解。
对于非线性规划模型(N P),可以采用迭代方法求它的最优解。
迭代方法的基本思想是:从一个选定的初始点n R x ∈ 出发,按照某一特定的迭代规则产生一个点列}{k x ,使得当}{k x 是有穷点列时,其最后一个点是(NP)的最优解;当}{k x 是无穷点列时,它有极限点,并且其极限点是(NP)的最优解。
设n k R x ∈是某迭代方法的第k 轮迭代点,n k R x ∈+1是第1+k 轮迭代点,记
k k k k p t x x +=+1 (1) 这里1,,1=∈∈k n k k p R p R t ,显然k p 是由点k x 与点1+k x 确定的方向。
式(1)就是求解非线性规划模型(NP )的基本迭代格式。
通常,我们把基本迭代格式(1)中的k p 称为第k 轮搜索方向,k t 为沿k p 方向的步长,使用迭代方法求解(NP)的关键在于,如何构造每一轮的搜索方向和确定适当的步长。
设0,≠∈p R x n ,若存在0>δ,使
),0(),()(δ∈∀<+t x f tp x f ,
称向量p 是f 在点x 处的下降方向。
设0,≠∈p R x n ,若存在0>t ,使
K tp x ∈+,
称向量p 是点x 处关于K 的可行方向。
一个向量p ,若既是函数f 在点x 处的下降方向,又是该点关于区域K 的可行方向,则称之为函数f 在点x 处关于K 的可行下降方向。
现在,我们给出用基本迭代格式(1)求解(NP)的一般步骤如下:
0 选取初始点0x ,令0:=k 。
1 构造搜索方向,依照一定规则,构造f 在点k x 处关于K 的可行下降方向作为搜索方向k p 。
2 寻求搜索步长。
以k x 为起点沿搜索方向k p 寻求适当的步长k t ,使目标函数值有某种意义的下降。
3 求出下一个迭代点。
按迭代格式(1)求出
k k k k p t x x +=+1。
若1+k x 已满足某种终止条件,停止迭代。
4 以1+k x 代替k x ,回到1步。
1.5 凸函数、凸规划
设)(x f 为定义在n 维欧氏空间)(n E 中某个凸集R 上的函数,若对任何实数)10(<<αα以及R 中的任意两点)1(x 和)2(x ,恒有
)()1()())1(()2()1()2()1(x f x f x x f αααα-+≤-+
则称)(x f 为定义在R 上的凸函数。
若对每一个)10(<<αα和R x x ∈≠)2()1(恒有
)()1()())1(()2()1()2()1(x f x f x x f αααα-+<-+
则称)(x f 为定义在R 上的严格凸函数。
考虑非线性规划
⎪⎩⎪⎨⎧=≤=∈}
,,2,1,0)(|{)( min l j x g x R x f j R x 假定其中)(x f 为凸函数,),,2,1)((l j x g j =为凸函数,这样的非线性规划称为凸规划。
可以证明,凸规划的可行域为凸集,其局部最优解即为全局最优解,而且其最优解的集合形成一个凸集。
当凸规划的目标函数)(x f 为严格凸函数时,其最优解必定唯一(假定最优解存在)。
由此可见,凸规划是一类比较简单而又具有重要理论意义的非线性规划。