25.3用频率估计概率(教案)
人教版数学九年级上册 25、3 用频率估计概率 教案

25. 3用频率估计概率教学目标(1)知识与技能目标学会依据问题特点,用频率来估计事件发生的概率。
(2)过程与方法目标提高发现问题、提出问题、分析问题、解决问题的能力,体会概率的基本思想,感受到概率在问题决策中的重要作用,进一步树立数据的观念。
(3)情感态度价值观目标养成学数学、用数学的意识,体验数学的应用价值。
目标解析:1、能够通过试验获得事件发生的频率,并通过大量重复试验,让学生体会到随机事件内部所蕴涵的客观规律——频率的稳定性. 知道大量重复试验时频率可作为事件发生概率的估计值.2、结合生活实例,能进一步明晰频率与概率的区别与联系,了解用频率估计概率的方法与列举法求概率的区别,并能够通过对事件发生频率的分析,估计事件发生的概率.3、在经历用试验的方法探究概率的过程中,培养学生的动手能力、处理数据的能力,进一步增强统计意识、发展概率观念,同时培养学生实事求是的态度、勇于探索的精神及交流与协作精神.教学重、难点重点:了解用频率估计概率的必要性和合理性.难点:教师要注意提问的准确性,并且举恰当的例子,使学生深入理解用频率估计概率,避免出现不必要的枝节。
三、教学问题诊断分析1、由于学生初学概率,且在此之前面对求概率的随机事件都是等可能事件,对于一些结果不是等可能的随机事件(如:认为姚明一次罚篮的结果进与不进是等可能的)会依然采取列举法,这类现象产生的原因是对用列举法求概率的两个条件把握不够,对事件发生的可能性大小分析不透彻所致.2、频率在一定程度上可以反映随机事件发生的可能性大小,但频率本身是随机的,在试验前不能确定,无法从根本上刻画事件发生可能性的大小,只有在大量重复试验的条件下,可以近似地作为这个事件的概率. 概率是巨大数据统计后得出的结论,是一种大的整体趋势,是频率在理论上的期望值,它是一个确定的常数,是客观存在的,与试验次数无关. 频率与概率是从量变到质变,是对立统一的. 对于初学者,对两者关系的理解,还需要一个循序渐进的过程.3、容易忽略“大量重复试验”这个用频率估计概率前提条件. 这一问题的出现也是对概率思想的内涵把握不够所致. 概率是针对大量重复试验而言的,如果试验次数太少,试验频率可能会与理论概率值产生较大的偏差,进而不能合理的估计概率.教学流程(一)情景引入:问题1:姚明罚篮一次命中概率有多大?播放“NBA”(美国男子篮球职业联赛)火箭队VS老鹰队的比赛片段,在姚明罚篮球出手后,画面停滞,屏幕显示:问题:姚明罚进的概率有多大?学生先思考、讨论、发言后媒体出示甲、乙、丙的说法:甲:100% 姚明是世界明星嘛!乙:50% 因为只有进和不进两种结果,所以概率为50%. 丙:80% 姚明很准的,大概估计有80%的可能性.同学们,你们同意谁的观点?学生充分交流后,老师对不同说法进行适当的评价,并借机复习用列举法求概率的条件,引导学生分析进与不进的可能性不相等,不能用列举法来求概率.师:那它究竟有没有规律,或者说还有没有其它的办法探求概率呢?屏幕上闪烁显示08—09赛季姚明罚篮命中率86. 6%.师:姚明的命中率从何而来?(统计结果)怎么统计的?(罚中个数与罚球总数的比值)这个比值叫什么?(这实际上就是频率,这种方法实际上就是用频率估计概率)在此基础上,导出课题.(二)试验探究问题2:怎样用频率估计概率?1、抛掷一枚硬币正面(有数字的一面)向上的概率是二分之一,这个概率能否利用刚才计算命中率方法──通过统计很多掷硬币的结果来得到呢?2、试验一(掷硬币试验)(配合亲切童声播放)全班共分10个小组,每小组8人,共抛50次,推荐组长一名,组长不参与抛掷.表1(个人抛掷情况统计表)表2(小组抛掷情况统计表)表3(硬币抛掷统计表)问题3:分析试验结果及史上数学家大量重复试验数据,大家有何发现?3、分析数据全班填写表3得到硬币正面向上频率的同时,教师在黑板上绘制折线图,完成后教师提问:①随着抛掷次数的增加,“正面向上”的频率在哪个数字的左右摆动?②随着抛掷次数的增加,“正面向上”的频率在0. 5的左右摆动幅度有何规律?(学生从折线图1中难以发现)师:接下来,我们增加试验次数,看看有什么新的发现,历史上有许多数学家为了弄清其中的规律,曾坚持不懈的做了成千上万次的掷硬币试验.引导学生关注数学家的严谨,师:还有一位数学家,做了八万多次的试验.观察频率在0. 5附近摆动幅度有何规律?观察折线图2:③请大家分析,两个折线图反映的规律有何区别?什么原因造成了不同?学生得出:图一,试验次数少一些,“正面向上”的频率在0. 5左右摆动的幅度大一些.④你们认为出现的规律与试验次数有何关系?(试验次数越多频率越接近0. 5,即频率稳定于概率.)⑤数学家为什么要做那么多试验?⑥当“正面向上”的频率逐渐稳定到0. 5时,“反面向上”的频率呈现什么规律?概率与频率稳定值的关系是什么呢?师生共同小结:至此,我们就验证了可以用计算罚篮命中率的方法来得到硬币“正面向上”的概率.(三)揭示新知问题4:为什么可以用频率估计概率?师:其实,不仅仅是掷硬币有规律,人们在大量的生产生活中发现:对于一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率也总在一个固定数附近摆动,显示出一定的稳定性.引出瑞士数学家雅各布·伯努利最早阐明频率具有稳定性,介绍其家族前后三代共出13位大数学家和大物理学家,进行数学史的教育.师:由于大量重复试验的频率具有稳定性,由此可根据这个稳定的频率来估计概率.归纳:一般地,在大量重复试验中,如果事件A发生的概率m/n会稳定在某个常数p附近,那么事件A发生的概率P(A)=P.教师指出这是从统计的角度给出了概率的定义,也是探求概率的一种新方法,列举法仅限于试验结果有限个和每种结果出现的可能性相等的事件求概率,而用频率估计概率的方法不仅适用于列举法求概率的随机事件,而且对于试验的所有可能结果不是有限个,或各种结果发生的可能性不相等的随机事件,我们也可以用频率来估计概率.问题5:频率与概率有什么区别与联系?学生思考、讨论后全班交流. 此处重点强调学生理解,若不能概括、归纳,则直接出示答案. (四)巩固练习牛刀小试某射击运动员在同一条件下的射击成绩记录如下:①计算表中相应的“射中9环以上”的频率(精确到0. 01);②这些频率稳定在哪一个常数附近?③根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0. 1). 伶牙俐齿(1)天气预报说下星期一降水概率为90%,下星期三降水概率为10%,于是有位同学说:下星期一肯定下雨,下星期三肯定不下雨,你认为他说的对吗?(2)小明投篮5次,命中4次,他说一次投中的概率为5分之4对吗?(3)小明的爸爸这几天迷上了体育彩票,该体育彩票每注是一个7位的数码,如能与开奖结果一致,则获特等奖;如果有相连的6位数码正确,则获一等奖;……;依次类推,小明的爸爸昨天一次买了10注这种彩票,结果中了一注一等奖,他高兴地说:“这种彩票好,中奖率高,中一等奖的概率是10%!小明爸爸的说法正确吗?”设计方案1、老王投资在鱼塘里放了一些鱼苗,秋天了,他准备出售这些鱼,但要想卖一个好价钱就必须估计鱼塘里有多少条鱼,这可难住了老王。
