用频率估计概率教学设计

合集下载

用频率估计概率教案

用频率估计概率教案

用频率估计概率教案教案标题:用频率估计概率教学目标:1. 理解频率是概率的估计值。

2. 学会使用频率估计概率的方法。

3. 能够应用频率估计概率解决实际问题。

教学准备:1. 教师准备:白板、黑板笔、投影仪、教学PPT、实例题目。

2. 学生准备:纸、铅笔。

教学步骤:引入(5分钟):1. 教师通过引入问题激发学生对频率和概率的思考,如:如果我们想知道某个事件发生的概率,我们可以怎么做?2. 学生回答后,教师解释频率是概率的估计值,并介绍频率估计概率的概念。

讲解(15分钟):1. 教师通过教学PPT或黑板,详细讲解频率估计概率的方法:a. 频率的定义:事件发生的次数除以实验次数。

b. 频率估计概率的方法:通过实验重复多次,统计事件发生的次数,然后计算频率作为概率的估计值。

c. 频率估计概率的特点:随着实验次数的增加,频率会趋近于概率的真实值。

示范(15分钟):1. 教师给出一个实际问题,如:在一副扑克牌中,黑桃A的概率是多少?2. 教师引导学生进行实验,重复抽取扑克牌并统计黑桃A出现的次数。

3. 学生根据实验结果计算频率,并将其作为概率的估计值。

练习(15分钟):1. 学生分组进行练习,教师提供一些实际问题,要求学生通过实验估计概率。

2. 学生完成练习后,教师进行讲解和讨论,引导学生理解概率估计的过程和结果。

拓展(10分钟):1. 教师提供更多的实际问题,要求学生通过实验估计概率,并与理论概率进行比较。

2. 学生进行讨论和分析,总结频率估计概率的优缺点。

总结(5分钟):1. 教师进行总结,强调频率是概率的估计值,并提醒学生在实际问题中可以使用频率估计概率的方法。

2. 学生提出问题和意见,教师进行解答和回应。

作业:1. 学生完成课堂练习的剩余部分。

2. 学生自选一个实际问题,通过实验估计概率,并写出实验过程和结果。

教学反思:1. 教师应提前准备好实例题目,并确保实验过程简单易懂。

2. 教师应鼓励学生积极参与实验和讨论,培养学生的实验设计和数据分析能力。

九年级数学北师大版上册 第3章《用频率估计概率》教学设计 教案

九年级数学北师大版上册 第3章《用频率估计概率》教学设计 教案

教学设计用频率估计概率一、学生知识状况分析学生通过以前的学习,已经会用列表法或树状图求简单的随机事件的概率。

对用试验方法估计随机事件发生的概率有了初步的认识,知道了“当试验次数较大,试验频率稳定于理论概率,并可据此估计某一事件发生的概率”.二、教学任务分析本节课的重点是掌握试验的方法估计复杂的随机事件发生的概率。

难点是试验估计随机事件发生的概率。

为此,本节课的教学目标是:1、感受随机事件发生的频率的稳定性,理解事件发生的频率与概率的关系。

2、能用试验频率估计一些随机事件发生的概率,进一步体会概率的意义。

三、教学过程分析第一环节:课前3分钟(对相关知识进行回顾学习)1、事件的分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧随机事件不可能事件必然事件确定性事件事件2、什么是频率?在相同情况下,进行了n 次试验,在这n 次试验中,事件A 发生了m 次,则事件A 发生的频率P=nm . 3、练习:(1)下列事件,是确定事件的是( )A.投掷一枚图钉,针尖朝上、朝下的概率一样.B.从一幅扑克中任意抽出一张牌,花色是红桃.C.任意选择电视的某一频道,正在播放动画片.D.在同一年出生的367名学生中,至少有两人的生日是同一天.(2)明天下雨的概率为95%,那么下列说法错误的是( )A.明天下雨的可能性较大B.明天不下雨的可能性较小C.明天有可能是晴天D.明天不可能是晴天第二环节:情境引入内容:下表列出了一些历史上的数学家所做的掷硬币试验的数据:目的:以历史上的抛硬币试验引入本课,激发学生的学习兴趣.结论:当试验次数很大时,一个事件发生频率一般稳定在相应的概率附近.因此,我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的概率.在相同情况下随机的抽取若干个体进行试验,进行试验统计.并计算事件发生的频率nm ,根据频率估计该事件发生的概率.第三环节:实践演练例1、抛掷一只纸杯的重复试验的结果如下表:(1)在表内的空格初填上适当的数(2)任意抛掷一只纸杯,杯口朝上的概率为.练习一:1、对某服装厂的成品西装进行抽查,结果如下表:(1)请完成上表(2)任抽一件是次品的概率是多少?(3)如果销售1 500件西服,那么大约需要准备多少件正品西装供买到次品西装的顾客调换?思考:摸球游戏现在有一个盒子,3个红球,7个白球,每个球除颜色外全部相同。

