九年级利用频率估计概率练习题

合集下载

初三数学第一学期第25章:用频率估计概率_练习题和答案

初三数学第一学期第25章:用频率估计概率_练习题和答案

用频率估计概率一、填空题(每题3分,共30分) 1.“抛出的蓝球会下落”,这个事件是 事件.(填“确定”或“不确定”)2.有五张卡片,每张卡片上分别写有1,2,3,4,5,洗匀后从中任取一张,放回后再抽一张,两次抽到的数字和为 的概率最大,抽到和大于8的概率为 . 3.在体育测试中,2分钟跳160次为达标,小敏记录了她预测时2分钟跳的次数分别为145,155,140,162,164,则她在该次预测中达标的概率是 .4.两位同学进行投篮,甲同学投20次,投中15次;乙同学投15次,投中9次,命中率高的是 ,对某次投篮而言,二人同时投中的概率是 .5.某口袋中有红色、黄色、蓝色玻璃共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%.25%和40%,估计口袋中黄色玻璃球有 个.6.口袋里有红、绿、黄三种颜色的球,其中红球4个,绿球5个,任意摸出一个绿球的概率是31,则摸出一个黄球的概率是 . 7.一只不透明的布袋中有三种小球(除颜色以外没有任何区别),分别是2个红球,3个白球和5个黑球,每次只摸出一只小球,观察后均放回搅匀.在连续9次摸出的都是黑球的情况下,第10次摸出红球的概率是 .8.甲、乙两同学手中各有分别标注1,2,3三个数字的纸牌,甲制定了游戏规则:两人同时各出一张牌,当两纸牌上的数字之和为偶数时甲赢,奇数时乙赢.你认为此规则公平吗?并说明理由._________________________________.9.一个口袋中有12个白球和若干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的白球数与10的比值分别为:0.4,0.1,0.2,0.1,0.2.根据上述数据,小亮可估计口袋中大约有 个黑球. 10.如图,创新广场上铺设了一种新颖的石子图案,它由五个过同一点且半径不同的圆组成,其中阴影部分铺黑色石子,其余部分铺白色石子.小鹏在规定地点随意向图案内投掷小球,每球都能落在图案内,经过多次试验,发现落在一、三、五环(阴影)内的概率分别是0.04,0.2,0.36,如果最大圆的半径是1米,那么黑色石子区域的总面积约为 米2(精确到0.01米2). 二、选择题(每题3分,共24分) 11.下列模拟掷硬币的实验不正确的是 ( )A .用计算器随机地取数,取奇数相当于下面朝上,取偶数相当于硬币正面朝下B .袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上C .在没有大小王的扑克中随机地抽一张牌,抽到红色牌表示硬币正面朝上D .将1、2、3、4、5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面朝上12.把一个质地均匀的骰子掷两次,至少有一次骰子的点数为2的概率是 ( )A .21 B .51 C .361 D .3611 13.有6张背面相同的扑克牌,正面上的数字分别是4、5、6、7、8、9,若将这六张牌背面向上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是3的倍数的概率为( )(第10题)(第16题)A .32B .21C .41D .3114.如图,小明周末到公园走到十字路口处,记不清前面哪条路通往公园,那么他能一次选对路的概率是( )A .21B .31C .41D .015.如图,两个用来摇奖的转盘,其中说法正确的是( ) A .转盘(1)中蓝色区域的面积比转盘(2)中的蓝色区域面积要大,所以摇转盘(1)比摇转盘(2)时,蓝色区域得奖的可能性大B .两个转盘中指针指向蓝色区域的机会一样大C .转盘(1)中,指针指向红色区域的概率是31 D .在转盘(2)中只有红.黄.蓝三种颜色,指针指向每 种颜色的概率都是31 16.把一个沙包丢在如图所示的某个方格中(每个方格除颜色外完全一样),那么沙包落在黑色格中的概率是( )A .21 B .31 C .41 D .5117.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖.参加这个游戏的观众有三次翻牌的机会,某观众前两次翻牌均得若干奖金,已经翻过的牌不能再翻,那么这位获奖的概率是( )A .41 B .61 C .51 D .203 18.如图,高速公路上有A 、B 、C 三个出口,A 、B 之间路程为a 千米,B 、C 之间的路程为b 千米,决定在A 、C 之间的任意一处增设一个服务区,则此服务区设在A 、B 之间的概率是( )A .a bB .b aC .b a a +D .ba b+三、选择题(每题3分,共24分) 19.(7分)小明、小华用四张扑克牌玩游戏(方块2、黑桃4、红桃5、梅花5),他俩将扑克牌洗匀后,背面朝上放置在桌面上,小明先抽,小华后抽,抽出的牌不放回. (1)若小明恰好抽到黑桃4.①请绘制这种情况的树状图;②求小华抽的牌的牌面数字比4大的概率.(2)小明、小华约定:若小明抽到的牌的牌面数字比小华的大,则小明胜,反之则小明负;若牌面数字一样,则不分胜负,你认为这个游戏是否公平?说明你的理由. 20.(8分)某商场设立了一个可以自由转动的转盘,并做如下规定:顾客购物80元以上就获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据.小明家公园(第14题)(第14题)A B C (第18题)(1)计算并完成表格;(2)请估计,当n很大时,频率将会接近多少?(3)假如你去转动该盘一次,你获得洗衣粉的概率约是多少?(4)在该转盘中,表示“洗衣粉”区域的扇形的圆心角约是多少?(精确到1°)21.(7分)某篮球队在平时训练中,运动员甲的3分球命中率是70%,运动员乙的3分球命中率是50%. 在一场比赛中,甲投3分球4次,命中一次;乙投3分球4次,全部命中. 全场比赛即将结束,甲、乙两人所在球队还落后对方球队2分,但只有最后一次进攻机会了,若你是这个球队的教练,问:(1)最后一个3分球由甲、乙中谁来投,获胜的机会更大?(2)请简要说说你的理由.22.(8分)王强与李刚两位同学在学习“概率”时.做抛骰子(均匀正方体形状)实验,他们共抛了54次,出现向上点数的次数如下表:向上点数 1 2 3 4 5 6出现次数 6 9 5 8 16 10 (1)请计算出现向上点数为3的频率及出现向上点数为5的频率.(2)王强说:“根据实验,一次试验中出现向上点数为5的概率最大.”李刚说:“如果抛540次,那么出现向上点数为6的次数正好是100次.”请判断王强和李刚说法的对错.(3)如果王强与李刚各抛一枚骰子.求出现向上点数之和为3的倍数的概率.23.(8分)有一个“摆地摊”的赌主,他拿出2个白球和2个黑球,放在一个袋子里,让人摸球中奖,只要交1元钱,就可以从袋里摸2个球,如果摸到的2个球都是白球,可以得到4元的回报,请计算一下中奖的机会,如果全校一共2400人,有一半学生每人摸了一回,赌主将从学生身上骗走多少钱?24.(8分)六个面上分别标有1、1、2、3、3、5六个数字的均匀立方体的表面展开图如图6所示,掷这个立方体一次,记朝上一面的数为平面直角坐标系中某个点的横坐标,朝下一面的数为该点的纵坐标.按照这样的规定,每掷一次该小立方体,就得到平面内一个点的坐标.(1)掷这样的立方体可能得到的点有哪些?请把这些点在如下给定的平面直角坐标系中表示出来.(2)已知小明前两次掷得的两个点确定一条直线l,且这条直线经过点P(4,7),那么他第三次掷得的点也在直线l上的概率是多少?参考答案一、填空题 1.答案:确定解析:根据生活常识可判断 2.答案:6,3253.答案:25解析:解:小敏记录了他预测时2分钟跳的次数共5次,有2次达标,故他在该次测试中达标的概率是P=. 4.答案:甲,920解析:解:甲的命中率是,乙的是,所以甲的命中率高.如果甲投20次,乙投15次,那么投篮结果就有20×15=300种,其中同时投中的有15×9=135种,所以二人同时投中的概率是.5.答案:18解析:解:∵红球和蓝球的频率分别是35%和40%,∴估计口袋中黄色玻璃球的数目=72×(1-35%-40%)=72×25%=18个. 6.答案:257.答案:15解析:解:因为每次只摸出一只小球时,布袋中共有小球10个,其中红球2个, 所以第10次摸出红球的概率是=. 8.答案:不公平 9.答案:48解析: 求出5次共摸出黑球40个,设袋中有x 个黑球,则∴x=48.10.答案:1.88 二、选择题 11.答案:D解析: A 、用计算器随机地取数,取奇数相当于下面朝上,取偶数相当于硬币正面朝下,正确,不合题意;B 、袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上,正确,不合题意;C 、在没有大小王的扑克中随机地抽一张牌,抽到红色牌表示硬币正面朝上,正确,不合题意;D 、将1、2、3、4、5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面朝上,由于奇数与偶数个数不相同,故不能模拟掷硬币的实验,故符合题意. 故选:D . 12.答案D同时投掷两个骰子,可能出现的结果有如下36种:12 3 4 5 6 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) 5 (5,1) (5,2) (5,3) (5,4) (5,50 (5,6) 6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由此可得:满足至少有一个骰子的点数是2的结果有11种,所求概率为P= 1136故选:D13.答案D解析:解:∵有6张背面相同的扑克牌,正面上的数字分别是4、5、6、7、8、9,且是3的倍数的有6与9,∴从中任意抽取1张,那么这张牌正面上的数字是3的倍数的概率为:.故选D .14.答案:B解析: 解:∵有三个路口, ∴小明一次能走对路的概率是 . 故答案为:. 15.答案:B解析:由图可知(1)(2)中蓝色区域面积都是圆盘总面积的41. 故两个转盘中指针指向蓝色区域的机会一样大. 故选B.16.答案:B解析: 解:图上共有15个方格,黑色方格为5个, 在黑色方格上的概率是,即.故选B .17.答案:B解:因为20个商标有5个中奖,翻了两个都中奖,所以还剩18个,其中还有3个会中奖,所以这位观众第三次翻牌获奖的概率是.故选B . 18.答案:D 三、解答题 19.(1)①图略,②23;(2)这个游戏公平 20.(1)0.68 0.74 0.68 0.69 0.705 0.701;(2)0.7;(3)0.7;(4)25221.都可以.最后一个三分球由甲来投,因甲在平时训练中3分球的命中率较高;最后一个3分球由乙来投,因为在本场比赛中乙的命中率更高,投入最后一个球的可能性更大 22.(1)出现向上点数为3的频率为554,出现向上点数为5的频率为827;(2)都错;(3)1323.400元24.(1)(1,1)、(1,1)、(2,3)、(3,2)、(3,5)、(5,3);(2)通过描点和计算可以发现,经过(1,1),(2,3),(3,5)三点中的任意两点所确定的直线都经过点P (4,7),所以小明第三次掷得的点也在直线l 上的概率是46=23。