人教版数学九年级上册25.3《利用频率估计概率》教案

人教版数学九年级上册25.3《利用频率估计概率》教案一. 教材分析《人教版数学九年级上册》第25.3节“利用频率估计概率”是概率统计部分的一个重要内容。
本节课主要让学生掌握利用频率来估计概率的方法,理解频率与概率的关系,并能够运用这一方法解决一些简单的实际问题。
教材通过实例引入频率估计概率的概念,引导学生探究频率与概率的关系,并运用这一方法解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了概率的基本概念,了解了随机事件和必然事件。
但是,对于利用频率来估计概率的方法,学生可能比较陌生,需要通过实例和练习来理解和掌握。
此外,学生可能对于如何将频率与概率的关系应用到实际问题中,还需要进一步的引导和培养。
三. 教学目标1.知识与技能目标:让学生掌握利用频率来估计概率的方法,理解频率与概率的关系。
2.过程与方法目标:通过实例和练习,培养学生运用频率估计概率解决实际问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,培养学生的探究精神和合作精神。
四. 教学重难点1.重点:利用频率来估计概率的方法,频率与概率的关系。
2.难点:如何将频率与概率的关系应用到实际问题中。
五. 教学方法1.情境教学法:通过实例引入频率估计概率的概念,引导学生探究频率与概率的关系。
2.问题驱动法:通过设置问题,引导学生思考和探究,培养学生的解决问题的能力。
3.合作学习法:分组讨论和交流,培养学生的合作精神和团队意识。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示实例和练习题目。
2.练习题目:准备一些相关的练习题目,用于巩固和拓展学生的知识。
七. 教学过程导入(5分钟)教师通过一个简单的实例引入频率估计概率的概念。
例如,抛硬币实验,抛掷一枚硬币,记录正面朝上的频率,然后引导学生思考:这个频率与硬币正反面朝上的概率有什么关系?呈现(10分钟)教师通过PPT呈现一些实例,让学生观察和分析频率与概率的关系。
例如,掷骰子实验,掷骰子100次,记录各个数字出现的频率,然后引导学生思考:这个频率与骰子各个数字出现的概率有什么关系?操练(10分钟)教师让学生分组讨论,每组选择一个实例,进行频率估计概率的实验。
人教版九年级数学上册《25章 概率初步 25.3 用频率作为概率的估计值》优质课教案_5

25.3 用频率估计概率教学目标1. 知道通过大量重复试验,可以用频率估计概率.2. 会根据问题的特点,用统计来估计事件发生的概率,培养分析问题,解决问题的能力.3. 让学生经历硬币实验和投图钉实验,对数据进行收集、整理、描述和分析,通过“猜想试验——收集数据——分析结果”的探索过程,体验频率的随机性与规律性,丰富对随机现象的体验,了解用频率估计概率的合理性和必要性,培养随机观念.4. 通过对问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法.5. 在合作探究学习过程中,激发学生学习的好奇心与求知欲,体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.教学重点对实验数据进行收集、整理、描述和分析.通过对事件发生的频率的分析来估计事件发生的概率.教学难点1. 用频率估计概率方法的合理性.2. 对大量重复试验得到频率的稳定值的分析.课时安排:2课时.第1课时教学内容25.3 用频率估计概率(1).教学目标1.知道通过大量重复试验,可以用频率估计概率.2.让学生经历硬币实验和投图钉实验,对数据进行收集、整理、描述和分析,通过“猜想试验——收集数据——分析结果”的探索过程,体验频率的随机性与规律性,丰富对随机现象的体验,了解用频率估计概率的合理性和必要性,培养随机观念.3.在合作探究学习过程中,激发学生学习的好奇心与求知欲,体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.教学重点对实验数据进行收集、整理、描述和分析.教学难点用频率估计概率方法的合理性.教学过程一、导入新课问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去,我很为难,真不知该把球给谁,请大家帮我想个办法来决定把球票给谁.生:抓阄、抽签、猜拳、投硬币,……教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)追问,为什么要用抓阄、投硬币的方法呢?学生讨论:这样做公平,能保证小强与小明得到球票的可能性一样大.过渡:抛掷一枚质地均匀的硬币时,“正面向上”和“反面向上”发生的可能性相等,这两个随机事件发生的概率都是0.5.这是否意味着抛掷一枚硬币100次时,就会有50次“正面向上”和50次“反面向上”呢?二、新课教学1.试验:把全班同学分成10组,每组同学抛掷一枚硬币50次.整理同学们获得的试验数据,并完成下.12全班学生3人一组,进行实验.第1组的数据填在第1列,第1,2组的数据之和填在第2列……10个组的数据之和填在第10列.如果在抛掷硬币n 次时,出现m次“正面向上”,则称比值nm为“正面向上”的频率. 教师在学生填写后,根据上表的数据,在下图中标注出对应的点.问题1:频率和概率有什么不同?问题2:如果重复实验次数增多,结果会怎样? 问题3:随着重复实验次数的增加,“正面向上”的频率有什么规律?教师引导学生思考这3个问题,理解用频率估算概率的合理性和必要性,鼓励学生探索数据中隐藏的规律,提高学生的统计意识.2.历史上的抛掷硬币的试验.历史上,有些人曾做过成千上万次抛掷硬币的试验.其中一些试验结果见下表:思考:随着抛掷次数的增加,“正面向上”的频率的变化趋势是什么? 可以发现,在重复抛掷一枚硬币时,“正面向上”的频率在0.5附近摆动.一般地,随着抛掷次数的增加,频率呈现出一定的稳定性:在0.5附近摆动的幅度会越来越小.这时,我们称“正面向上”的频率稳定于0.5.它与前面用列举法得出的“正面向上”的概率是同一个数值.当“正面向上”的频率稳定于0.5时,“反面向上”的频率也稳定于0.5.总结:实际上,从长期实践中,人们观察到,对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示出一定的稳定性.因此,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.问题1:你怎样理解“固定数”?