考研数学二答题卡完美版

合集下载

2022考研答题卡电子版

2022考研答题卡电子版

2022考研答题卡电子版中考网权威发布广东惠州2022中考答题卡的结构组成,更多广东惠州2022中考答题卡的结构组成相关信息请访问中考网。

各县(区)教育考试中心:我市2022年初中毕业生学业考试采用“计算机网上辅助评卷(网上评卷)”方式,考试时要求考生必须直接在“答题卡”上进行作答,否则答案无效。

为了保证考试时考生能够正确作答,保证网上评卷工作顺利进行,各县(区)要高度重视考生答题训练工作,安排好训练时间,落实好考生答题训练工作。

各县(区)务必在考试前对参加2022年初中毕业生学业考试的考生(初二年级、初三年级)进行答题训练,使考生了解正确的答题方式。

5月20日前,各中学将本校考生答题训练情况反馈给各县(区)教育考试中心,各县(区)教育考试中心再将本县(区)考生答题训练情况反馈给市教育考试中心。

一、答题卡的结构组成 1.初三年级:各考试科目的答题卡由若干张A4双面的答题卡组成(附件3),答题卡的下方标有该考试科目的答题卡的总页(面)数和页(面)号。

每张答题卡的正面由考生信息区(准考证号、姓名、注意事项、条码粘贴区、考场号、座位号、缺考[ ]等)和答题区(“选择题区”或“非选择题答题区”)组成,每张答题卡的反面由“请勿在此处作任何标记”区域和答题区(通常是“非选择题答题区”)组成;答题区规定了每道题的作答区域(标出了相应的题号)。

2.初二年级:各考试科目的答题卡是一张单面的标准化答题卡(附件4),答题卡由“考生信息区”(准考证号、姓名、注意事项、条码粘贴区、考场号、座位号、缺考[ ]等)和答题区(“选择题答题区”)组成。

3.条形码(条码)上打印有考生的“姓名”、“准考证号”、“科目”、“考场号”、“座位号”等信息。

二、答题卡作答注意事项 1.初三年级答题卡作答注意事项:①考生领到条形码(条码)时,请检查条码上打印的是否是本人的“姓名”、“准考证号”、“科目”、“考场号”、“座位号”等信息,条形码数量和答题卡张数是否一致。

2023年全国硕士研究生招生考试《数学二》真题及答案解析【完整版】

2023年全国硕士研究生招生考试《数学二》真题及答案解析【完整版】

2023年全国硕士研究生招生考试《数学二》真题及答案解析【完整版】一、选择题:1~10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上。

1.1ln 1y x e x ⎛⎫=+⎪-⎝⎭曲线的渐近线方程为( )。

A .y =x +e B .y =x +1/e C .y =xD .y =x -1/e 【答案】B【解析】1ln 11lim lim lim ln 1,1x x x x e y x k e x x x →∞→∞→∞⎛⎫+ ⎪-⎛⎫⎝⎭===+= ⎪-⎝⎭ ()()()11lim lim ln lim ln 11111lim ln 1lim 11x x x x x b y kx x e x x e x x x x e x e x e →∞→∞→∞→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫=-=+-=+- ⎪ ⎪⎢⎥⎢⎥--⎝⎭⎝⎭⎣⎦⎣⎦⎡⎤=+==⎢⎥--⎣⎦所以斜渐近线方程为y =x +1/e .2.函数()()01cos ,0x f x x x x ≤=+>⎩的原函数为( )。

A .())()ln ,01cos sin ,0x x F x x x x x ⎧≤⎪=⎨⎪+->⎩B .())()ln 1,01cos sin ,0x x F x x x x x ⎧+≤⎪=⎨⎪+->⎩C .())()ln ,01sin cos ,0x x F x x x x x ⎧≤⎪=⎨⎪++>⎩D .())()ln 1,01sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩【答案】D【解析】当x ≤0时,()(1d ln f x x x C ==+⎰当x >0时,()()()()()2d 1cos d 1dsin 1sin sin d 1sin cos f x x x x xx x x x x x x x x C =+=+=+-=+++⎰⎰⎰⎰原函数在(-∞,+∞)内连续,则在x =0处(110lim ln x x C C -→++=,()220lim 1sin cos 1x x x x C C +→+++=+ 所以C 1=1+C 2,令C 2=C ,则C 1=1+C ,故())()ln 1,0d 1sin cos ,0x C x f x x x x x C x ⎧++≤⎪=⎨⎪+++>⎩⎰,综合选项,令C =0,则f (x )的一个原函数为())()ln 1,01sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩.3.设数列{x n },{y n }满足x 1=y 1=1/2,x n +1=sinx n ,y n +1=y n 2,当n →∞时( )。