25.3 用频率估计概率 同步练习 2022-2023学年上学期河南省九年级数学期末试题选编

25.3 用频率估计概率 同步练习 2022-2023学年上学期河南省九年级数学期末试题选编

25.3 用频率估计概率同步练习一、单选题1.(2022秋·河南郑州·九年级统考期末)在一个不透明的口袋中,放置2个黄球,1个白球,1个红球和个蓝球,这些小球除颜色外其余均相同,课外兴趣小组每次摸出一个球记录下颜色后再放回,并且统计了蓝球出现的频率(如图所示),则的值最可能是()A.4B.5C.6D.72.(2022秋·河南郑州·九年级期末)下列说法正确的是()A.同时抛掷两枚图钉,可以采用列树状图的方式求针尖都朝上的概率B.调查一批西瓜是否甜,要采用普查的方式C.调查某节目的收视率时,可以找一些该节目的热心观众作为调查对象D.抛掷一枚硬币2次,可能正面朝上一次,反面朝上一次3.(2022秋·河南商丘·九年级期末)口袋里有若干个白球,又放进去6个黑球,这些球除颜色外其他均相同,小明每次摸出一个球并记下颜色后放回,多次摸球后发现摸到白球的频率稳定在,则口袋里的白球数很可能为()A.4B.6C.9D.154.(2022秋·河南洛阳·九年级统考期末)某人在做掷硬币试验时,抛掷m次,正面朝上有n次,则即正面朝上的频率是P=,下列说法中正确的是( )A.P一定等于B.抛掷次数逐渐增加,P稳定在附近C.多抛掷一次,P更接近D.硬币正面朝上的概率是5.(2022秋·河南许昌·九年级统考期末)木箱里装有仅颜色不同的9张红色和若干张蓝色卡片,随机从木箱里摸出一张卡片后记下颜色后再放回,经过多次的重复实验,发现摸到红色卡片的频率稳定在0.6附近,则估计木箱中蓝色卡片有()A.6张B.8张C.10张D.4张6.(2022秋·河南南阳·九年级统考期末)如图是智慧小组做“用频率估计概率”的试验时,绘出的某一结果出现的频率分布折线图,则符合这一结果的试验可能是( )A.抛掷一枚质地均匀的硬币,出现反面朝上B.投掷一个质地均匀正六面体的骰子,出现2点朝上C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是梅花D.从装有大小和质地都相同的1个红球和2个黑球的袋子中任取一球,取到的是红球7.(2022秋·河南三门峡·九年级统考期末)下列说法正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨B.“抛一枚硬币正面朝上的概率为”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在附近8.(2022秋·河南南阳·九年级统考期末)某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.从一副扑克牌中任意抽取一张,这张牌是“红色的”B.掷一枚质地均匀的硬币,落地时结果是“正面朝上”C.在装有个红球和个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”D.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是用一个长为,宽为的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线....2022秋九年级统考期末)在一个不透明的口袋里装着只有颜色不同的黑、白两种颜色8912二、填空题率稳定在附近,则袋子中红球约有2022秋16.(2022秋·河南南阳·九年级期末)在一个不透明的袋子里装有红球外都相同,小明通过多次试验发现,摸出红球的频率稳定在个.17.(2022秋·河南新乡·九年级统考期末)在一个不透明的布袋中装有其他都相同,小强每次摸出一个球记录下颜色后并放回,种子数发芽数依据上面的数据可以估计,这种植物种子在该实验条件下发芽的概率约是(2022后摸出一个小球记下颜色,再次搅匀多次试验发现摸到红球的频率是,则估计黄色小球的数目是个九年级期末)在一个不透明的布袋中,装有红、黑、白三种只有颜色不同的小黑、白色小球的数目相同.小明从布袋中随机摸出一球,三、解答题(精确到))请估计:当)试估算口袋中黑球有 柑橘损坏的频率(精确到 ,b柑橘完好的概率约为 (精确到参考答案:1.C【分析】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【详解】解:∵通过大量重复试验后发现,蓝球出现的频率稳定于0.6,∴,解得:(经检验是原方程的解).故选:C.【点睛】此题主要考查了利用频率估计概率,正确运用概率公式是解题关键.2.D【分析】根据频率估计概率的知识判断A,根据调查方式是否具有破坏性判断B,根据样本的可靠性判断C,根据概率的定义判断D选项,即可求解.【详解】解:A. 同时抛掷两枚图钉,可以采用频率估计概率的方法求针尖都朝上的概率,故该选项不正确,不符合题意;B. 调查一批西瓜是否甜,要采用抽查的方式,故该选项不正确,不符合题意;C. 调查某节目的收视率时,应该随机找一些观众作为调查对象,故该选项不正确,不符合题意;D. 抛掷一枚硬币2次,可能正面朝上一次,反面朝上一次,故该选项正确,符合题意;故选:D.【点睛】本题考查了频率估计概率,普查与全面调查,样本的可靠性,概率的定义,掌握以上知识是解题的关键.3.C【分析】根据白球的频率得到概率,然后利用概率公式列式计算即可.【详解】解:∵多次摸球后发现摸到白球的频率稳定在,∴估计摸到白球的概率为,设口袋里原有白球个,根据题意,得:,解得:,经检验是原方程的解,且符合题意.故选:C.【点睛】本题考查了利用频率估计概率,分式方程.解题的关键是了解白球的频率稳定在附近即为概率约为.=,稳定在左右.【点睛】本题考查了利用频率估计概率,解题的关键是掌握大量重复实验时,事件发生的频率在某个固定并且摆动的幅度越来越小,=0.6解得:经检验,则估计木箱中蓝色卡片有点朝上的概率为,不符合这一结果,不符合题意;、一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是梅花的概率为,不符合这一结果,不符个黑球的袋子中任取一球,取到的是红球的概率为,符合这一结果,符合题【点睛】此题主要考查了利用频率估计概率,正确求出各试验的概率是解题关键.的概率是>的概率==,故此选项不符合要求;个红球的袋子中任取一球,取到白球的概率是≈0.67的概率=≈0.17【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所根据几何概率公式小球落在不规则图案的概率为:实验次数足够多,即样本足够大时,其频率可作为事件综上有:,解得..中白球的个数约为(个详解:根据题意得:点睛:根据概率的求法,找准两点.【分析】随着试验次数的增多,变化趋势接近与理论上的概率.【详解】解:如果试验的次数增多,出现数字的频率的变化趋势是接近.故答案为:.【点睛】实验次数越多,出现某个数的变化趋势越接近于它所占总数的概率.【分析】设袋子中红球约有个,根据题意可知从袋子中随机摸出一个球的概率为,由此根据概率公通过多次重复试验发现摸出红球的频率稳定在附近,从袋子中随机摸出一个球的概率为,∴,解得,经检验,是原方程的解,∴袋子中红球约有【详解】解:根据题意,口袋中红球的个数约为(个)由题意得:=0.2x=13,x=13是原方程的解,则布袋中黑球的个数可能有【分析】根据多次试验发现摸到红球的频率是,则可以得出摸到红球的概率为,再利用红色小球有个,黄、白色小球的数目相同进而表示出黄球概率,得出答案即可.,则黄球和白球一共有多次试验发现摸到红球的频率是,则得出摸到红球的概率为,,解得:,则黄色小球的数目是故答案为20.∴=40%(一红一白)=)通过表格中的数据,可以发现摸到白球的频率越稳定在概率,最后利用概率的计算公式即可计算红球的个数;,解得:x≈2,经检验:x=2故答案为:(一红一白)=.【点睛】本题主要考查了利用频率估计概率、运用树状图法或列表法求概率以及概率公式的应用.估算出摸到白球的概率是解答本题的关键.)表格见解析,随机摸出两个球都是白球的概率为.)统计表中第三行的数据分别为:0.6则,解得,即口袋中白球个数为黑球的个数为(个)故答案为:,3;个球依次标记为,其中种,如下表所示:它们每一种结果出现的可能性相等种,即故所求的概率为.【点睛】本题考查了用频率估计概率、用列举法求概率,依据题意列出所有可能的结果是解题关键0.102。