问题2:“正面向上”的概率是0.5,连续掷2次,结果一定是“正面向上”和“反面向上”各1次吗?教师让学生思考、分析,通过问题,深化理解.“固定数”就是“概率”;概率是0.5并不能保证掷2n次硬币一定恰好有n次“正面向上”,只是当n越来越大时,正面向上的频率会越来越稳定于0.5.可见,概率是针对大量重复试验而言的,概率具有稳定性.三、巩固练习教材第144页练习1、2.四、课堂小结今天学习了什么?有什么收获?五、布置作业习题25.3 第1、3题.第2课时教学内容25.3用频率估计概率(2).教学目标1.学会根据问题的特点,用统计来估计事件发生的概率,培养分析问题,解决问题的能力.2.通过对问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法.3.通过对实际问题的分析,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值.教学重点通过对事件发生的频率的分析来估计事件发生的概率.教学难点大量重复试验得到频率的稳定值的分析.教学过程一、导入新课什么是频率?怎样用频率估计概率?通过复习,导入新课的教学.二、新课教学问题1 某林业部门要考察某种幼树在一定条件下的移植成活率,应采用什么具体做法?幼树移植成活率是实际问题中的一种概率.这个问题中幼树移植“成活”与“不成活”两种结果可能性是否相等未知,所以成活率要由频率去估计.m 在同样条件下,对这种幼树进行大量移植,并统计成活情况,计算成活的频率.随着移植数n越来越大,频率n 会越来越稳定,于是就可以把频率作为成活率的估计值.教师引导学生补全教材第146页统计表中的空缺,然后完成表下的填空.学生计算、填写,然后分析,发现:随着移植数的增加,幼树移植成活的频率越来越稳定.当移植总数为14 000时,成活的频率为0.902,于是可以估计幼树移植成活的概率为0.9.问题2 某水果公司以2元/kg的成本价新进10 000 kg柑橘.如果公司希望这些柑橘能够获得利润5 000元,那么在出售柑橘(去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?34销售人员首先从所有的柑橘中随机抽取若干柑橘,进行“柑橘损坏率”统计.并把获得的数据记录在教材第147页表中,请你帮忙完成此表.教师引导学生计算、填表,从表中可以看出,随着柑橘质量的增加,柑橘损坏的频率越来越稳定.柑橘总质量为500 kg 时的损坏频率为0.103,于是可以估计柑橘损坏的概率为0.1(结果保留小数点后一位).由此可知,柑橘完好的概率为0.9.根据估计的概率可以知道,在10 000 kg 柑橘中完好柑橘的质量为 10 000×0.9=9 000(kg ). 完好柑橘的实际成本为9.029000100002=⨯≈2.22(元/kg ). 设每千克柑橘的售价为x 元,则(x -2.22)×9 000=5 000.解得x ≈2.22(元).因此,出售柑橘时,每千克定价大约2.8元可获利润5 000元.三、巩固练习1.某射击运动员在同一条件下练习射击,结果如下表所示:(1)计算表中击中靶心的各个频率并填入表中.(2)这个运动员射击一次,击中靶心的概率约是_____. 学生独立完成,小组内订正. 2.教材第147页练习. 四、课堂小结今天你学习了什么?有什么收获? 五、布置作业习题25.3 第4、5题.。
人教版数学九年级上册25.3《用频率估计概率(第1课时)》教学设计

3.的意识,提高学生的实践能力。
4.培养学生的团队合作精神,让学生在合作交流中学会尊重他人、倾听他人意见,提高人际交往能力。
5.培养学生勇于探索、不断进取的精神,鼓励学生在面对困难时保持积极向上的态度,增强克服困难的信心。
3.学生在合作交流中,如何有效地倾听、表达、沟通,提高团队合作效率。
教学设想:
1.创设情境,引入新课:通过生活中的实例,如彩票中奖概率、投篮命中率等,引出频率的概念,激发学生的兴趣。
2.自主探究,理解概念:让学生自主进行实验,收集数据,计算频率,进而引导学生发现频率与概率之间的关系。
3.合作交流,解决问题:分组讨论,让学生在小组内分享实验过程和结果,互相借鉴,提高解决问题的能力。
2.解释频率与概率的关系:通过实际例子,如抛硬币实验,引导学生发现频率在大量实验中趋于稳定,且稳定值接近于概率。
3.操作演示:教师进行实验演示,如抛硬币、掷骰子等,让学生观察并记录实验数据,计算频率。
4.方法讲解:教师详细讲解如何利用频率来估计概率,以及在实际操作中需要注意的问题。
(三)学生小组讨论,500字
(五)总结归纳,500字
在总结归纳环节,教师引导学生进行以下思考:
1.回顾频率的定义,总结频率与概率之间的关系。
2.梳理用频率估计概率的方法,强调实验数据的重要性。
3.反思本节课的学习过程,分享学习心得和收获。
4.提醒学生课后继续思考频率与概率的关系,为下一节课的学习做好准备。
五、作业布置
为了巩固本节课所学的用频率估计概率的知识,检验学生对课堂内容的掌握情况,特布置以下作业:
3.实践性:作业要注重实践,引导学生将所学知识应用于实际问题,提高学生的应用能力。
2023用频率估计概率北师大版数学九年级上册教案

2023用频率估计概率北师大版数学九年级上册教案25.3用频率估计概率:教案一、问题情境:小明参加夏令营,一天夜里熄灯了,伸手不见五指,想到明天去八达岭长城天不亮就出发,想把袜子准备好,而现在又不能开灯。
袋子里有尺码相同的3双黑袜子和1双白袜子,混放在一起,只能摸黑去拿出2只。
同学们能否求出摸出的2只恰好是一双的可能性问:同学们能否通过实验估计它们恰好是一双的可能性如果手边没有袜子应该怎么办问:在摸袜子的实验中,如果用6个红色玻璃珠,另外还找了两张扑克牌,可以混在一起做实验吗答:不可以,用不同的替代物混在一起,大大地改变了实验条件,所以结果是不准确的。
注意:实验必须在相同的条件下进行,才能得到预期的结果;替代物的选择必须是合理、简单的。
问:假设用小球模拟问题的实验过程中,用6个黑球代替3双黑袜子,用2个白球代替1双白袜子:(1)有一次摸出了2个白球,但之后一直忘了把它们放回去,这会影响实验结果吗答:有影响,如果不放回,就不是3双黑袜子和1双白袜子的实验,而是中途变成了3双黑袜子实验,这两种实验结果是不一样的。
问:(2)如果不小心把颜色弄错了,用了2个黑球和6个白球进行实验,结果会怎样答:小球的颜色不影响恰好是一双的可能性大小二、问题3:一个学习小组有6名男生3名女生。
老师要从小组的学生中先后随机地抽取3人参加几项测试,并且每名学生都可被重复抽取。