2023年考研数学(二)真题(试卷+答案)

2023年考研数学(二)真题(试卷+答案)

2023年全国硕士研究生入学统一考试数学(二)(科目代码:302)(考试时间:上午8:30-11:30)考生注意事项1.答题前,考生须在试题册指定位置填写考生姓名和考生编号;在答题卡指定位置填写报考单位、考生姓名和考生编号,并涂写考生编号信息点。

2.选择题答案必须涂写在答题卡相应题号的选项上,非选择题的答案必须书写在答题卡指定位置的边框区域内,超出答题区域书写的答案无效;在草稿纸、试题册上答题无效。

3.填(书)写部分必须使用黑色签字笔或者钢笔书写,字迹工整、笔迹清楚;涂写部分必须使用2B 铅笔填涂。

4.考试结束,将答题卡和试题册按规定交回。

2023年全国硕士研究生入学统一考试数学(二)试题一、选择题:1~10小题,每小题5分,共50分.下列每题给出的四个选项中,只有一个选项是符合题目要求的. (1)函数1ln(e )1y x x =+-的渐近线为( ) (A )e y x =+. (B )1e y x =+. (C )y x =.(D )1ey x =-.(2)0()(1)cos ,0x f x x x x ≤=+>⎩的一个原函数为( )(A)),0()(1)cos sin ,0x x F x x x x x ⎧⎪≤=⎨+->⎪⎩(B))1,0()(1)cos sin ,0x x F x x x x x ⎧⎪+≤=⎨+->⎪⎩(C)),0()(1)sin cos ,0x x F x x x x x ⎧⎪≤=⎨++>⎪⎩(D))1,0()(1)sin cos ,0x x F x x x x x ⎧⎪+≤=⎨++>⎪⎩(3)设数列{}n x ,{}n y 满足1112x y ==,1sin n n x x +=,21n n y y +=,当n →∞时( ) (A )n x 是n y 的高阶无穷小 (B )n y 是n x 的高阶无穷小 (C )n x 是n y 的等价无穷小 (D )n x 是n y 的同阶但非等价无穷小(4)微分方程0y ay by '''++=的解在(,)-∞+∞有界,则,a b 的取值范围为( ) (A )0,0a b <> (B )0,0a b >>(C )0,0a b => (D )0,0a b =<(5)由确定,则( )(A )()f x 连续,()0f '不存在(B )()0f '存在,()f x '在0x =处不连续 (C )()f x '连续,()0f ''不存在 (D )()0f ''存在,()f x ''在0x =处连续 (6)若函数()121()ln f dx x x +∞+=⎰αα在若0=αα处取得最大值,则0α是( )(A )1ln ln 2-(B )lnln2- (C )1ln 2(D )ln2(7)设函数2()()x f x x a e =+.若()f x 无极值点,但有拐点,则a 的取值范围为( )(A )[0,1) (B )[1,)+∞ (C )[1,2) (D )[2,)+∞(8)已知A ,B 都为n 阶矩阵,E 为n 阶单位矩阵,*M 为矩阵M 的伴随矩阵,则*⎛⎫⎪⎝⎭A E OB 为( )(A )****⎛⎫- ⎪ ⎪⎝⎭A B B A OB A(B )****⎛⎫- ⎪ ⎪⎝⎭A B A B OB A (C )****⎛⎫- ⎪ ⎪⎝⎭B A B A OA B(D )****⎛⎫- ⎪ ⎪⎝⎭B A A B OA B(9)设二次型222123121323(,,)()()4()f x x x x x x x x x =+++--,则该二次型的规范形为( )(A )2212y y + (B )2212y y - (C )2221234y y y +-(D )222123y y y +-(10)设121221,31αα⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭、122150,91ββγ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭、既可由12αα、线性表示,也可由12ββ、线性表示,则γ为( ) (A )33,4R k k ⎛⎫⎪⎪⎝⎭∈⎪(B )35,10R k k ⎛⎫ ⎪⎪⎪⎝⎭∈(C )-11,2R k k ⎛⎫ ⎪⎪⎪⎝⎭∈(D )15,8R k k ⎛⎫ ⎪⎪⎝⎭∈⎪二、填空题:11~16小题,每小题5分,共30分. (11)设22()ln(1),()cos x f x ax bx x g x e x =+++=-,且()f x 与()g x 为等价无穷小,则ab = . (12)设()y x =⎰,则此曲线的弧长为 .(13)已知(,),2zz z x y e xz x y =+=-,求22z x∂=∂ .(14)23532x y y =+确定()y y x =,则()y y x =在1x =处的法线斜率为 . (15) 函数)(x f 满足⎰==-+200)(,)()2(dx x f x x f x f ,则⎰=31)(dx x f .(16)方程组13123123121202ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩ 有解,已知0111412a a a =,则 11120a a a b = .三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤. (17)(本题目满分10分) 设曲线)(:x y y L =)(e x >经过点)0,(2e ,L 上任一点),(y x P 到y 轴距离等于该点处的切线在y 轴上的截距. (1)求)(x y ;(2)在L 上求一点使该点处的切线与两坐标轴所围三角形的面积最小并求此最小面积.(18)(本题满分12分) 求函数2cos (,)e2yx f x y x =+的极值.(19)(本题满分12分)已知平面区域{(,)|01}D x y y x =≤≤≥(1)求平面区域D 的面积; (2)求D 绕x 轴旋转一周的旋转体体积.(20) (本题满分12分)设平面有界区域D位于第一象限,曲线22221,2,,x y xy x y xy y +-=+-==0y =围成,求221.3Ddxdy x y +⎰⎰ (21) (本题满分12分)函数()f x 在[,]a a -上具有二阶连续导数. 证明: (1)若(0)0f =, 则存在(,)a a ξ∈-使得21()[()()]f f a f a a ξ''=+-. (2)若()f x 在(,)a a -取极值,则存在(,)a a η∈-使得21()()()2f f a f a a η''+-.(22)(本题满分12分)已知112321233232x x x x A x x x x x x x ++⎛⎫⎛⎫⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭对所有x 均成立.(1)求矩阵A ;(2)求可逆矩阵P 和对角阵Λ,使得1P AP -=Λ.参考答案一、选择题二、填空题 (11)【答案】2-(12)【答案】43π(13)【答案】32-. (14)【答案】 119-(15)【答案】12(16)【答案】8 三、解答题(17)【答案】(1)x x x x y 2ln )(+-=,(2))21,(2323e e ,3min e S =(18)【答案】极小值为2(,2)2e f e k π-=-.(19)【答案】(1)ln(1(2)(1)4ππ-(20). (21)【答案】(Ⅰ)泰勒公式在0=x 处展开; (Ⅱ)泰勒公式在极值点处展开.(22)【答案】(1)111211011A⎛⎫⎪=-⎪⎪-⎝⎭;(2)410301121P⎛⎫⎪= ⎪⎪--⎝⎭,212⎛⎫⎪Λ=-⎪⎪-⎝⎭.。