人教版数学九年级上册25.3《用频率估计概率(第1课时)》教学设计

人教版数学九年级上册25.3《用频率估计概率(第1课时)》教学设计
2.培养学生严谨、踏实的科学态度,通过大量实验数据的分析,让学生认识到数学知识的客观性和科学性。
3.的意识,提高学生的实践能力。
4.培养学生的团队合作精神,让学生在合作交流中学会尊重他人、倾听他人意见,提高人际交往能力。
5.培养学生勇于探索、不断进取的精神,鼓励学生在面对困难时保持积极向上的态度,增强克服困难的信心。
3.学生在合作交流中,如何有效地倾听、表达、沟通,提高团队合作效率。
教学设想:
1.创设情境,引入新课:通过生活中的实例,如彩票中奖概率、投篮命中率等,引出频率的概念,激发学生的兴趣。
2.自主探究,理解概念:让学生自主进行实验,收集数据,计算频率,进而引导学生发现频率与概率之间的关系。
3.合作交流,解决问题:分组讨论,让学生在小组内分享实验过程和结果,互相借鉴,提高解决问题的能力。
2.解释频率与概率的关系:通过实际例子,如抛硬币实验,引导学生发现频率在大量实验中趋于稳定,且稳定值接近于概率。
3.操作演示:教师进行实验演示,如抛硬币、掷骰子等,让学生观察并记录实验数据,计算频率。
4.方法讲解:教师详细讲解如何利用频率来估计概率,以及在实际操作中需要注意的问题。
(三)学生小组讨论,500字
(五)总结归纳,500字
在总结归纳环节,教师引导学生进行以下思考:
1.回顾频率的定义,总结频率与概率之间的关系。
2.梳理用频率估计概率的方法,强调实验数据的重要性。
3.反思本节课的学习过程,分享学习心得和收获。
4.提醒学生课后继续思考频率与概率的关系,为下一节课的学习做好准备。
五、作业布置
为了巩固本节课所学的用频率估计概率的知识,检验学生对课堂内容的掌握情况,特布置以下作业:
3.实践性:作业要注重实践,引导学生将所学知识应用于实际问题,提高学生的应用能力。

用频率估计概率教案

用频率估计概率教案

用频率估计概率教案教案概述:本教案旨在教授频率估计概率的基本概念和方法。

学生将学习如何通过频率估计来估计事件发生的概率,并将通过实例演示来加深对频率估计概率的理解。

教学目标:1. 学习频率估计概率的基本概念和原理;2. 掌握频率估计的计算方法;3. 运用频率估计进行实际问题中的概率估计。

教学准备:1. PowerPoint幻灯片或白板和马克笔;2. 实例演示材料;3. 学生练习和作业材料。

教学步骤:引入:1. 通过幻灯片或白板,介绍频率估计概率的概念和作用;2. 引导学生思考频率估计与概率的关系,并讨论实际生活中常见的频率估计示例。

讲解频率估计概率的原理和方法:1. 解释频率估计概率的原理:频率估计概率是通过观察事件发生的频率来估计事件发生的概率;2. 讲解频率估计的计算方法:频率估计概率可以通过事件发生的次数除以总试验次数来计算;3. 通过实例演示展示频率估计概率的计算过程。

实例演示:1. 提供一个实际问题,例如:从一个装有不同颜色球的袋子中随机抽取球的颜色并记录频次;2. 通过实际演示,展示如何通过频率计算来估计抽取特定颜色球的概率;3. 引导学生参与实例演示,培养学生应用频率估计概率的能力。

练习与讨论:1. 分发练习题和作业,要求学生运用频率估计概率的方法来解答问题;2. 通过小组讨论回答问题,加深对频率估计概率的理解;3. 学生分享他们的答案和解题思路,进行讨论和互动。

总结:1. 复习频率估计概率的基本概念和计算方法;2. 强调频率估计概率在实际问题中的应用;3. 鼓励学生通过频率估计概率来解决问题。

作业布置:布置相关练习和作业,巩固学生对频率估计概率的理解和应用能力。

拓展活动:鼓励学生在日常生活中观察和应用频率估计概率的方法,例如估计公交车的准点率、估计赢得抽奖的概率等。

评估方式:1. 观察学生在课堂讨论中的参与程度;2. 检查学生完成的练习和作业;3. 考察学生对频率估计概率的理解,例如通过小测验或口头提问。

用频率估计概率教学设计

用频率估计概率教学设计

编制人: __________________审核人: __________________审批人: __________________编制学校: __________________编制时间: ____年____月____ 日下载提示:该文档是本店铺精心编制而成的,希翼大家下载后,能够匡助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如幼儿教案、小学教案、中学教案、教学活动、评语、寄语、发言稿、工作计划、工作总结、心得体味、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as preschool lesson plans, elementary school lesson plans, middle school lesson plans, teaching activities, comments, messages, speech drafts, work plans, work summary, experience, and other sample essays, etc. Iwant to knowPlease pay attention to the different format and writing styles of sample essays!这是用频率估计概率教学设计,是优秀的数学教案文章,供老师家长们参考学习。