用频率估计概率(习题)

用频率估计概率(习题)

3.2用频率估计概率分层训练提分要义【基础题】1.在一个不透明的袋子中,装有红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.若小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在0.15.和0.45,则该袋子中的白色球可能有()A.6个B.16个C.18个D.24个2.某农科所在相同条件下做某作物种子发芽率的试验,结果如表所示:有下面四个推断:①种子个数是700时,发芽种子的个数是624,所以种子发芽的概率是0.891;②随着种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性,可以估计种子发芽的概率约为0.9(精确到0.1);③种子个数最多的那次试验得到的发芽种子的频率一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽.其中正确的是()A.①②B.③④C.②③D.②④3.为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下.人数60 260 550 130 根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于170cm的概率是()A.0.32 B.0.55 C.0.68 D.0.874.对一批衬衣进行抽检,得到合格衬衣的频数表如下,若出售1200件衬衣,则其中次品的件数大约是()抽取件数50 100 150 200 500 800 1000 (件)合格频数48 98 144 193 489 784 981 A.12 B.24 C.1188 D.11765.为庆祝建党99周年,某校八年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:A、“北斗卫星”:B、“5G时代”;C、“智轨快运系统”;D、“东风快递”;E、“高铁”.统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“5G时代”的频率是()A.0.25 B.0.3 C.25 D.306.如图为某一试验结果的频率随试验次数变化趋势图,则下列试验中不符合该图的是()A.掷一枚普通正六面体骰子,出现点数不超过2B.掷一枚硬币,出现正面朝上C.从装有2个黑球、1个白球的不透明布袋中随机摸出一球为白球D.从分别标有数字l,2,3,4,5,6,7,8,9的九张卡片中,随机抽取一张卡片所标记的数字不小于77.老师组织学生做分组摸球实验.给每组准备了完全相同的实验材料,一个不透明的袋子,袋子中装有除颜色外都相同的3个黄球和若干个白球.先把袋子中的球搅匀后,从中随意摸出一个球,记下球的颜色再放回,即为一次摸球.统计各组实验的结果如下:一组二组三组四组五组六组七组八组九组十组摸球的次数100 100 100 100 100 100 100 100 100 100摸到白球的次数41 39 40 43 38 39 46 41 42 38请你估计袋子中白球的个数是()A.1个B.2个C.3个D.4个8.在一次心理健康教育活动中,张老师随机抽取了40名学生进行了心理健康测试,并将测试结果按“健康、亚健康、不健康”绘制成下列表格,其中测试结果为“健康”的频率是().类型健康亚健康不健康数据(人)32 7 1A.32 B.7 C.710D.459.某班学生做“用频率估计概率”的实验时,给出的某一结果出现的频率折线图,则符合这一结果的实验可能是()A.抛一枚硬币,出现正面朝上B.从标有1,2,3,4,5,6的六张卡片中任抽一张,出现偶数C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D.从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球10.如图,已知不透明的袋中装有红色、黄色、蓝色的乒乓球共120个,某学习小组做“用频率估计概率”的摸球实验(从中随机摸出一个球,记下颜色后放回),统计了“摸出球为红色”出现的频率,绘制了如图折线统计图,那么估计袋中红色球的数目为()A.20 B.30 C.40 D.6011.从淄博汽车站到银泰城有甲,乙,丙三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从淄博汽车站到银泰城的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:线路/公交车用时的30≤t≤35 35≤t≤40 40≤t≤45 45≤t≤50 合计频数/公交车用时甲59 151 166 124 500乙50 50 122 278 500丙45 265 167 23 500早高峰期间,乘坐线路上的公交车,从淄博汽车站到银泰城“用时不超过45分钟”的可能性最大.()A.甲B.乙C.丙D.无法确定12.某位篮球爱好者进行了三轮投篮试验,结果如下表:轮数投球数命中数命中率第一轮10 8 0.8则他的投篮命中率为()A.45B.23C.34D.不能确定13.为了解某市九年级男生的身高情况,随机抽取了该市100名九年级男生,他们的身高x (cm)统计如下:根据以上结果,全市约有3万名男生,估计全市男生的身高不高于180cm 的人数是()A.28500 B.17100 C.10800 D.1500【中档题】14.一个不透明的袋子中装有4个白球和若干个黄球,它们除颜色外完全相同,从袋子中随机摸出一球,再放回,不断重复,共摸球30次,其中10次摸到白球,则估计袋子中大约有黄球______个.15.某数学小组做抛掷一枚质地不均匀纪念币的实验,整理同学们获得的实验数据,如表.则抛掷该纪念币正面朝上的概率约为_________.(精确到0.01)16.对一批口罩进行抽检,统计合格口罩的只数,得到合格口罩的频率如下:估计从该批次口罩中任抽一只口罩是合格品的概率为_____.17.在一个不透明的袋中装有除颜色外其余均相同的n个小球,其中有6个黑球,从袋中随机摸出一球,记下其颜色,称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球,以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:根据列表,可以估计出n的值是____.【综合题】18.“网红”长沙入选2021年“五一”假期热门旅游城市.本市某景点为吸引游客,设置了一种游戏,其规则如下:凡参与游戏的游客从一个装有12个红球和若干个白球(每个球除颜色外,其他都相同)的不透明纸箱中,随机摸出一个球,摸到红球就可免费得到一个景点吉祥物.据统计参与这种游戏的游客共有60000人,景点一共为参与该游戏的游客免费发放了景点吉祥物15000个.(1)求参与该游戏可免费得到景点吉祥物的频率;(2)请你估计纸箱中白球的数量接近多少?19.在不透明的口袋中装有1个白色、1个红色和若干个黄色的乒乓球(除颜外其余都相同),小明为了弄清黄色乒乓球的个数,进行了摸球的实验(每次只摸一个,记录颜色后放回,搅匀后重复上述步骤),下表是实验的部分数据:(1)请你估计:摸出一个球恰好是白球的概率大约是(精确到0.01),黄球有个;(2)如果从上述口袋中,同时摸出2个球,求结果是一红一黄的概率.20.一个不透明的箱子里装有3个红色小球和若干个白色小球,每个小球除颜色外其他完全相同,每次把箱子里的小球摇匀后随机摸出一个小球,记下颜色后再放回箱子里,通过大量重复实验后,发现摸到红色小球的频率稳定于0.75左右.(1)请你估计箱子里白色小球的个数;(2)现从该箱子里摸出1个小球,记下颜色后放回箱子里,摇匀后,再摸出1个小球,求两次摸出的小球颜色恰好不同的概率(用画树状图或列表的方法).21.新冠疫情期间,某校有“录播”和“直播”两种教学方式供学生自主选择其中一种进行居家线上学习.为了了解该校学生线上学习参与度情况,从选择这两种教学方式的学生中,分别随机抽取50名进行调查,调查结果如表(数据分组包含左端值不包含右端值).0~20% 20%~50% 50%~80% 80%~100%录播 5 18 14 13 直播2152112(1)从选择教学方式为“录播”的学生中任意抽取1名学生,试估计该生的参与度不低于50%的概率;(2)若该校共有1200名学生,选择“录播”和“直播”的人数之比为3:5,试估计选择“录播”或“直播”参与度均在20%以下的共有多少人?22.某超市经营某品牌的一种乳制品,根据往年销售经验,每天销售量与当天最高气温t (单位:C ︒)有关.为了制定六月份的订购计划,统计了前三年六月份每天的最高气温、销售量与最高气温的关系得到下表: 最高气温t(单位:C ︒)天数每天销售量(瓶)20t < 15 240 2025t ≤< 30 300 25t ≥45500(1)估计超市今年六月份某一天这种乳制品的销售量不超过300瓶的概率; (2)估计超市这种乳制品今年六月份平均每天的销售量;(3)设进货成本为每瓶4元,售价为每瓶6元,结合前三年六月份的销售数据,估计超市今年六月份经营这种乳制品的总利润.23.对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频率表如下:(1)计算表中a,b的值并估计任抽一件衬衣是合格品的概率.(2)估计出售2000件衬衣,其中次品大约有几件.24.一只不透明袋子中装有1个白球和若干个红球,这些球除颜色外都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出1个球,记下颜色后放回、搅匀,不断重复这个过程,获得数据如下:(1)该学习小组发现,随着摸球次数的增多,摸到白球的频率在一个常数附近摆动,请直接写出这个常数(精确到0.01),由此估出红球有几个?(2)在这次摸球试验中,从袋中随机摸出1个球,记下颜色后放回,再从中随机摸出1个球,利用画树状图或列表的方法表示所有可能出现的结果,并求两次摸到的球恰好1是个白球,1个是红球的概率.。