2020年全国硕士研究生招生考试数学二解析

2020年全国硕士研究生招生考试数学二解析

2020年全国硕士研究生招生考试数学(二)(科目代码:301)考生注意事项1、答题前,考生须在试题册指定位置上填写考生编号和考生姓名;在答题卡指定位置上填写报考单位,考生姓名和考生编号,并涂写考生编号信息点。

2、选择题的答案必须涂写在答题卡相应题号和选项上,非选择题的答案必须书写在答题卡指定位置的边框区域内。

超出答题区域书写的答案无效;在草稿纸、试题册上答案无效。

3、填(书)写必须使用黑色字迹签字笔书写,字迹工整、笔迹清楚;涂写部分必须使用2B 铅笔填涂。

4、考试结束,将答题卡和试题册按规定交回。

以下信息考生必须认真填写)一.选择题(1~8小题,每小题4分,共32分,下列每题给出的四个选项中只有一个选项是符合要求的・)1.当工TO+时,下列无穷小量中最高阶的是B:/ ln(l + √i 3)dt 解析:木题选D 考査的内容主要就是无穷小虽之间的比较,同时也考察了变限积分洛必达相关知识点。

/ (”一1)血Iim ——— ---- 2- ∙0* X (/ (c√'-1)衣)=e r' —]〜云 (/ In (1 + ∖∕P)dt) = In(I ⅛ V Z Z^)〜H / f tf ∆nr ∖ f I / sint 2dt J = Sin(SinZ)2 ・cos 工〜 / ∕∙1 — co<x WO 闯⅛⅛=肥呑若存在故归考试中可宜接求导比较会比较方便 Λ→σ*TLX V Z Sinhd 寸 =[sin(1 — CoSa:)]7 ∙sinx~\;'(⅞^) 'x ^ 故选D 2•函数/(X) =才吾罟务的第二类间断点个数为 4:1 B:2 C :3 解析:本题选C 。