你能设计一种实验来估计“被抽取的3人中有2名男生1名女生”的概率的吗下面的表中给出了一些模拟实验的方法,你觉得这些方法合理吗若不合理请说明理由:利用频率估计概率:同步练习一、选一选(请将唯一正确答案的代号填入题后的括号内)1.盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为 ( )A.90个B.24个C.70个D.32个25.3利用频率估计概率:知识点1.当试验的所有可能结果不是有限个,•或各种可能结果发生的可能性不相等时,我们一般还要通过统计频率来估计概率.在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐渐稳定到的常数,可以估计这个事件发生的概率.疑难分析:1.当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.2.利用频率估计概率的数学依据是大数定律:当试验次数很大时,随机事件A出现的频率,稳定地在某个数值P附近摆动.这个稳定值P,叫做随机事件A 的概率,并记为P(A)=P.3.利用频率估计出的概率是近似值.用频率估计概率北师大版数学九年级上册教案。
人教版数学九年级上册25.3《用频率估计概率》名师教案

25.3 用频率估计概率〔肖莲琴〕一、教学目标 〔一〕学习目标1.通过掷硬币、掷图钉,经历猜想、试验、收集数据、分析结果的过程,体会当试验次数很大时,随机事件发生的频率具有稳定性,开展学生根据频率的集中趋势估计概率的意识. 2.在生活实际问题中进一步体会利用频率的集中趋势估计概率,开展学生应用数学的能力. 〔二〕学习重点通过试验操作理解频率的稳定性. 〔三〕学习难点能根据频率的集中趋势估计概率,并理解概率与频率之间的关系. 二、教学设计 〔一〕课前设计 1.预习任务〔1〕频率:在n 次重复试验中,不确定事件A 发生了m 次,那么比值_____称为事件A 发生的频率.概率:刻画事件A 发生的可能性 大小 的数值称为事件A 发生的概率.〔2〕掷一枚质量均匀的硬币时会出现 正面向上 和 反面向上 两种结果,这两种结果发生的可能性是 一样的 .准备一枚均匀的一元硬币,随机掷10次,并将你的结果记录在下表中:〔3〕阅读教材第142随机事件在一次试验中是否发生不能事先确定,但是在大量重复试验中,一个事件发生的频率总在一个固定的数的附近摆动,显示出一定的 稳定性 ,因此我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的 概率 . 2.预习自测〔1〕色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随mn机抽取体检表,统计结果如下表:根据上表,估计在男性中,男性患色盲的概率为〔〕【知识点】频率的稳定性【解题过程】解:观察表格中频率的变化规律,当试验次数较大时,频率稳定在0.07附近,因此可以估计男性患色盲的概率为0.07.【思路点拨】并观察频率的变化规律【答案】B〔2〕关于频率和概率的关系,以下说法正确的选项是〔〕A.频率就是概率B.频率等于概率C.当试验次数很大时,频率稳定在概率的附近D.因为掷硬币出现正面向上的概率是0.5,所以抛掷一枚均匀硬币10次,一定出现5次正面向上【知识点】频率与概率的关系【解题过程】解:A频率是试验值,由试验结果断定;概率是理论值,由事件本质决定,因此说法错误;B屡次重复试验中频率稳定在概率附近,不一定相等,因此说法错误;C在屡次重复试验中,频率会稳定在概率的附近,说法正确;D试验次数较少,偶然性较大,因此说法错误.【思路点拨】理清频率与概率的区别与联系:频率是个试验值,试验结果不一样频率也就不一样,频率只能近似地反映事件发生的可能性的大小;而概率是一个理论值,是由事件的本质决定的,其大小是个固定值,概率能准确的反映事件发生的可能性的大小.在屡次重复试验中,频率会稳定在概率的附近,因此可以用屡次重复试验中的频率估计概率.【答案】C〔3〕在一个不透明的袋子里装有除颜色以外均一样的8个黑球,4个白球,假设干个红球,每次摇匀以后随机摸出一个球,记下颜色后再放回袋子中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋子中的红球有〔 〕个. A .9 B .8 C .7 D .6 【知识点】频率估计概率【解题过程】解:设袋子中红球有x ∴4.048=++xx,解得x =8.【思路点拨】大量重复试验中,摸到红球的频率稳定于0.4,因此可以推测摸到红球的概率也为0.4,再根据概率的计算公式可得红球数量. 【答案】B(4)某乳业集团位于内蒙古天然草场的养牛基地共有4500头牛,饲养员为了了解清楚公牛和母牛的比例,随机捕捉了200头牛做调查,发现其中母牛有180头,请估算该养牛基地共有〔 〕头公牛.A .500B .4050C .3200D .450 【知识点】频率与概率的关系【解题过程】解:在随机捕捉的200头牛中公牛数量为200-180=20头,那么估计该养牛场公牛占比为20÷200×100%=10%,估计公牛总量为4500×10%=450头. 【思路点拨】随机样本中的公牛比例与整个养牛基地的公牛比例近似相等. 【答案】D 〔二〕课堂设计 1.知识回忆〔1〕在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求随机事件的概率. 〔2〕我们常用列表和树状图两种方法列举试验的结果. 【设计意图】通过对旧知识的复习,为新知识的学习作铺垫. 2.问题探究探究一 通过频率估计概率〔★,▲〕 ●活动① 以旧引新教师提问引入:周末,在我市体育馆有一场精彩的篮球比赛,但是教师手里只有一张票,作为篮球迷的小强和小明都想去,这样教师很为难.请大家帮教师想一个公平的方法,来决定把这张票给谁.学生:抓阄、抽签、猜拳、掷硬币、……教师对学生较好的想法予以肯定,并从中抽选出掷硬币的方法. 师追问:为什么要用掷硬币的方法呢?生答:掷硬币公平,能保证小强和小明得到球票的可能性一样大.师问:用掷硬币的方法分配球票是一个随机事件,尽管事先不能确定结果是“正面向上〞还是“反面向上〞,但大家很容易感受到这两种随机事件的发生的可能性是一样,各为0.5,所以对于小强和小明来说这个方法是公平的.但是,我们的直觉是可靠的吗?掷硬币出现“正面向上〞和“反面向上〞的可能性真的是相等的吗?有什么方法可以验证呢? ●活动② 大胆操作,探究新知掷硬币,观察随着抛掷次数的增加,“正面向上〞的频率nm的变化趋势 师问:课前,我们每个同学都进展了掷硬币的试验,并计算了“正面向上〞的频率,你有什么发现呢?汇总你们小组的抛掷数据你又有什么发现呢?如果将我们全班的数据统计起来又能发现什么呢?现在,我们就将每个组掷硬币的数据累计到excel 表格中〔见附件1〕:抛掷次数n50 100 150 200 250 300 350 400 “正面向上〞的频数m “正面向上〞的频率nm根据数据自动生成折线统计图:师问:随着试验次数的增加,“正面向上〞的频率nm有什么规律? 