用频率估计概率 同步练习 2022—2023学年北师大版数学九年级上册【有答案】

用频率估计概率 同步练习 2022—2023学年北师大版数学九年级上册【有答案】

北师大版九上 3.2 用频率估计概率一、选择题(共9小题)1. 用频率估计概率,可以发现,抛掷硬币,“正面朝上”的概率为0.5,是指( )A. 连续掷2次,结果一定是“正面朝上”和“反面朝上”各1次B. 连续抛掷100次,结果一定是“正面朝上”和“反面朝上”各50次C. 抛掷2n次硬币,恰好有n次“正面朝上”D. 抛掷n次,当n越来越大时,正面朝上的频率会越来越趋近于0.52. 将A,B两位篮球运动员在一段时间内的投篮情况记录如下,下面有三个推断:①当投篮30次时,两位运动员都投中23次,所以他们投中的概率都是0.767;②随着投篮次数的增加,A运动员投中频率总在0.750附近摆动,显示出一定的稳定性,可以估计A运动员投中的概率是0.750;③当投篮达到200次时,B运动员投中次数一定为160次.其中合理的是( )A. ①B. ②C. ①③D. ②③3. 在大量重复试验中,关于随机事件发生的频率和概率,下列说法正确的是( )A. 频率就是概率B. 频率与试验次数无关C. 在相同的条件下进行试验,如果试验次数相同,则各实验小组所得频率的值也会相同D. 随着试验次数的增加,频率一般会逐步稳定在概率数值附近4. 如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果.下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是( )A. ①B. ②C. ①②D. ①③5. 气象台预报“本市明天降水概率是80%”,对此消息,下面几种说法正确的是( )A. 本市明天将有80%的地区降水B. 明天降水的可能性比较大C. 本市明天降有80%的时间降水D. 明天肯定下雨6. 为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼,如果在这200条鱼中有5条鱼是有记号的,则鱼塘中鱼的可估计为( )A. 3000条B. 2200条C. 1200条D. 600条7. 在一个不透明的盒子中装有m个除颜色外完全相同的球,这m个球中只有3个红球,从,那么m的值是( )中随机摸出一个球,恰好是红球的概率为15A. 12B. 15C. 18D. 218. 一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球()A. 28个B. 30个C. 36个D. 42个9. 在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同,小明通过多次摸球试验后发现,其中摸到白色球的频率稳定在85%左右,则口袋中红色球可能有( )A. 34个B. 30个C. 10个D. 6个二、填空题(共8小题)10. 在一个不透明的盒子中装有 n 个小球,它们只有颜色上的区别,其中有 2 个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球实验后发现,摸到红球的频率稳定于 0.2,那么可以推算出 n 大约是 .11. 在一个不透明的盒子中装有 n 个球,它们除了颜色之外其他都没有区别,其中含有 3 个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在 0.03,那么可以推算出 n 的值大约是 .12. 在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是 .13. 在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”, 在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是 .14. 大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的苏康码(绿码)示意图,用黑白打印机打印于边长为 2 cm 的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在 0.6 左右,据此可以估计黑色部分的总面积约为 cm 2.15. 在一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小明在袋中放入 3 个黑球(每个球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在 0.85 左右,则袋中红球约有 个.16. 一个不透明的袋子中装有若干个除颜色外都相同的小球,小明每次从袋子中随机摸出一个球,记录下颜色,然后放回,重复这样的试验 3000 次,记录结果如下:实验次数n 100200300500800100020003000摸到红球次数m 6512417830248162012401845摸到红球频率m n0.650.620.5930.6040.6010.6200.6200.615 估计从袋子中随机摸出一个球恰好是红球的概率约为 .(精确到 0.1)17. 小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球3000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是 个.三、解答题(共5小题)18. 一只不透明的袋中装有一定数量的红球和黄球(它们除颜色外,其余完全相同),小明设计了一个摸球游戏,他摸了10次,每次摸出1个球,记录其颜色后把球放回袋中,再摸下一次,每次摸球前都把球搅匀.结果有7次摸到黄球,3次摸到红球,于是小明说:“袋中的红球一定比黄球少.”你认为他的结论合理吗?说明你的理由.19. 全班同学一起做摸球试验,不透明的布袋中共有除颜色外其余均相同的红球和黄球共5个,每次摸出一球,记下颜色后放回摇匀.一共摸了200次,其中123次是红球,77次是黄球,请你求出摸到红球的频率;布袋中有红球和黄球各多少个?20. 小红和小明在操场上做游戏,他们先在地上画了半径分别为2m和3m的同心圆,如图①,蒙上眼睛在一定距离外向圈内掷石子,若落在阴影内,则小红胜,若落在小圆内,则小明胜.(1)你认为这个游戏公平吗?为什么?(2)游戏结束,小明边走边想:“能否用频率估计概率的方法,来估算不规则图形的面积呢?”他发现地上有一个不规则的封闭图形ABC,如图②.为了知道它的面积,小明在封闭图形内画了一个半径为1m的圆,在不远处向圈内掷石子,且记录如下:掷石子次数50150300石子落在圆内的次数m114393石子落在阴影内的次数n1985186你能帮小明估计封闭图形的面积吗?试试看.21. 小明从一本书中随机抽取了6页,在累计1页至6页中的“的”字和“了”字出现的次数后,分别求出了它们出现的频率,并绘制了如下统计图(如图中页数3对应的频率是三页中累计的结果).(1)随着统计页数的增加,这两个字出现的频率是如何变化的?(2)你认为该书中的“的”和“了”两个字出现的频率哪个高?22. 某班“红领巾义卖”活动中设立了一个可以自由转动的转盘,如图.规定:顾客购物20元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的统计数据.转动转盘的次数n1002003004005001000落在"书画作品"区域的次数m60122180298a6040.60.610.6b0.590.604落在"书画作品"区域的频率mn(1)a=,b=;(2)估计当n很大时,落在“书画作品”区域的频率为,转动该转盘一次,获得“书画作品”的概率约是;(结果全部精确到0.1)(3)如果要使获得“手工作品”的可能性不小于获得“书画作品”的可能性,则表示“手工作品"区域的扇形的圆心角的度数至少还要增加多少度?。