考查的内容就是第••类间断点的定义与极限的运算方法 分母为()的点或者无定义的点有工= Ie = -I ,工=(),工=2 ]⅛(^Z ⅛⅛⅛)=芒卍哩Cm=Oo不存在故为第一类间断点 e 7ττln∣ 1 -H ⑦ ln2 尸5|1 +;Tl 叽(―)=3(1-e -1)-1⅛lnll+Il = OCW 在故*-1 为第二类间断点 ElnI l 卄 1 • χ→o(e r— 1)(X —2) -2:% X l¾(⅛⅛⅛)=⅛k ⅜l¾⅛=∞7fζ存在故*2为第二类间断点UIiln 也土卫=-舟为可去间断点不屈丁•第二类间断点 3.广霁墮血= JQ \/x(l — x) 4 TT 2斤2 Zb T B:T 解折:木题选爪。

2019年全国硕士研究生招生考试数学二解析

2019年全国硕士研究生招生考试数学二解析

2019年全国硕士研究生招生考试
数学(二)
(科目代码:301)
考生注意事项
1、答题前,考生须在试题册指定位置上填写考生编号和考生姓名;在答题卡指定位置上填写报考单位,考生姓名和考生编号,并涂写考生编号信息点。

2、选择题的答案必须涂写在答题卡相应题号和选项上,非选择题的答案必须书写在答题卡指定位置的边框区域内。

超出答题区域书写的答案无效;在草稿纸、试题册上答案无效。

3、填(书)写必须使用黑色字迹签字笔书写,字迹工整、笔迹清楚;涂写部分必须使用2B铅笔填涂。

4、考试结束,将答题卡和试题册按规定交回。

(以下信息考生必须认真填写)
考试编号
考生姓名。

2023年考研数二真题及答案解析

2023年考研数二真题及答案解析

2023年全国硕士研究生入学统一考试数学(二)试题及答案考试时间:180分钟,满分:150分一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(1)曲线1ln()1yx e x =+−的斜渐近线方程为( ) (A)y x e =+ (B)1y x e=+(C)y x = (D)1y x e=−【答案】B 【解析】1limlimln()11x x y ke x x →∞→∞==+=−,11lim()lim()lim[ln(]lim [ln(ln ]11x x x x b y kx y x x e x x e e x x →∞→∞→∞→∞=−==−=+−=+−−−111lim ln(1lim (1)(1)x x x x e x e x e→∞→∞=+==−−,所以渐进线方程为1y x e =+,答案为B(2)设0()(1)cos ,0x f x x x x ≤=+>⎩的一个原函数为( )(A)),0()(1)cos sin ,0x x F x x x x x ⎧⎪−≤=⎨+−>⎪⎩(B))1,0()(1)cos sin ,0x x F x x x x x ⎧⎪−+≤=⎨+−>⎪⎩(C)),0()(1)sin cos ,0x x F x x x x x ⎧⎪+≤=⎨++>⎪⎩(D))1,0()(1)sin cos ,x x F x x x x x ⎧⎪++≤=⎨++>⎪⎩【答案】D【解析】根据原函数的连续性,可排除(A)(C);再根据原函数的可导性,可排除选项(B),答案为(D) (3)已知{}n x ,{}n y 满足1112x y ==,1sin n n x x +=,21(1,2,)n n y y n +== ,则当n →∞时( )(A)n x 是n y 的高阶无穷小(B)n y 是n x 的高阶无穷小(C)n x 与n y 是等价无穷小(D)n x 与n y 是同阶但不等价的无穷小【答案】B【解析】由已知可得,{}n x ,{}n y 均单调递减,且12n y ≤,又因为sin x x 在(0,2π上单调递减,故2sin 1x x π<<,所以2sin x x π>,所以21112sin sin 24n n n n nn n n n n ny y y y y y x x x x x ππ++==≤=,依次类推可得,111100()444n nn n n n y y y n x x x πππ++⎛⎫⎛⎫≤≤≤≤=→→∞ ⎪ ⎪⎝⎭⎝⎭,故n y 是n x 的高阶无穷小,答案为B (4)若微分方程0y ay by ′′′++=的解在(,)−∞+∞上有界,则( )(A)0,0a b <>(B)0,0a b >>(C)0,0ab =>(D)0,0ab =<【答案】C 【解析】0y ay by ′′′++=的解一共三种情形:①240a b Δ=−>,1212x xy C e C e λλ=+,但此时无论12,λλ取何值,y 在(,)−∞+∞上均无界;②240a b Δ=−=,12()xy C C x eλ=+,但此时无论λ取何值,y 在(,)−∞+∞上均无界;③240a b Δ=−<,12(cos sin )xy e C x C x αββ=+,此时若y 在(,)−∞+∞上有界,则需满足0α=,所以0,0a b =>,答案为(C)(5)设函数()y f x =由2sin x t ty t t⎧=+⎪⎨=⎪⎩确定,则( ) (A)()f x 连续,(0)f ′不存在(B)(0)f ′不存在,()f x ′在0x =处不连续(C)()f x ′连续,(0)f ′′不存在(D)(0)f ′′存在,()f x ′′在0x =处不连续【答案】C 【解析】当0t =时,有0x y ==①当0t>时,3sin x t y t t=⎧⎨=⎩,可得sin 33x xy =,故()f x 右连续;②当0t<时,sin x ty t t=⎧⎨=−⎩,可得sin y x x =−,故()f x 左连续,所以()f x 连续;因为0sin 033(0)lim 0x x x y x ++→−′==;0sin 0(0)lim 