利用频率估计概率教学设计

利用频率估计概率教学设计

利用频率估计概率教学设计标题:频率估计概率的教学设计引言:概率是数学中的一门重要课程,也是让学生们感到困惑的主题之一、在概率教学中,频率估计概率是一个关键概念,通过这一概念的引入,学生们可以更好地理解概率的概念和应用。

本篇文章将介绍一个以频率估计概率为主题的教学设计,旨在帮助学生们理解并应用频率估计概率的方法。

一、目标设定:1.学生能够理解频率估计概率的概念和原理。

2.学生能够应用频率估计概率的方法解决简单问题。

3.学生能够分析和评价频率估计概率的可靠性和局限性。

二、教学步骤:步骤一:引入频率估计概率的概念(10分钟)教师可以以一个简单实例开始引入频率估计概率的概念,例如:一个学校有1000名学生,教师关心学生们是否喜欢橙汁。

教师可以提出一个问题:“你认为这个学校有多少人喜欢橙汁?”请学生们发表各自的观点,然后引导学生们讨论如何根据这些观点得到一个较为准确的估计。

步骤二:频率估计概率的原理(15分钟)在学生们熟悉喜欢橙汁人数的估计后,教师可以介绍频率估计概率的原理。

教师可以解释概率的定义(即事件发生的可能性),然后引导学生们思考如何使用频率估计概率的方法来估计概率。

步骤三:频率估计概率的应用(30分钟)为了帮助学生们更好地理解频率估计概率的应用,在课堂上,教师可以设计一些实践活动。

例如,教师可以给学生一个玻璃瓶,里面装有红、蓝、绿三种颜色的球,让学生们随机摸出一个球,观察其颜色并估计抽到红球的概率。

然后每个学生重复这个实验,并记录下估计的概率。

最后,教师可以统计学生们的估计结果,并跟学生们一起讨论结果的准确性。

步骤四:频率估计概率的分析和评价(20分钟)在学生们进行实践活动后,教师可以引导学生们分析和评价频率估计概率的可靠性和局限性。

教师可以提出一些问题,例如:“学生们的估计结果是否相近?”、“为什么会有差异?”、“我们可以如何改进估计的准确性?”等等,通过讨论,学生们可以更深入地理解频率估计概率的可靠性和应用限制。

北师大九年级上册 3.2 用频率估计概率 教学设计

北师大九年级上册 3.2 用频率估计概率 教学设计

3.2用频率估计概率教学设计任意抛一枚质地均匀的硬币,“正面朝上”的概率是0.5,许多科学家曾做过成千上万次的实验,其中部分结果如下表:观察上表,可以发现实验次数越多,频率越接近概率.(m>n),那么一定有一个抽屉中放进了至少2个物品”.300个同学中,一定有两个同学的生日相同吗?不一定.但有2个同学的生日相同的可能性较大.“我认为咱们班50个同学中很可能就有2个同学的生日相同.”,你同意这种说法吗?同意。