3.2+用频率估计概率同步练习2024-2025学年北师大版数学九年级上册

3.2+用频率估计概率同步练习2024-2025学年北师大版数学九年级上册

3.2用频率估计概率一、选择题。

1. 一个口袋中有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下颜色后再放回口袋中.不断重复这一过程,共摸了100次球,发现有69次摸到红球.请你估计这个口袋中红球的数量是()A.5 B.6 C.7 D.82. 在利用正六面体骰子进行频率估计概率的实验中,小闽同学统计了某一结果朝上的频率,绘出的统计图如图所示,则符合图中情况的可能是()A.朝上的点数是6的概率B.朝上的点数是偶数的概率C.朝上的点数是小于4的概率 D.朝上的点数是3的倍数的概率3. 某同学为了估算瓶子中有多少颗豆子,首先从瓶中取出60颗并做上记号,接着将所有做好记号的豆子放回瓶中充分摇匀.当再从瓶中取出100颗豆子时,发现其中有12颗豆子标有记号,根据实验估计该瓶装有豆子大约()A.800颗B.500颗C.300颗D.150颗4. 有一个只放满形状大小都一样的白色小球的不透明盒子,小刚想知道盒内有多少白球,于是小刚向这个盒中放了5个黑球(黑球的形状大小与白球一样),摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中80次摸到黑球,则盒中白色小球的个数可能是()A.16个B.20个C.24个D.25个5.在一个不透明的布袋中,装有除颜色外其他完全相同的红色、黄色的玻璃球共40个,小李通过多次摸球试验后发现其中摸到红色的频率稳定在45%,则口袋中黄色球的个数很可能是()A.18B.20C.22D.246.某淘宝商家为“双11大促”提前进行了预热抽奖,通过后台的数据显示转盘指针落在“10元优惠券”区域的统计数据如下表.若随机转动转盘一次,得到“10元优惠券”的概率为(精确到0.01)()转动转盘的次数200600100016002000落在“10元优惠券”区域的次数64186300472602落在“10元优惠券”区域的频率0.3200.3100.3000.2950.301A.0.32B.0.31C.0.30D.0.297.一个不透明的口袋里装有除颜色外其余都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球个数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为( )A.60个B.50个C.40个D.30个8.做抛掷同一枚啤酒瓶盖的重复实验,经过统计得“凹面朝上”的频率为0.44,则可以估计抛掷这枚啤酒盖出现“凹面朝上”的概率为()A.22% B.44% C.50% D.56%9.在一个不透明的口袋中,放置3个黄球,1个红球和n个蓝球,这些小球除颜色外其余均相同,课外兴趣小组每次摸出一个球记录下颜色后再放回,并且统计了蓝球出现的频率(如图所示),则n的值最可能是()A.4 B.5 C.6 D.7 10. 在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次,200次,其中实验相对科学的是()A.甲组B.乙组C.丙组D.丁组11. 一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A. B. C. D.12. 甲、乙两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是()A.掷一枚质地均匀的正方体骰子,出现点的概率B.从一个装有个白球和个红球(每个球除颜色外都相同)的袋子中任取一个球,取到红球的概率C.抛一枚质地均匀的硬币,出现正面的概率D.任意写一个正整数,它的绝对值大于的概率二、填空题。

【初中数学】人教版九年级上册25.3 用频率估计概率(练习题)

【初中数学】人教版九年级上册25.3 用频率估计概率(练习题)