学生观察折线统计图 生1答:频率nm 生2答:试验次数比拟小时,频率n m 波动比拟大,但试验次数较大时,频率n m比拟稳定 生3答:随着试验次数的增大,频率nm【设计意图】从学生们熟悉的掷硬币活动入手,既简单易操作,且更容易使学生看出频率稳定在0.5的附近,也即是概率的附近.●活动③ 掷图钉,观察随着抛掷次数的增加,“针尖向上〞的频率nm的变化趋势. 师问:可能有同学会觉得教师用大量重复试验的方法得到掷一枚硬币出现“正面向上〞的概率未免也太大费周章了,而且最终还只是一个概率的近似值!谁都知道掷一枚硬币出现“正面向上〞的概率为0.5,那么这种用试验的方法求随机事件的概率还有什么优点呢? 师问:〔拿出一枚图钉〕大家知道随机抛掷一枚图钉出现“针尖向上〞的概率是多少吗? 生答:不知道〔假设有答复“针尖向上〞概率为0.5的,需要教师及时引导由于图钉不是均匀物体,所以“针尖向上〞和“针尖向下〞两种事件的结果出现的可能性不一样大〕 师问:你能想方法得到“针尖向上〞的概率吗?学生小组讨论,设计方案:类似抛掷硬币的活动,通过大量重复试验的频率估计“针尖向上〞的概率.小组合作,得到抛掷50次图钉的数据.教师累计全班数据到excel 表格中〔见附件2〕:根据数据自动生成折线统计图:师问:随着试验次数的增加,“针尖向上〞的频率nm有什么规律? 学生观察折线统计图 生1答:频率nm约等于…… 生2答:试验次数比拟小时,频率n m 波动比拟大,但试验次数较大时,频率n m比拟稳定 生3答:随着试验次数的增大,频率nm稳定在……的附近【设计意图】生活中有很多等可能性事件,不用试验也可以通过列举法理论分析出它发生的概率,但也有很多类似掷图钉的事件,它们不是等可能性试验,那它们发生的概率该如何得到呢?因此设计了本活动,鼓励学生合作探究,通过不熟悉的掷图钉活动,进一步感受当试验次数很大时,频率会稳定在一个固定的值的附近,因此可以用大量重复试验的频率估计概率. 总结:〔1〕随机事件在一次试验中是否发生不能事先确定,但是在大量重复试验中,一个事件发生的频率总在一个固定的数的附近摆动,显示出一定的稳定性,这个固定的数就是随机事件发生的概率,因此我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.〔2〕概率与频率之间是有区别和联系的:①区别:频率是个试验值,试验结果不一样频率也就不一样,频率只能近似地反映事件发生的可能性的大小;而概率是一个理论值,是由事件的本质决定的,其大小是个固定值,概率能准确的反映事件发生的可能性的大小.②联系:可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.〔3〕用试验法通过频率估计概率的方法可以不受“各种结果出现的可能性相等〞的条件限制,使得可求概率的随机事件的范围扩大. 探究二 频率估计概率在生活实际问题中的应用 ●活动① 根底性例题例1 一个袋子中有两个黄球,三个白球,它们除颜色外均一样,小明随机从袋子中摸出一个球,恰好摸到了一个白球,那么以下说法正确的选项是〔 〕 A .小明从袋子中取出白球的概率是1 B .小明从袋子中取出黄球的概率是0 C .这次试验中,小明取出白球的频率是1D .由这次试验的频率可以去估计取出白球的概率是1 【知识点】频率与概率的关系【解题过程】A .小明从袋子中取出白球的概率是53,故A 选项错误;B .小明从袋子中取出黄球的概率是52,故B 选项错误;C .这次试验里,一共摸了1次球,恰好是白球,所以这次试验中,小明取出白球的频率是1,故C 选项正确;D .仅进展了一次试验,试验次数太少,频率不能估计概率,故D 选项错误.【思路点拨】此题需理清频率与概率的关系,概率是一个理论值,是由事件的本质决定的,其大小是个固定值;频率是个试验值,试验结果不一样频率也就不一样.在大量重复试验中,一个事件发生的频率总在一个固定的数的附近摆动,显示出一定的稳定性,这个固定的数就是随机事件发生的概率,因此我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.不能将频率、概率混为一谈. 【答案】C练习 抛一枚普通硬币掷得反面向上的概率为21,它表示〔 〕 A .连续抛掷硬币两次,一定是一次正面朝上,一次反面朝上 B .每抛掷硬币两次,就一定有一次反面朝上C .连续抛掷硬币200次,一定会出现100次反面朝上D .大量反复掷硬币,平均每两次会出现一次反面朝上 【知识点】频率与概率的关系【解题过程】A .掷两次硬币,偶然性较大,不一定是一次正面朝上,一次反面朝上,故A 选项错误;B .每抛掷硬币两次偶然性较大,不一定有一次反面朝上,故B 选项错误;C .连续抛掷硬币200次,试验次数较大,会出现100次左右的反面朝上,但也不能确定是100次,故C 选项错误;D .大量反复掷硬币,出现反面朝上的频率应该会稳定在0.5的附近,即平均每两次会出现一次反面朝上,故D 选项正确. 【思路点拨】 【答案】D例2 小颖和小红两位同学在学习“概率〞时,做投掷骰子〔质地均匀的正方体〕试验,她们共做了60次试验,试验的结果如下表:〔1〕计算“3点朝上〞的频率和“5点朝上〞的频率;〔2〕小颖说:“根据试验,一次试验中出现5点朝上的概率最大.〞小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.〞小颖和小红的说法正确吗?为什么? 【知识点】频率的计算;频率与概率的关系【解题过程】〔1〕∵“3点朝上〞出现的次数是8次, ∴“3点朝上〞的频率是152608=; 又∵“5点朝上〞出现的次数是15次, ∴“5点朝上〞的频率是416015= 〔2〕小颖和小红的说法都不正确但是由于60次试验次数较小,频率并不一定稳定在概率的附近,不能直接将此时的频率当成概率,因此小颖的说法是错误的.如果掷600次,虽然试验次数较大,但频率也只是稳定在概率61的附近,约为100次,不一定正好是100次,因此小红的说法也是错误的.【思路点拨】此题一定要弄清频率与概率的关系,理解它们的区别与联系:频率不能简单等同于概率,但试验次数较大时,频率稳定在概率的附近,因此可以用反复试验后的频率估计概率.【答案】见上面解题过程练习 为了看一种图钉落地后针尖着地的概率有多大,小明和小华做了屡次试验,并将结果记录在下表:〔1〕分别计算抛掷次数为50次和200次时,针尖着地的频率;〔2〕根据计算结果,小明认为:“抛掷这种图钉,针尖着地的概率大约是0.45〞,小华认为:“每抛掷100次这种图钉,一定出现45次针尖着地〞.你认为他们的说法正确吗?为什么?【知识点】频率的计算;频率与概率的关系【解题过程】〔1〕∵抛掷50次时,“针尖着地〞的频数是23, ∴“针尖着地〞的频率是46.05023=; 又∵抛掷200次时,“针尖着地〞的频数是89, ∴“针尖着地〞的频率是445.020089= 〔2〕小明的说法正确,因为根据表格中频率的变化趋势,当试验次数增加时,频率稳定在0.45的附近,因此可以估计抛掷这种图钉,针尖着地的概率大约是0.45;小华的说法错误,因为抛掷这种图钉,针尖着地的概率大约是0.45,所以每抛掷100次这种图钉,只能说大约出现45次针尖着地,不能说一定是45次.