0x x x y x −−→−−′==,所以(0)0f ′=;③当0x >时,1sin sin cos 333393x x x x x y ′⎛⎫′==+ ⎪⎝⎭,所以0lim ()0x y x +→′=,即()f x ′右连续;④当0x <时,()sin sin cos y x x x x x ′′=−=−−,所以0lim ()0x y x −→′=,即()f x ′左连续,所以()f x ′连续;考虑01sin cos 23393(0)lim 9x x x xf x ++→+′′==;0sin cos (0)lim 2x x x x f x −−→−−′′==−,所以(0)f ′′不存在,答案为C(6)若函数121()(ln )f dx x x αα+∞+=⎰在0αα=处取得最小值,则0α=( ) (A)1ln(ln 2)−(B)ln(ln 2)− (C)1ln 2(D)ln 2【答案】A 【解析】当0α>时,121()(ln )f dx x x αα+∞+=⎰收敛, 此时21122111111()ln (ln )(ln )(ln )(ln 2)f dx d x x x x x ααααααα+∞+∞+∞++===−=⎰⎰,故211111ln ln 2()(ln 2)(ln 2)(ln 2)f ααααααα′⎡⎤−′==−⎢⎥⎣⎦,令()0f α′=,解得0α=1ln(ln 2)−(7)设函数2()()x f x x a e =+,若()f x 没有极值点,但曲线()y f x =有拐点,则a 的取值范围是( )(A)[0,1)(B)[1,)+∞(C)[1,2)(D)[2,)+∞【答案】C 【解析】2()()x f x x a e =+,2()(2)x f x x x a e ′=++,2()(42)x f x x x a e ′′=+++,因为()f x 没有极值点,所以440a −≤;又因为曲线()y f x =有拐点,所以164(2)0a −+>,联立求解得:[1,2)a ∈(8)设A ,B 为n 阶可逆矩阵,*M 为矩阵M 的伴随矩阵,则*A E OB ⎛⎫= ⎪⎝⎭( ) (A)****A B B A O B A ⎛⎫−⎪⎝⎭(B)****B A A B O A B ⎛⎫−⎪⎝⎭(C)****B A B A OA B ⎛⎫−⎪⎝⎭(D)****A B A B OB A ⎛⎫−⎪⎝⎭【答案】B【解析】*11111A E A E A E A AB A B O B O B O B O B −−−−−⎛⎫−⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111***1*A B A A B A B B A A B O A B B OA B −−−−⎛⎫⎛⎫−−== ⎪ ⎪⎝⎭⎝⎭,答案为B (9)二次型222123121323(,,)()()4()f x x x x x x x x x =+++−−的规范形为( )(A)2212y y +(B)2212y y −(C)2221234y y y +−(D)222123y y y +−【答案】B 【解析】222123121323(,,)()()4()f x x x x x x x x x =+++−−222123121323233228x x x x x x x x x =−−+++二次型矩阵为211134143A ⎛⎫⎪=− ⎪ ⎪−⎝⎭,211134(7)(3)143E A λλλλλλλ−−−−=−+−=+−−−+ 故答案为B(10)已知向量1123α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2211α⎛⎫ ⎪= ⎪ ⎪⎝⎭,1259β⎛⎫ ⎪= ⎪ ⎪⎝⎭,2101β⎛⎫ ⎪= ⎪⎪⎝⎭,若γ既可由12,αα线性表示,也可由12,ββ线性表示,则γ=( )(A)33,4k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭ (B)35,10k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭ (C)11,2k k R −⎛⎫ ⎪∈ ⎪ ⎪⎝⎭(D)15,8k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭【答案】D 【解析】令γ11221122k k l l ααββ=+=+,则有112211220k k l l ααββ+−−=,即12121212(,)0k k l l ααββ⎛⎫ ⎪ ⎪−−= ⎪ ⎪⎝⎭而121212211003(,)2150010131910011ααββ−−⎛⎫⎛⎫ ⎪ ⎪−−=−→− ⎪ ⎪⎪ ⎪−−⎝⎭⎝⎭所以1212(,,,)(3,1,1,1),TT k k l l c c R =−−∈,所以12(1,5,8)(1,5,8),T T c c c k k R γββ=−+=−=∈,答案为D二、填空题:11~16小题,每小题5分,共30分,请将答案写在答题纸指定位置上. (11)当0x →时,函数2()ln(1)f x ax bx x =+++与2()cos x g x e x =−是等价无穷小,则ab =________【答案】2−【解析】由已知可得:2222200022221(())()ln(1)2lim lim lim 1()cos (1())(1())2x x x x ax bx x x o x f x ax bx x g x e x x o x x o x →→→++−++++==−++−−+220221(1)(()2lim 13()2x a x b x o x x o x →++−+==+所以1310,22a