人教版九年级上册25.3 用频率估计概率(153) 1.某小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大、小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一个质地均匀的正六面体骰子,向上一面的点数是42.小颖和小红两位同学在学习“概率”时,做掷骰子(质地均匀的正方体)试验.(1)她们在一次试验中共掷骰子60次,试验的结果如下:①填空:此次试验中“5点朝上”的频率为;②小红说:“根据试验,出现5点的概率最大.”她的说法正确吗?为什么?(2)小颖和小红在试验中如果各掷一枚骰子,那么两枚骰子朝上的点数之和为多少时的概率最大?试用列表法或画树状图的方法加以说明,并求出其概率.3.为了了解初中生毕业后就读普通高中或就读中等职业技术学校的意向,某校对八、九年级部分学生进行了一次调查,调查结果有三种情况:A.只愿意就读普通高中;B.只愿意就读中等职业技术学校;C.就读普通高中或中等职业技术学校都愿意.学校教务处将调查数据进行了整理,并绘制了如图所示的尚不完整的统计图,请根据相关信息,解答下列问题:(1)本次活动共调查了多少名学生?(2)补全图①,并求出图②中B区域的圆心角的度数;(3)若该校八、九年级的学生共有2800名,请估计该校八、九年级学生中只愿意就读中等职业技术学校的人数.4.某种油菜籽在相同条件下发芽试验的结果如下表:那么估计这种油菜籽发芽的概率是(结果精确到0.01).5.为了估计暗箱里白球的数量(箱内只有白球),将5个红球放进去,随机摸出一个球,记下颜色后放回,搅匀后再摸出一个球记下颜色,多次重复后发现红球出现的频率约为0.2,那么可以估计暗箱里白球的数量大约为个.6.儿童节期间,某公园游乐场举行一场活动.有一种游戏规则是在一个装有8个红球和若干个白球(每个球除颜色不同外,其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个玩具.已知参加这种游戏的儿童有40000人,公园游乐场发放玩具8000个.(1)求参加此次活动得到玩具的频率;(2)请你估计袋中白球的数量接近多少.7.为了估计水塘中鱼的条数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放回鱼塘,再从鱼塘中打捞200条鱼.若在这200条鱼中有5条鱼是有记号的,则鱼塘中的鱼可估计为()A.3000条B.2200条C.1200条D.600条8.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率9.某校篮球队进行篮球投篮训练,下表是某队员投篮的统计结果:根据上表可知该队员一次投篮命中的概率大约是()A.0.9B.0.8C.0.7D.0.7210.在一个不透明的盒子中装有a个除颜色不同外其余完全相同的球,这a个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约为()A.12B.15C.18D.2111.一个不透明的口袋里装有除颜色不同外其余都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为()A.60个B.50个C.40个D.30个参考答案1.【答案】:D【解析】:A项中,小明随机出的是“剪刀”的概率是13≈0.33.B项中,从中任抽一张牌的花色是红桃的概率是1352=14=0.25.C项中,从中任取一球是黄球的概率是23≈0.67.D项中,向上一面的点数是4的概率是16≈0.17.而折线统计图中试验的频率稳定在0.17左右,与D项中概率接近.故选 D2(1)【答案】①∵试验中“5点朝上”的次数为20,总次数为60,∴此次试验中“5点朝上”的频率为2060=13.②小红的说法不正确.理由:∵利用频率估计概率的试验次数必须比较多,重复试验,频率才慢慢接近概率.而她们的试验次数太少,没有代表性,∴小红的说法不正确(2)【答案】列表如下:由表格可以看出,共有36种等可能的结果,其中点数之和为7的结果数最多,有6种,∴两枚骰子朝上的点数之和为7时的概率最大,最大概率为636=163×100%=10%,故本次活动共调查了80÷(1)【答案】C部分所占的百分比为3636010%=800(名)学生(2)【答案】只愿意就读中等职业技术学校的学生人数为800−480−80=240,×360∘=108∘.补全图形如下图所示.图②中B区域的圆心角的度数是240800(3)【答案】估计该校八、九年级学生中只愿意就读中等职业技术学校的人×2800=840数为2408004.【答案】:0.95【解析】:观察表格得到这种油菜籽发芽的频率稳定在0.95附近,则估计这种油菜籽发芽的概率是0.955.【答案】:20=0.2,解得n=20.经检【解析】:设暗箱里白球的数量是n,则根据题意,得5n+5验,n=20是原方程的根,且符合题意6=0.2.(1)【答案】解:参加此次活动得到玩具的频率为800040000(2)【答案】设袋中共有m个球,,则P(摸到一个球是红球)=8m=0.2,解得m=40,∴8m经检验,m=40是原方程的根,且符合题意.∴袋中白球的数量接近40−8=32(个).7.【答案】:C【解析】:∵5÷200=0.025,∴30÷0.025=1200.故选 C8.【答案】:D【解析】:∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,∴A,B,C错误,D正确.故选D.9.【答案】:D【解析】:试验次数越大,频率越稳定,越接近事件发生的概率,故该队员一次投篮命中的概率大约是0.7210.【答案】:B【解析】:因为大量重复摸球试验后,摸到红球的频率逐渐稳定在20%,说明摸到红球的概率为20%,所以球的总数为3÷20%=15.故选 B11.【答案】:C【解析】:因为小亮共摸了1000次,其中有200次摸到白球,则有800次摸到红球,所以白球与红球的数量之比为1∶4.因为白球有10个,所以红球有4×10=40(个).。

人教版九年级数学上册第二十五章《用频率估计概率》课时练习题(含答案)

人教版九年级数学上册第二十五章《用频率估计概率》课时练习题(含答案)

人教版九年级数学上册第二十五章《25.3用频率估计概率》课时练习题(含答案)一、单选题1.有一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A.6 B.16 C.18 D.242.同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是()A.14B.13C.12D.233.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,再放回,不断重复上述过程.小明共摸了100次,其中80次摸到白球.根据上述数据,小明可估计口袋中的白球大约有()A.18个B.15个C.12个D.10个4.在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有()A.5个B.15个C.20个D.35个5.如图,电路连接完好,且各元件工作正常.随机闭合开关1S,2S,3S中的两个,能让两个小灯泡同时发光的概率为()A.16B.12C.23D.136.王师傅对某批零件的质量进行了随机抽查,并将抽查结果绘制成如下表格,请你根据表格估计,若从该批零件中任取一个,为合格零件的概率为()随机抽取的零件个数n20 50 100 500 1000合格的零件个数m18 46 91 450 900零件的合格率mn0.9 0.92 0.91 0.9 0.9A.0.9 B.0.8 C.0.5 D.0.17.某班学生做“用频率估计概率”的实验时,给出的某一结果出现如图所示的统计图,则符合这一结果的实验可能是()A.抛一枚硬币,出现正面朝上B.从标有1,2,3,4,5,6的六张卡片中任抽一张,出现偶数C.从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的点数之和是78.数学社团的同学做了估算π的实验.方法如下:第一步:请全校同学随意写出两个实数x、y(x、y可以相等),且它们满足:0<x<1,0<y<1;第二步:统计收集上来的有效数据,设“以x,y,1为三条边长能构成锐角三角形”为事件A;第三步:计算事件A发生的概率,及收集的本校有效数据中事件A出现的频率;第四步:估算出π的值.为了计算事件A的概率,同学们通过查阅资料得到以下两条信息:①如果一次试验中,结果落在区域D中每一个点都是等可能的,用A表示“试验结果落在区域D中一个小区域M中”这个事件,那么事件A发生的概率为P(A)=MD;②若x,y,1三个数据能构成锐角三角形,则需满足x2+y2>1.根据上述材料,社团的同学们画出图,若共搜集上来的m份数据中能和“1”成锐角三角形的数据有n份,则可以估计π的值为()A.42n mm+B.2nmC.4nmD.44m nm-二、填空题9.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有____个.10.如图,正方形二维码的边长为2cm,为了测算图中黑色部分的面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.7左右,据此可估计黑色部分的面积约为__cm2.11.现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回..,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m,n,则点P(m,n)在第二象限的概率为__________.12.社团课上,同学们进行了“摸球游戏”:在一个不透明的盒子里装有几十个除颜色不同外其余均相同的黑、白两种球,将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程.整理数据后,制作了“摸出黑球的频率”与“摸球的总次数”的关系图象如图所示,经分析可以推断盒子里个数比较多的是___________(填“黑球”或“白球”).三、解答题(共0分)13.某种油菜籽在相同条件下的发芽试验的结果如下:试验的粒数n20 80 100 200 400 800 1000 1500 发芽的粒数m14 54 67 132 264 532 670 1000发芽的频率mn0.7 0.675 0.67 0.66 0.66 0.665 a0.667(1)填空:上表中a=_________;(2)根据上表,请估计,当n很大时,发芽的频率将会接近多少?(结果保留两位小数)(3)根据上表,这种油菜籽发芽的概率的估计值是多少?(结果保留两位小数)14.一工厂生产某种型号的节能灯的质量抽检结果如表:抽检个数50 100 200 300 400 500次品个数 1 3 5 6 7 9(1)根据表格中的数据求任抽1件是次品的概率;(2)厂家承诺:顾客买到次品包换.如果卖出这批节能灯800个,那么要准备多少个兑换的节能灯?15.在一个不透明的口袋里装有若干个相同的红球,为了估计袋中红球的数量,八(1)班学生在数学实验室分组做摸球实验:每组先将10个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是这次活动统计汇总各小组数据后获得的全班数据统计表:a________;b=________;(1)按表格数据,表中的=(2)请估计:当次数s很大时,摸到白球的频率将会接近________(精确到0.1);(3)试估算:这一个不透明的口袋中红球有多少个?16.对一批衬衣进行抽检,统计合格衬衣的件数,获得如下频数表.(1)完成上表.(2)估计任意抽一件衬衣是合格品的概率.(3)估计出售1200件衬衣,其中次品大约有几件.17.在一个不透明的盒子里装有除颜色外完全相同的红、白、黑三种颜色的球.其中红球3个,白球5个,黑球若干个,若从中任意摸出一个白球的概率是13.(1)求盒子中球的个数;(2)求任意摸出一个球是黑球的概率;(3)能否通过只改变盒子中白球的数量,使得任意摸出一个球是红球的概率为14.若能,请写出如何调整白球数量;若不能,请说明理由.18.据《德阳县志》记载,德阳钟鼓楼始建于明朝成化年间,明末因兵灾焚毁,清乾隆五十二年重建.在没有高层建筑的时代,德阳钟鼓楼一直流传着“半截还在云里头”的故事.1971年,因破四旧再次遭废.现在的钟鼓楼是老钟鼓楼的仿制品,于2005年12月27日破土动工,2007年元旦落成,坐落东山之巅,百尺高楼金碧辉煌,流光溢彩;万丈青壁之间,银光闪烁,蔚为壮观,已经成为人们休闲的打卡胜地.学校数学兴趣小组在开展“数学与传承”探究活动中,进行了“钟鼓楼知识知多少”专题调查活动,将调查问题设置为“非常了解”、“比较了解”、“基本了解”、“不太了解”四类.他们随机抽取部分市民进行问卷调查,并将结果绘制成了如下两幅统计图:(1)设本次问卷调查共抽取了m名市民,图2中“不太了解”所对应扇形的圆心角是n度,分别写出m,n的值.(2)根据以上调查结果,在12000名市民中,估计“非常了解”的人数有多少?(3)为进一步跟踪调查市民对钟鼓楼知识掌握的具体情况,兴趣组准备从附近的3名男士和2名女士中随机抽取2人进行调查,请用列举法(树状图或列表)求恰好抽到一男一女的概率。