【思路点拨】此题一定要弄清频率与概率的关系,理解它们的区别与联系:频率不能简单等同于概率,但试验次数较大时,频率稳定在概率的附近,因此可以用反复试验后的频率估计概率.【答案】见上面解题过程【设计意图】对于初学者而言,“频率〞、“概率〞两个词只有一字之差,容易混为一谈,但其实二者是既有区别又有联系的.通过例1、例2及两个练习题,使学生充分理解频率和概率两个概念的含义. ●活动2 提升型例题例1 下表是某机器人做9999次“抛硬币〞游戏时记录下的出现正面朝上的频数和频率.〔1〕由这张频数和频率表可知机器人抛掷完5次时,得到_______次正面朝上,正面朝上出现的频率是________.〔2〕由这个频数和频率表可知机器人抛掷完9999次时,得到次正面朝上,正面朝上出现的频率约是.〔3〕观察上面表格中频率的变化趋势,你能发现什么?【知识点】用频率估计概率【解题过程】〔1〕直接根据表格中的数据可知,机器人抛掷完5次时,有1次正面朝上,正面朝上的频率是20%;〔2〕直接根据表格中的数据可知,机器人抛掷完9999次时,有5006次正面朝上,正面朝上的频率是50.1%;〔3〕观察频率的变化趋势发现:当机器人抛掷次数较小时,出现正面朝上的频率波动较大;当机器人抛掷次数较大时,出现正面朝上的频率比拟稳定,稳定在50%的附近.【思路点拨】试验次数较大时的频率具有稳定性.【答案】〔1〕1 20%〔2〕5006 50.1%〔3〕观察频率的变化趋势发现:当机器人抛掷次数较小时,出现正面朝上的频率波动较大;当机器人抛掷次数较大时,出现正面朝上的频率比拟稳定,稳定在50%的附近.练习一粒木质中国象棋子“兵〞,它的正面雕刻一个“兵〞字,它的反面是平的.将它从一定高度下掷,落地反弹后可能是“兵〞字面朝上,也可能是“兵〞字面朝下.由于棋子的两面不均匀,为了估计“兵〞字面朝上的概率,某实验小组做了棋子下掷实验,实验数据如下表:〔1〕请你数据表补充完整;〔2〕如果实验继续进展下去,根据上表的数据,这个实验的频率将稳定在它的概率附近,请你估计这个概率是多少?【知识点】用频率估计概率【解题过程】〔1〕∵试验总次数为40,而“兵〞字面朝上的频率为0.45,∴“兵〞字面朝上的频数=40×0.45=18又∵试验总次数为120,而“兵〞字面朝上的频数为66,∴〔2〕观察表格中频率的变化趋势,随着试验次数的增加,“兵〞字面朝上的频率逐渐稳定在0.55的附近,因此估计“兵〞字面朝上的概率为0.55.【思路点拨】试验次数较大时的频率具有稳定性,因此可以用大量重复试验下的频率估计概率.例2 在一个不透明的盒子中装有a个除颜色外完全一样的球,这a个球中只有3个红球.假设每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,那么a的值大约为____.【知识点】用频率估计概率、古典概型概率计算方法【解题过程】由于通过大量重复试验后,发现摸到红球的频率稳定在20%左右,所以,摸到红球的概率就为20%.因为,一共有a个除颜色外完全一样的球,其中只有3个红球所以,摸到红球的概率为3=a20%解得:a=15所以,a的值为15【思路点拨】抓住等可能性随机事件概率既可以通过大量重复试验得到,也可以通过古典概型的计算公式得到.【答案】15练习为了估计暗箱里白球的数量〔箱内只有白球〕,将5个红球放进去,随机摸出一个球,记下颜色后放回,搅匀后再摸出一个球记下颜色,屡次重复后发现红球出现的频率约为0.2,那么可以估计暗箱里白球的数量大约为________个. 【知识点】用频率估计概率、古典概型概率计算方法所以,摸到红球的概率就为0.2.设一共有x 个白球,其中有5个红球,所以一共有(x +5)个球 所以,摸到红球的概率为55x 解得:x =20所以,有20个白球.【思路点拨】古典概型的概率可以根据概率的计算公式求,也可以根据大量重复试验所得的频率来求,这样始终就存在一个等量关系,利用这个等量关系,往往可以求一些未知的数量. 【答案】20【设计意图】通过数量直接求频率、用频率估计概率和逆用概率公式求数量两个方向的例题及练习题目,进一步加深学生对频率、概率的理解,为学生能顺利解决下一组例题奠定根底. ●活动3 探究型例题例1 某园林公司要考察某种幼苗在一定条件下的移植存活率,应采用什么具体做法? 〔1〕如图是一张模拟统计表,请补全表中的空缺,并完成表下的填空:〔2〕从上表可以发现,随着移植数的增加,幼苗移植成活的频率越来越稳定,当移植总数为14000时,成活的频率为0.902,于是估计该幼树移植成活的概率为______.〔3〕假设某校需要移植500棵该种幼树,估计需要向这个园林公司购置多少棵幼树?〔结果保存整数〕【知识点】设计频率统计方案,用频率估计概率【解题过程】设计的方案为:在同样条件下,对这种幼树进展大量移植,并统计成活情况,计算成活的频率.随着移植数n 越来越大,成活频率nm会越来越稳定,于是就可以把频率作为成活率的估计值.〔1〕直接用成活数m 除以移植总数n〔2〕观察频率的变化趋势发现,随着移植数的增加,幼苗移植成活的频率越来越稳定在0.9的附近,因此可以估计该幼树移植成活的概率为0.9;假设需要购置x 课该种幼树,那么由题意可得:9.0500=x解得:556≈x需要购置556课该种幼树 【答案】见上面解题过程练习:某地区林业局要考察一种树苗移植的存活率,对该地区这种树苗移植成活情况进展了统计,并绘制了如下图的统计图,根据统计图提供的信息解决以下问题:/千棵〔1〕这种树苗成活的频率稳定在_________,成活的概率估计值为_________ 〔2〕该地区已经移植这种树苗5万棵 ①估计这种树苗成活了_______万棵;②如果该地区方案成活18万棵这样的树苗,那么还需要移植这种树苗约多少万棵? 【知识点】屡次重复试验,用频率估计概率【解题过程】〔1〕观察统计图可以发现当移植数量较多时,成活的频率稳定在0.9的附近,因此估计这种树苗的成活概率为0.9;〔2〕①②∵18-4.5=13.5〔万棵〕∴还需移植13.5÷0.9=15〔万棵〕【思路点拨】首先观察统计图估计出这种树苗成活的概率为0.9,然后利用成活概率和移植总数就可以计算出成活的树苗,也可以用方案成活的树苗和概率求出应移植的树苗.【答案】〔1〕0.9 0.9 〔2〕①4.5 ②15万棵例2 某水果公司以2元/kg的本钱价新进10000kg的柑橘.销售人员首先从所有的柑橘中随机抽取假设干柑橘,进展“柑橘损坏率〞统计,并把获得的数据记录在下表中,请你帮助完成此表.如果公司希望这批柑橘能够获得利润5000元,那么在出售柑橘〔去掉损坏的柑橘〕时,每千克大约定价为多少元比拟适宜?【知识点】频率的计算与应用频率稳定性【解题过程】①表格:0.101 0.097 0.097 0.103 0.101 0.098 0.099 0.103.