b +=−=,即1,2a b =−=,所以2ab =−(12)曲线y =⎰的弧长为________43π【解析】由题意可得函数定义域为[x ∈,根据公式可得:2302sin 24cos L x t tdtπ====⎰304(1cos 2)t dt π=+=⎰43π+(13)设函数(,)z z x y =由2ze xz x y +=−确定,则2(1,1)2zx∂=∂_________【答案】32−【解析】代入(1,1)点可得,0z =,先代入1y =,可得21z e xz x +=−,两边对x 求导,2z e z z xz ′′++=,得(1)1z ′=两边再对x 求导,20z ze z e z z z xz ′′′′′′′++++=,代入(1,1)及0z =,(1)1z ′=得2(1,1)232zx∂=−∂(14)曲线35332x y y =+在1x =对应点处的法线斜率为________【答案】119−【解析】代入1x =得到1y =,两边对x 求导,242956x y y y y ′′=+,代入1x =,1y =可得:911y ′=,故1x =对应点处的法线斜率为1119y −=−′(15)设连续函数()f x 满足:(2)()f x f x x +−=,2()0f x dx =⎰,则31()f x dx =⎰_______【答案】12【解析】323211121()()()()(2)f x dx f x dx f x dx f x dx f x dx=+=++⎰⎰⎰⎰⎰[]2121111()()()022f x dx f x x dx f x dx xdx =++=+=+=⎰⎰⎰⎰(16)已知线性方程组13123123121202ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩有解,其中,a b 为常数,若0111412a a a =,则11120a a ab =_______【答案】8【解析】由题意可得:方程组系数矩阵秩为3,可得增广矩阵的秩也为3,即011110012002a a a ab =按照第四列进行行列式展开可得:144411011(1)122(1)11012a a a a a b a ++⋅−+⋅−⋅=所以111280a a ab =三、解答题:17~22小题,共70分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)设曲线:()()L y y x x e =>经过点2(,0)e ,L 上任一点(,)P x y 到y 轴的距离等于该点处的切线在y 轴上的截距(1)求()y x ;(2)在L 上求一点,使得该点处的切线与两坐标轴所围三角形的面积最小,并求此最小面积【答案】(1)()(2ln )y x x x =− (2)33221(,)2e e ,最小面积是3e 【解析】(1)曲线L 上任一点(,)P x y 处的切线方程为()Y y y X x ′−=−,令0X =,则y 轴上的截距为Y y xy ′=−,则有x y xy ′=−,即11y y x′−=−,解得(ln )y x C x =−,其中C 为任意常数,代入2(,0)e 可得2C =,故()(2ln )y x x x =−(2)该点设为000(,(2ln ))x x x −,切线方程为0000(2ln )(1ln )()Y x x x X x −−=−− 令0X =,解得0Y x =;令0Y =,解得00ln 1x X x =−;所以该点处的切线与两坐标轴所围三角形的面积为:200011()22ln 1x S x XY x ==−求导00020(2ln 3)()2(ln 1)x x S x x −′=−,令0()0S x ′=,解得320x e =且为最小值点,最小面积为332()S e e =(18)(本题满分12分) 求函数2cos (,)2yx f x y xe=+的极值【答案】极小值为21(,2)2f e k e π−=−(k Z ∈) 【解析】先求驻点cos cos 0(sin )0y xy y f e x f xe y ⎧′=+=⎪⎨′=−=⎪⎩,解得驻点为1(,(21))e k π−−+和(,2)e k π−,其中k Z∈下求二阶偏导数,cos cos 2cos 1(sin )sin cos xx yxy y y yy f f e y f xe y xe y ⎧′′=⎪⎪′′=−⎨⎪′′=−⎪⎩代入1(,(21))e k π−−+(k Z ∈),解得210xxxy yy A f B f C f e −⎧′′==⎪⎪′′==⎨⎪′′==−⎪⎩,20AC B −<,故1(,(21))e k π−−+不是极值点; 代入(,2)e k π−(k Z ∈),解得210xxxy yy A f B f C f e ⎧′′==⎪⎪′′==⎨⎪′′==⎪⎩,20AC B −>且0A >,故(,2)e k π−是极小值点,其极小值为21(,2)2f e k e π−=−(k Z ∈) (19)(本题满分12分)已知平面区域{(,)01}D x y y x =≤≤≥(1)求D 的面积(2)求D 绕x 轴旋转所成旋转体的体积【答案】(1)ln(1S = (2)24V ππ=−【解析】(1)222214441tan sec csc ln csc cot tan sec D S x t tdt tdt t tt t ππππππ+∞====−⎰⎰⎰ln(1=+;(2)22222111111(1)1x V dx dx dx x x x x πππ+∞+∞+∞⎛⎫===− ⎪++⎝⎭⎰⎰⎰11arctan x x π+∞⎛⎫=−− ⎪⎝⎭24ππ=−(20)(本题满分12分)设平面有界区域D 位于第一象限,由曲线221x