人教版九年级数学上册《25-3 用频率估计概率》作业同步练习题及参考答案

人教版九年级数学上册《25-3 用频率估计概率》作业同步练习题及参考答案

25.3 用频率估计概率1.下面说法合理的是( )A.小明在10 次抛图钉的试验中发现3 次钉尖朝上,由此他说钉尖朝上的概率是310B.抛掷一枚均匀的正方体骰子,“掷得6”1的概率是的意思是每66 次就有1 次掷得6C.某彩票的中奖机会是2%,则买100 张彩票一定会有2 张中奖D.在一次课堂进行的试验中,甲、乙两组同学估计硬币落地后,正面朝上的概率分别为0.48 和0.512.甲、乙两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是( )A.掷一枚均匀的正方体的骰子,出现1 点的概率B.从一个装有2 个白球和1 个红球的袋子中任取一球,这3 个球除颜色外无其他差异,取到红球的概率C.抛一枚均匀硬币,出现正面的概率D.任意写一个整数,它能被2 整除的概率3.在一次质检抽测中,随机抽取某摊位20 袋食盐,测得各袋的质量分别为(单位:g):492 496 494 495 498 497 501 502 504 496497 503 506 508 507 492 496 500 501 499根据以上抽测结果,任买一袋该摊位的食盐,质量在497.5 ~501.5 g 之间的概率为( )A.15 B.14C.310D.7204.一个口袋中有红球、白球共10 个,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中.不断重复这一过程,共摸了100 次球,发现有71 次摸到红球.请你估计口袋中红球的数量为个.5.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30 条鱼做上标记,然后放归鱼塘,经过一段时间, 等有标记的鱼完全混合于鱼群中,再打捞200 条鱼,发现其中带标记的鱼有5 条,则鱼塘中估计有条鱼.6.在“抛掷质地均匀的正六面体”的试验中,已知正六面体的六个面上分别标有数字1,2,3,4,5,6,随着试验次数的增多,出现数字“1”的频率的变化趋势是接近.7.为了解学生的体能情况,随机选取了1 000 名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.(1)估计学生同时喜欢短跑和跳绳的概率.(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率.(3)如果某同学喜欢长跑,那么该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大?8.在一次大规模的统计中发现英文文献中字母E 的使用频率在0.105 附近,而字母J 的使用频率大约在0.001 附近,如果这次统计是可信的,那么下列说法可信吗?试说明理由.(1)在英文文献中字母E 出现的频率在10.5%左右,字母J 出现的频率在0.1%左右;(2)如果再去统计一篇约含200 个字母的英文文章时,那么字母E 出现的频率一定非常接近10.5%.9.一个袋子中装有12 个完全相同的小球,每个球上分别写有数字1~12.现在用摸球试验来模拟6 人中有2 人生肖相同的概率,在此过程中,下面有几种不同的观点,其中正确的是( )A.摸出的球一定不能放回B.摸出的球必须要放回C.由于袋子中的球多于6 个,因此摸出的球是否放回无所谓D.不能用摸球试验来模拟此事件10.一个不透明的袋中装有除颜色外均相同的8 个黑球、4 个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中.通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中有红球个.11.儿童节期间,某公园游戏场举行一场活动.有一种游戏规则是:在一个装有8 个红球和若干个白球(每个球除颜色外,其他都相同)的袋中,随机摸1 个球,摸到1 个红球就得到一个玩具.已知参加这种游戏的儿童有40000 人,公园游戏场发放玩具8000 个.(1)求参加此次活动得到玩具的频率. (2)请你估计袋中白球的数量接近多少?★12.小颖和小红两位同学在学习“概率”时,做抛掷骰子(质地均匀的正方体)试验,她们共做了60 次试验,试验的结果如下:朝上的点数123456出现的次数796820 10(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据试验,一次试验中出现5 点朝上的概率最大”;小红说:“如果抛掷600 次,那么出现6 点朝上的次数正好是100 次.”小颖和小红的说法正确吗?为什么?(3)小颖和小红各抛掷一枚骰子,用列表的方法求出两枚骰子朝上的点数之和为3 的倍数的概率.★13. 小红和小明在操场做游戏,他们先在地上画了半径分别为2 m 和3 m 的同心圆(如图),蒙上眼在一定距离外向大圆内掷小石子,掷中阴影部分小红胜,否则小明胜,未掷入大圆内不算,你来当裁判.(1)你认为游戏公平吗?为什么?(2)游戏结束,小明边走边想,“反过来,能否用频率估计概率的方法,来估算非规则图形的面积呢?”请你设计方案,解决这一问题.(要求画出图形,说明设计步骤、原理,写出公式)20参考答案夯基达标1.D2.B3.B 在随机抽取的 20 袋食盐中,质量在 497.5 ~501.5 g 之间的有 5 袋,由此可以估计任买一袋该摊位的食盐,质量在 497.5 ~501.5 g 之间的概率为 5= 1.44.75.1 2006.1 67.解 (1)同时喜欢短跑和跳绳的概率为 3001 000= 3 .10(2)同时喜欢三个项目的概率为200+150 = 7.1 000 20(3) 同时喜欢短跑的概率为150= 3,同时喜欢跳绳的概率为200+150+200= 11,同时喜欢跳远的概率为200 1 000= 1. 51 000201 0002011 > 1 > 3 , 20520∴该同学同时喜欢跳绳的可能性大.8.分析 根据试验频率近似地等于概率的前提条件进行判断.解 (1)正确.理由:本次大规模的统计是可信的,故试验频率近似地等于概率.(2)不正确.理由:含 200 个字母的英文文章中的字母 E 的使用频率与英文文献中字母 E 的使用频率不是等价的,只能用试验的方法去求得. 培优促能 9.B10.8 设袋中有红球 x 个,则袋中三种颜色的球共计(x+8+4)个, 根据题意可得� =0.4,解这个方程得 x=8,�+8+4经检验,x=8 是方程的解,且符合题意.11. 解 (1)参加此项游戏得到玩具的频率�= 8 000 ,即� = 1.�40 000�5∵(2)设袋中共有x 个球,则摸到红球的概率P(红球)=8.从而8 = 1,解得x=40,�� 5故白球接近40-8=32(个).12.解(1)“3点朝上”出现的频率是6 = 1 ;“5点朝上”出现的频率是20 = 1.60 10 60 3(2)小颖的说法是错误的.这是因为“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大.只有当试验的次数足够多时,该事件发生的频率才稳定在事件发生的概率附近.小红的说法也是错误的,因为事件发生具有随机性,故“6 点朝上”的次数不一定是100 次.(3)列表如下:P(点数之和为3 的倍数)=12 = 1.36 3创新应用13.解(1)不公平.因为P =9π-4π = 5,阴影9π9即小红胜的概率为5,小明胜的概率为4,9 9故游戏对双方不公平.(2)能利用频率估计概率的试验方法估算非规则图形的面积.设计方案:①设计一个可测量面积的规则图形将非规则图形围起来(如正方形,其面积为S),如图;②往图形中掷点(如蒙上眼往图形中随意掷石子,掷在图外不做记录);③当掷点次数充分大(如 1 万次),记录并统计结果,设掷入正方形内n 次,其中m 次掷入非规则图形内;④设非规则图形的面积为S1,用频率估计概率,即掷入非规则图形内的频率为�≈P(掷入非规则图形�内)=�1,�≈�1 ���故��⇒S1≈�.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级利用频率估计概率练习题
一、选择题(每题3分,共24分)
1.下列说法正确的是( ).
A.一颗质地均匀的已连续抛掷了2 000次的骰子。