②根据表格中的频率变化规律,可以估计柑橘损坏的概率为0.1,即柑橘完好的概率为0.9,所以在10000 kg的柑橘中完好柑橘的质量为10000×0.9=9000〔kg〕完好柑橘的实际本钱为22.29.029000100002≈=⨯〔元/kg 〕设每千克柑橘的售价为x 元,那么50009000)22.2(=⨯-x解得:8.2≈x .【思路点拨】先计算柑橘损坏的频率nm,再观察频率的变化趋势,根据频率估计出损坏柑橘的概率,得到销售商实际销售的完好的柑橘数量,计算出完好柑橘的实际本钱,再根据利润为5000元建立方程即可. 【答案】见上面解题过程.练习:某制衣厂对该厂生产的名牌衬衫抽检结果如下表:〔1〕补全表格〔结果保存2位小数〕〔2〕假设该制衣厂一共生产了1000件这种衬衫,且每件衬衫的本钱价为80元,要使这批衬衫能获利17000元,那么在出售衬衣〔除去不合格衬衣〕时,每件衬衣的出厂价应定为多少元?【知识点】频率的计算与应用频率稳定性【解题过程】〔1〕根据频率的计算公式:频率=不合格件数÷抽检件数 ∴,〔2〕根据表格中的频率变化规律,可以估计这批衬衣不合格的概率为0.03,即合格的概率为0.97,所以在1000件的衬衣中合格的衬衣有 1000×0.97=970〔件〕设在出售衬衣〔除去不合格衬衣〕时,每件衬衣的出厂价应定为x 元,那么由题意可得:970x -1000×80=17000 解得:x =100∴在出售衬衣〔除去不合格衬衣〕时,每件衬衣的出厂价应定为100元.【思路点拨】观察不合格衬衣频率的变化趋势,根据频率估计出不合格衬衣的概率,得到这批衬衣合格的件数,再根据利润为17000元建立方程即可.〔2〕100元【设计意图】频率、概率来源于生活,又效劳于生活,通过树苗移植成活率、柑橘的定价问题,将频率、概率与实际生活联系起来,表达了用数学的思想.3.课堂总结知识梳理〔1〕生活中有一些随机事件发生的概率不能用列举法得到,只能通过大量重复试验估计随机事件的频率;〔2〕当试验次数很大时,频率稳定在一个固定的数值附近,这个数值就是该事件发生的概率,但频率和概率不能简单的等同;〔3〕概率与频率之间的区别和联系:区别:频率是个试验值,试验结果不一样频率也就不一样,频率只能近似地反映事件发生的可能性的大小;而概率是一个理论值,是由事件的本质决定的,其大小是个固定值,概率能准确的反映事件发生的可能性的大小.联系:可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.重难点归纳〔1〕通过大量重复试验,频率会稳定在概率的附近;〔2〕生产生活中,可以设计大量重复试验来估计随机事件的概率;〔3〕求随机事件的方法:列举法〔等可能性事件〕、试验法〔不等可能事件〕.〔三〕课后作业根底型自主突破1.在大量重复试验中,关于随机事件发生的频率和概率,以下说法正确的选项是〔〕A.频率就是概率B.频率与试验次数无关C.概率会随着试验结果的变化而变化D.随着试验次数的增加,频率一般会越来越接近概率【知识点】频率与概率的意义。
人教版九年级上册25.3用频率估计概率25.3利用频率估计概率教学设计 (2)

人教版九年级上册25.3用频率估计概率教学设计一、教学背景本教学设计针对人教版九年级上册数学课程中的第25章第3节“用频率估计概率”进行教学设计。
该章节主要讲解了如何通过频率来确定一个事件的概率。
针对该知识点,我们可以通过数学实验、模拟实验、统计数据等方式来进行教学。
二、教学目标1.了解事件、样本空间、随机事件等概念;2.掌握用频率确定概率的方法;3.能运用频率估计概率解决实际问题;4.培养学生的实验设计和数据分析能力。
三、教学内容1.概率的基本概念:事件、概率、样本空间、随机事件等;2.频率和概率的关系;3.实验设计和数据分析。
四、教学方法本课程采用教师授课、板书讲解、实验演示、小组讨论等多种教学方法,其中重点是实验演示。
五、教学过程设计1. 导入环节教师通过一个简单的实例引出概率的基本概念,引导学生进行思考和讨论,从而明确概率的相关概念和定义。
2. 概念讲解教师讲解事件、样本空间、随机事件等基本概念,借助板书进行图示并联系实际问题进行解释。
3. 实验演示教师组织学生进行实验演示,通过抛硬币、掷色子等实验来探究频率与概率的关系,帮助学生更好地理解该知识点。
4. 讨论学生在小组讨论中交流实验结果,探究在实际问题中如何应用频率估计概率,并结合具体问题进行实践演练。
5. 总结评价教师进行课程总结,回顾重点和难点,测试学生的掌握情况,并针对不同情况进行帮助和指导。
六、教学反思通过本次教学,学生掌握了用频率确定概率的方法,能够应用频率估计概率解决实际问题,并且锻炼了实验设计和数据分析能力。
需要注意的是,实验设计时要注意控制变量,保证实验结果的可靠性和准确性。
作者简介本篇文章由智能助手自动生成,作者身份仅为虚拟身份。
九年级数学上册(人教版)25.3用频率估计概率说课稿

课后,我将通过以下方式评估教学效果:
1.作业批改:观察学生的作业完成情况,了解学生对知识点的掌握程度。
2.学生访谈:了解学生对课堂教学的意见和建议,及时调整教学方法。
3.同行听课:邀请同事听课,听取意见和建议,提高教学质量。
反思和改进措施:
九年级数学上册(人教版)25.3用频率估计概率说课稿
一、教材分析
(一)内容概述
本节课选自人教版九年级数学上册第25章第3节“用频率估计概率”。该章节在整个课程体系中起到了承上启下的作用,前面学习了概率的基本概念、计算方法等,为本节课奠定了基础;而本节课的内容又将为进一步学习概率统计打下基础。本节课的主要知识点包括:频率的概念、频率与概率的关系、如何利用频率估计概率等。
2.生生互动:组织学生进行小组讨论、合作实验,鼓励学生相互交流、分享观点。设置小组竞赛,激发学生的团队精神,提高学生的参与度。
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我将采用以下方式导入新课:
1.创设情境:向学生展示一个简单的游戏,如抛硬币、掷骰子等,让学生猜测游戏结果,引发学生对概率问题的思考。
(二)学习障碍
学生在学习本节课之前,已经掌握了概率的基本概念、计算方法等前置知识。但在学习本节课时,可能存在的学习障碍有:
1.频率的定义较为抽象,学生理解起来可能存在困难。
2.学生在将频率与概率联系起来时,可能会感到困惑,难以区分两者的关系。
3.学生在运用频率估计概率时,可能会受到直观感觉的影响,导致估计不准确。
2.频率与概率的关系:引导学生观察实验数据,发现频率与概率之间的联系,理解在大量反复试验中,频率的稳定值可以作为概率的估计值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25.3用频率估计概率
教学目标
【知识与技能】
理解每次试验可能的结果不是有限个,或各种可能结果发生的可能性不相等时,利用统计频率的方法估计概率.