y xy +−=,222x y xy +−=与直线y =,0y =围成,计算2213Ddxdy x y +⎰⎰【解析】本题采用极坐标计算,322013Ddxdy d x y πθ=+⎰⎰⎰333222222000111ln 3cos sin 3cos sin 3cos sin d r d d πππθθθθθθθθθ===+++⎰⎰332220011111ln 2ln 2tan ln 22(3tan )cos 23tan 2d d ππθθθθθ=⋅=⋅==++⎰⎰(21)(本题满分12分) 设函数()f x 在[,]a a −上具有2阶连续导数,证明: (1)若(0)0f =,则存在(,)a a ξ∈−,使得21()[()()]f f a f a aξ′′=+−(2)若()f x 在(,)a a −内取得极值,则存在(,)a a η∈−,使得21()()()2f f a f a aη′′≥−−【答案】(1)利用泰勒公式在0x =处展开,再利用介值性定理; (2)利用泰勒公式在极值点处展开,再利用基本不等式进行放缩;【解析】(1)在0x =处泰勒展开,22()()()(0)(0)(0)2!2!f c f c f x f f x x f x x ′′′′′′=++=+, 其中c 介于0与x 之间;代入两个端点有:211()()(0),(0,)2!f f a f a a a ξξ′′′=+∈222()()(0)(),(,0)2!f f a f a a a ξξ′′′−=−+∈−两式相加可得:212()()()()2f f f a f a a ξξ′′′′++−=即122()()1[()()]2f f f a f a a ξξ′′′′++−=因为()f x 在[,]a a −上具有2阶连续导数,所以()f x ′′存在最大值M 与最小值m , 根据连续函数的介值性定理可得,12()()2f f m M ξξ′′′′+≤≤,所以存在(,)a a ξ∈−,使得12()()()2f f f ξξξ′′′′+′′=,即21()[()()]f f a f a aξ′′=+−成立;(2)若()f x 在(,)a a −内取得极值,不妨设0x 为其极值点,则由费马引理可得,0()0f x ′=将()f x 在0x 处泰勒展开,22000000()()()()()()()()()2!2!f d f d f x f x f x x x x x f x x x ′′′′′=+−+−=+−其中d 介于0x 与x 之间;代入两个端点有:210010()()()(),(,)2!f f a f x a x x a ηη′′=+−∈ 220020()()()(),(,)2!f f a f x a x a x ηη′′−=+−−∈−两式相减可得:221200()()()()()()22f f f a f a a x a x ηη′′′′−−=−−−−所以22120022()()11()()()()2222f f f a f a a x a x a a ηη′′′′−−=−−−− 22102021[()()()()]4f a x f a x aηη′′′′≤−++,记112()max[(),()]f f f ηηη′′′′′′=, 又因为22220000()()[()()]4a x a x a x a x a −++≤−++=,所以21()()()2f a f a f aη′′−−≤成立 (22)(本题满分12分)设矩阵A 满足对任意123,,x x x 均有112321233232x x x x A x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=−+ ⎪ ⎪⎪ ⎪−⎝⎭⎝⎭(1)求A(2)求可逆矩阵P 与对角矩阵Λ,使得1P AP −=Λ【答案】(1)111211011A ⎛⎫⎪=− ⎪⎪−⎝⎭11 /11 (2)401310112P −⎛⎫ ⎪=− ⎪ ⎪⎝⎭,1221P AP −⎛⎫ ⎪=Λ=− ⎪ ⎪−⎝⎭【解析】(1)因为任意123,,x x x 均有112321233232x x x x A x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=−+ ⎪ ⎪ ⎪ ⎪−⎝⎭⎝⎭,即112233*********x x A x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=− ⎪ ⎪⎪ ⎪ ⎪⎪−⎝⎭⎝⎭⎝⎭故可分别取单位向量100010001⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,可得100111100010211010001011001A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=− ⎪ ⎪⎪ ⎪ ⎪⎪−⎝⎭⎝⎭⎝⎭所以111211011A ⎛⎫ ⎪=− ⎪ ⎪−⎝⎭(2)111101101211221(2)2110110(2)1011E A λλλλλλλλλλλ−−−−−−−−=−+−=−+−=+−−−+−++−+101(2)211(2)(2)(1)20λλλλλλ−−=+−−=+−+− 所以A 的特征值为21,2−−,,下求特征向量: 当2λ=−时,解方程组(2)0E A x −−=,可得基础解系为1(0,1,1)T ξ=−;当1λ=−时,解方程组()0E A x −−=,可得基础解系为2(1,0,2)Tξ=−当2λ=时,解方程组(2)0E A x −=,可得基础解系为3(4,3,1)T ξ=令401310112P −⎛⎫ ⎪=− ⎪ ⎪⎝⎭,有1221P AP −⎛⎫ ⎪=Λ=− ⎪ ⎪−⎝⎭成立。