其中,抛掷出5点的次数最少,则第
2 001次一定抛出5点
B.某种彩票中奖的概率是l%,因此买100张该种彩票一定会中奖
C.天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨
D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等
2.下列试验能用编号为“l~6”卡片(均匀)搅匀作为替代试验的有( ).
①抛掷四面体②抛掷两枚硬币③抛掷一枚骰子④在“黑桃5一黑桃10'中任抽一张牌⑤
转四等分的圆转盘
A.1个 B.2个 C.3 D.4个
3.下列试验中,所选择的替代物不合适的是( ).
A.不透明的袋中有1个红球、1个黑球,每次摸一个球,可用一枚均匀的硬币代替
B.不透明的袋中有3个红球、2个黑球,每次摸一个球,可以用一个圆面积5等分,其中3个扇形涂成红色,2个扇形涂成黑色的转盘替代
C.掷一颗均匀的骰子。

可用三枚均匀的币替代
D.抽屉中,2副白手套、l副黑手套,可用2双白袜子、l双黑袜子替代
4.在“抛一枚均匀硬币”的试验中,如果没有硬币,下列试验一种不能作为替代试验?( ) A.2张扑克。

“黑桃”代表“正面”,“红桃”代表“反面”
B.掷1枚图钉
C.2个形状大小完全相同,但1红1白的两个乒乓球
D.人数均等的男生、女生,以抽签的方式随机抽取1人
5.甲、乙两名同学在一次用频率去估计概率的试验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是( ).
A.掷一枚正六面体的骰子,出现l点的概率
B.从一个装有2个白球和1个红球的袋子中任取1个球,取到红球的概率
C.抛一枚硬币,出现正面的概率
D.任意写一个整数,它能被2整除的概率
6.下列说法不正确的是( ).
A.明天下雨的概率是90%,则明天不一定下雨
B .因为掷一枚均匀的硬币,正面朝上的概率为2
1,所以小明掷10次硬币,若前5次均为反面朝上,第六次一定是正面朝上
C .袋子中有红白两个球,随意摸出一球放回袋中,再随意摸一次,有可能两次摸到的
都是红球
D .某彩票的中奖率是百分之一,则某人只买一张也可能中奖
7.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小李通过多次摸球试验后,发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中自色球的个数很可能是( ). .
A .6
B .16
C .18
D .24
8.做重复实验:抛掷同一枚啤酒瓶盖1000次,经过统计得“凸面向上”的频率约为0.44,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为
( )
A . 0.22 B. 0.44 C .0.50 D. 0.56
二、填空题:(每题2分,共26 分)
1.当试验的结果有很多并且各种结果发生的可能性相同时,我们可以用__________ 的方式得出概率.
2.当试验的所有可能的结果不是有限个或各种可能的结果发生的可能性不相等时,我们一般通过_____ 来估计概率.
3.在同样条件下,大量重复试验时,根据一个随机事件发生的频率逐渐稳定到一个______可以估计这个事件发生的概率.
4.人们常用模拟试验的方法估计事件发生的概率,常用的模拟方法有实物模拟和______两 种.
5.我们在抽取一张卡片时,若干个数字中的某个数字会随机地出现。

大量重复试验就会产生一串数,这样的一串数称为________.
6.一个口袋中有12个白球和若干个黑球,在不允许将球倒出来数的前
提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球, 求出其中白球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的 白球数与10的比值分别为O .4,O .1,0.2,O .1,0.2.根据上述数据,小亮可估计 口袋中大约有_______个黑球.
7.将含有4种花色的36张扑克牌正面都朝下.每次抽出一张记下花色后再原样放回,洗匀牌后再抽,不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有________张.
8.某公司有50名职工,现有6张会议入场券,经理决定任意地分配给6名职工,他们将
50名职工按l ~50进行编号,用计算器随机产生_______~________之间的整数,随机产生的______个整数所对应的编号的人就去参加会议.
9.从一副52张(没有大小王)的扑克牌中每次抽出l 张。

然后放 回洗匀再抽,研究恰好出
现“黑桃”的机会,若用计算器模拟试验,则要在____到______范围中产生随机数,若产生随机数是_____,则代表“出现黑桃”,否则就不是,无论进行多少次试验都可以知道“出现黑桃”的机会为_____.
10.要在一只不透明的袋中放入若干个只有颜色不同的乒乓球,搅匀后,使得从袋中任意摸
出一个乒乓球是黄色的概率是 5
2,可以怎样放球_______(只写一种).
11.用6个球(除颜色外没有区别)设计满足以下条件的游戏:摸到白球的概率为
21,摸到红球的概率为31,摸到黄球的概率为6
1.则应设_____个白球,_____个红球,_____个黄球.
12.有副残缺的扑克牌,只有红心和黑桃两种花色的牌,并且缺6 张,通过若干次抽样调
查知道红心和黑桃出现的频率分别为 45%和55%,则共有红心牌______张.
13.现有50张大小、质地及背面图案均相同的北京奥运会吉祥物福娃卡片,正面朝下放置
在桌面上,从中随机抽取一张并记下卡片正面所绘福娃的名字后原样放回,洗匀后再抽,不断重复上述过程,最后记录抽到欢欢的频率为20%。

则这些卡片中欢欢约为______张.
三、解答题 (每题10分,共50分)
1甲乙两同学投掷一枚骰子,用字母p ,q 分别表示两人各投掷一次的点数。

(1)求满足关于x 的x 2 + px + q =0方程有实数解的概率。

(2) 求(1)中方程有两个相同实数解的概率。

2.小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色。

此时小刚得1分,否则小明得1分。

这个游戏规则对双方公平吗?请说明理由。

若你认为不公平,如何修改规则才能使游戏对双方公平?
3、学校门口经常有小贩搞摸奖活动,某小贩在一只黑色的 口袋里装有颜色不同的50只
小球,其中红色1只,黄色2只,绿色10只,其余为白球,搅拌均匀后,每2元摸1球,奖品的情况标注在球上(如图):
(1)如果花2元摸1个球,那么摸不到奖的概率是多少?
(2)如果花4元同时摸2个球,那么获得10元奖品的概率是多少?
4、
中央电视台举办的第14届“蓝色经典。

天之蓝”杯青年歌手大奖赛,由部
队文工团的
A (海政)、
B (空政)
C (武警)组成种子队,由部队文工团的
D (解放军) 和地方文工团的
E (云南)、
F (新疆)组成非种子队。

现从种子队A 、B 、C 与非种子队
D 、
E 、F
中各抽取一个队进行首场比赛。

(1)请用适当方式写出首场比赛出场的两个队的所有可能情况(用代码A 、B 、C 、D 、E 、 F 表示)
(2)求首场比赛出场的两个队都是部队文工团的概率P.
5、如图所示:有一个可以自由转动的圆形转盘,被平均分成四个扇形,四个
扇形内分别标有数字1,2,-3,-4,若将转盘转动两次,每一次停止转动后,指针指向 的扇形内的数字分别记为a,b (若指针恰好指在分界线上,则该次不计,重新转动一次, 直至指针落在扇形内)。

请你用列表法或树状图求a 与b 的乘积等于2的概率。

红球 黄球 绿球 白球。

相关文档
最新文档