【过程与方法】
经历利用频率估计概率的学习,使学生明白在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐渐稳定到的常数,可以估计这个事件发生的概率•
【情感态度】
通过研究如何用统计频率求一些现实生活中的概率问题,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值.
【教学重点】
对利用频率估计概率的理解和应用.
【教学难点】
利用频率估计概率的理解.
教学过程
一、情境导入,初步认识
问题1400个同学中,一定有2个同学的生日相同(可以不同年)吗?那么300个同学中一定有2个同学的生日相同吗?
有人说:“50个同学中,就很可能有2个同学的生日相同这话正确吗?调查全班同学,看看有无2个同学的生日相同.
问题2要想知道一个鱼缸里有12条鱼,只要数一数就可以了.但要估计一个鱼塘里有多少条鱼,该怎么办呢?
【教学说明】在前面我们学习了能列举所有可能的结果,并且每种结果的可能性相等的随机事件的概率的求法•那么这里的两个问题情境中,很容易让学生想到这些事件的结果不容易完全列举出来,而且每种结果出现的可能性也不一定是相同的.从而引发学生的求知欲,对于这类事件的概率该怎样求解呢,引入课题.
二、思考探究,获取新知
1.利用频率估计概率
试验:把全班同学分成10组,每组同学掷一枚硬币50次,整理同学们获得的试验数据,并记录在下表中:
填表方法:第1组的数据填在第1行;第1,2组的数据之和填在第2行,…, 10个组的数据之和填在第10行.
如果在抛掷n次硬币时,出现m次“正面向上”,则随机事件“正面向上” 出现的频率为m/n.
【教学说明】分组是为了减少劳动强度加快试验速度,当然如果条件允许,
组数分得越多,获得的数据就会越多,就更容易观察出规律.让学生再次经历数据的收集,整理描述与分析的过程,进一步发展学生的统计意识,发现数据中隐藏的规律.
请同学们根据试验所得数据想一想:“正面向上”的频率有什么规律?历史
上,有些人曾做过成千上万次抛掷硬币的试验,试验结果如下:
思考随着抛掷次数的增加,“正面向上”的频率变化趋势有何规律?
在学生讨论的基础上,教师帮助归纳,使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性,在试验次数较少时,“正面向上”的频率起伏较大,而随着试验次数逐渐增加,一般地,频率会趋于稳定,“正面向上”的频率越来越接近0.5,也就是说,在0.5左右摆动的幅度越来越小•我们就用0.5这个常数表示“正面向上”发生的可能性的大小.
【归纳结论】一般地,在大量重复试验中,如果事件A发生的频率m/n稳
定于某个常数P,那么事件A发生的概率P(A)=P.
思考对一个随机事件A,用频率估计的概率P(A )可能小于0吗?可能大于1吗?
答:都不可能,它们的值仍满足0W P (A )< 1.
2.利用频率估计概率的应用
问题1某林业部门要考查某种幼树在一定条件下的移植成活率,应采用什么
具体做法?
幼树移植成活率是实际问题中的一种概率,这种实际问题中的移植试验不属于各种结果可能性相等的类型•因而要考查成活率只能用频率去估计•
在同样的条件下,大量地对这种幼树进行移植,并统计成活情况,计算成活的频率,若随着移植棵树n的越来越大,频率m/n越来越稳定于某个常数•则这个常数就可以作为成活率的近似值.
上述问题可设计如下模拟统计表,补出表中空缺并完成表后填空
从表中可以发现,幼树移植成活的频率在左右摆动,且随着统计数据的增加,这种规律愈加明显,所以估计幼树移植成活的频率为:
答案:(1)表中空出依次填:0.940, 0.923, 0.883, 0.897
(2)0.9,0.9
问题2某水果公司以2元/千克价格购进10000千克的水果,且希望这些水果能获得税前利润5000元,那么在出售这些水果(已去掉损坏的水果)时,每千克大约定价为多少元较合适?
解:要定出合适的价格,必须考虑该水果的“完好率”或“损坏率”,如考查“损坏率”就需要从水果中随即抽取若干,进行损坏数量的统计,并把结果记录下来,为此可仿照上述问题制定如下表格:
从表格可看出,水果损坏率在某个常数(例如0.1 )左右摆动,并且随统计量的增加,这种规律逐渐明显,那么可以把水果损坏的概率估计为这个常数,如果估计这个概率为0.1,则水果完好的概率为0.9.
•••在10000千克水果中完好水果的质量为10000X 0.9=9000 (千克)
设每千克水果的销售价为x元,则有:
9000x-2 X0000=5000
•••出售这批水果的定价大约为2.8元/千克,可获利5000元.
思考为简单起见,能否直接把上表中500千克对应的损坏率作为损坏的概率?
答:可以.
【教学说明】用频率估计概率时,一般是通过观察所计算的各频率数值的变化趋势,即观察各数值主要集中在哪个常数的附近,这个常数就是所求概率的估计值•
三、运用新知,深化理解
1•小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果她第四次抛硬币,那么硬币正面朝上的概率为()
1 1
C. 1
2 4 4
2.—只不透明的袋子中装有4个小球,分别标有数字2、3、4、x,这些球除数
字外都相同,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2 个小球上的数字之和,记录后都将小球放回袋中搅匀,进行重复试验,试验数据如下表:
解答下列问题:
(1)如果试验继续进行下去,根据上表数据,出现“和为7”的频率将稳
定在它的概率附近,试估计出现“和为7”的概率;
(2)根据(1),若x是不等于2、3、4的自然数x,试求x的值.
【教学说明】第1题较简单,可由学生自主完成,第2题稍难,由师生共同完成.
【答案】1.A
2.(1)随着试验次数的增加,出现“和为7”的频率稳定在0.33附近摆动,因此可以知道当试验继续进行下去它的频率会稳定在0.33附近,故可估计“和
为7”的概率为0.33.(2)甲、乙两人同时从袋中各摸出一个球所有可能的结果是(2, 3)、(2, 4)、(2, x)、(3, 4)、(3, x)、(4, x)共 6 个,由于(3,4)这一结果的和为7,再根据“和为7”的概率为0.33-1/3所以其中(2, x)、(3,x)、
(4, x)这三个结果中一定还有一个和为7,当2+x=7,则x=5,当3+x=7,则x=4, 当4+x=7,x=3,显然后两种均不符合题意,故x=5.
四、师生互动,课堂小结
1.你知道什么时候用频率来估计概率吗?
2.你会用频率估计概率来解决实际问题吗?
【教学说明】教师先提出上述问题,让学生相互交流,再选派几名同学进行回顾总结,师生再共同完善.
课后作业
1.布置作业:从教材“习题25.3”中选取.
2.完成练习册中本课时练习的“课后作业”部分.
教学反思。