2007数二答案

2007数二答案
1
1??
c.
?0dy2
??arcsiny?
f(x,y)dx
d.
?0dy2
1
??arcsiny?
f(x,y)dx
(9)设向量组?1,?2,?3线形无关,则下列向量组线形相关的是:( )(a)
?1??2,?2??3,?3??1(b)?1??2,?2??3,?3??1
(c)?1?2?2,?2?2?3,?3?2?1(d)?1?2?2,?2?2?3,?3?2?1
(1)当x?
0()
a. 1??
b.ln
1x
c. 1
d.1?在区间???,??上的第一类间断点是x?( )
(2)函数f(x)?
(e?e)tanxx(e?e)
1x
a. 0 b. 1c. ?
?
2
d.
? 2
(3)如图.连续函数y?f(x)在区间??3,?2?,?2,3?上的图形分别是直径为1的上、下半圆周,在区间
??(a,b),使得f(?)?g(?). f(a)?g(a),f(b?)g(证明:存在b)
(22)(本题满分11分)
?x2.
?
设二元函数f(x,y)?计算二重积分
d
x?y?1.1?x?y?2.
??f(x,y)d?.其中d??(x,y)
x?y?2
?
(23)(本题满分11分)
?x1?x2?x3?0?
设线性方程组?x1?2x2?ax3?0
2007年考研数学二真题解析
一.选择题(本题共10小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后括号内)
(2)当x?
0(b)
a. 1??

2024考研新版答题卡数学

2024考研新版答题卡数学

2024考研新版答题卡数学2024年考研数学新版答题卡的变化以及应对策略随着2024年考研的临近,考生们对于数学这一科目的备考也进入了关键阶段。

今年,考研数学将启用新版答题卡,这对于广大考生来说,无疑是一个全新的挑战。

为了帮助大家更好地应对这一变化,本文将对2024年考研数学新版答题卡的变化以及应对策略进行详细介绍。

一、确定文章类型和主题本文为说明文,旨在向考生们介绍2024年考研数学新版答题卡的变化以及应对策略。

通过本文的阅读,考生们将了解新版答题卡的主要变化,学习如何调整备考策略以适应这一变化,最终在考研数学中取得好成绩。

二、制定提纲以下是本文的提纲:1、引言 a. 考研数学新版答题卡的变化 b. 应对新版答题卡的必要性2、新版答题卡的主要变化 a. 题目排版及分值分配 b. 作答区域的调整 c. 特殊题型的设计3、调整备考策略 a. 了解新版答题卡的特点 b. 重新规划答题时间c. 重视模拟练习4、实际应用及建议 a. 在模拟练习中检验策略效果 b. 根据个人情况调整策略 c. 保持良好心态,积极应对挑战三、展开论述1、引言随着2024年考研的临近,新版答题卡的启用给广大考生带来了新的挑战。

为了帮助大家更好地应对这一变化,本文将对2024年考研数学新版答题卡的变化以及应对策略进行详细介绍。

2、新版答题卡的主要变化新版答题卡在题目排版、分值分配、作答区域以及特殊题型设计等方面都发生了变化。

具体来说,题目排版更加合理,分值分配更加均衡,作答区域更加明确,特殊题型设计更加贴近实际。

这些变化不仅影响着考生的答题方式,也对考生的备考策略提出了新的要求。

3、调整备考策略面对新版答题卡的变化,考生需要调整备考策略以适应这一挑战。

首先,要了解新版答题卡的特点,做到知己知彼。

其次,要重新规划答题时间,根据分值分配合理安排作答顺序。

最后,要重视模拟练习,提高应对变化的能力。

只有通过不断地练习和调整,才能更好地适应新版答题卡的要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档