【议一议】为了证明上述的说法是否正确,我们可以通过大量重复试验,用“50个人中有2个人的生日相同”的频率来估计这一事件的概率.请你设计试验方案.(1)每个同学课外调查10个人的生日.(2)从全班的调查结果中随机选择50个被调查人的生日,记录其中有无2个人的生日相同.每选取50个被调查人的生日为一次试验,重复尽可能多次试验,并将数据记录在表格中.“50人中有2人生日相同”的频率=“50人中有2人生日相同”的频数总调查次数(3)根据上表中的数据,估计“50个人中有2个人的生日相同”的概率.“n个人中至少有2人相同”的概率统计如下:【归纳】(1)用频率估计概率:当试验次数足够大时,随机事件出现的频率稳定于相应的理论概率附近;(2)用频率估计概率的条件:试验的次数必须足够大.(3)计算方法:一般地,在大量重复试验中,如果事稳定于某个常数p,那么估计事件A 件A发生的频率mn发生的概率P(A)=p.【想一想】(1)一个口袋中有3个红球、7个白球,这些球除颜色外都相同,从口袋中随机摸出一个球,这个球是红球的概率是多少?(2)一个口袋中有红球、白球共10个,这些球除颜色外都相同,如果不将球倒出来数,那么你能设计一个试验方案,估计其中红球与白球的比例吗?(1)每次随机摸出一个球并记录颜色,然后将球放回,搅匀,当次数越多,试验频率将越稳定于理论概率.(2)每次随机摸出6个球,并记录其中红球与白球的比例,然后将球放回,搅匀,当次数越多,试验频率将越稳定于理论概率.【思考】频率与概率有什么区别与联系?所谓频率,是在相同条件下进行重复试验时事件发生的次数与试验总次数的比值,其本身是随机的,在试验前不能够确定,且随着试验的不同而发生改变,而一个随机事件发生的概率是确定的常数,是客观存在的,与试验次数无关..例、六一期间,某公园游戏场举行“迎奥运”活动.有一种游戏的规则是:在一个装有6个红球和若干个白球(每个球除颜色外其他都相同)的不透明的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动的人数为40 000人次,公园游戏场发放的福娃玩具为10 000个.(1)求参加一次这种游戏活动得到福娃玩具的频率;(2)请你估计袋中白球有多少个.方法指导:(1)由40 000人次中公园游戏场发放的福娃玩具为10 000个,结合频率的意义可直接求得;(2)由概率与频率的关系可估计从袋中任意摸出一个球,恰好是红球的概率,从而引进未知数,构造方程求解.解:(1)∵1000040000=14,∴参加一次这种游戏活动得到福娃玩具的频率为14 (2)∵试验次数很大时,频率接近于理论概率,∴估计从袋中任意摸出一个球,恰好是红球的概率是14.设袋中白球有x 个.1.不透明的袋子里放有4个黑球和若干个白球(这些球除颜色外都相同),老师将全班学生分成10个小组,进行摸球试验,经过大量重复摸球试验,统计显示,从中摸出白球的频率稳定在0.2附近,则袋子中白球的个数是 ( )A.1 B.2 C.3 D.4 2.甲、乙两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是 ( ) A.掷一枚正六面体的骰子,出现1点的概率B.任意写一个整数,它能被2整除的概率C.抛一枚质地均匀的硬币,出现正面朝上的概率D.从一个装有2个白球和1个红球的袋子中任取1个球,取到红球的概率3.下表记录了某种幼树在一定条件下移植成活的情况:由此估计这种幼树在此条件下移植成活的概率是_____(精确到0.1).4.在一个不透明的盒子里装有除颜色不同其余均相同的黑、白两种球,其中白球24个,黑球若干.小兵将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近(精确到0.1);(2)假如你摸一次,估计你摸到白球的概率P(白球)= .5.某池塘里养了鱼苗10万条,根据这几年的经验知道,鱼苗成活率为95%,一段时间准备打捞出售,第一网捞出40条,称得平均每条鱼重 2.5千克,第二网捞出25条,称得平均每条鱼重2.2千克,第三网捞出35条,称得平均每条鱼重2.8千克,试估计这池塘中鱼的重量.。

九年级数学上册《用频率作为概率的估计值》教案、教学设计

九年级数学上册《用频率作为概率的估计值》教案、教学设计
2.培养学生严谨、踏实的科学态度,养成认真观察、分析问题的习惯。
3.通过数学知识在实际生活中的应用,让学生认识到数学的价值,提高学生的数学素养。
教学过程:
一、导入新课
1.复习概率的基本概念,为新课的学习做好铺垫。
2.提问:我们已经学习了如何计算事件的概率,那么在实际问题中,如何估计事件的概率呢?
二、自主探究
3.激发学生对数学的兴趣,培养他们的探究精神和:以生活实例引入频率与概率的概念,让学生感受到数学的实用性和趣味性。
2.自主探究,合作交流:鼓励学生自主探索频率与概率之间的关系,通过小组合作、讨论交流,共同解决问题。
3.精讲精练,突破难点:针对教学难点,教师进行详细的讲解和示范,让学生在理解的基础上,通过适量的练习题进行巩固。
设计实际问题,让学生运用频率估计概率,解决生活中的问题,提高数据分析与处理的能力。
第六步:总结反思,提升素养
1.让学生回顾所学内容,总结频率与概率之间的关系。
2.教师对学生进行情感态度与价值观的教育,强调数学在实际生活中的价值。
四、教学内容与过程
(一)导入新课,500字
1.教师通过展示一个有趣的魔术,引起学生的好奇心。魔术内容为:教师准备一个不透明的袋子,里面装有5个红球和5个蓝球,让学生从中随机抽取一个球,然后放回袋子。重复这个过程多次,最后预测学生抽到红球的概率。
九年级数学上册《用频率作为概率的估计值》教案、教学设计
一、教学目标
(一)知识与技能
1.让学生理解频率和概率的关系,掌握用频率估计概率的方法。
2.培养学生运用数学知识解决实际问题的能力,提高数据分析与处理的能力。
3.使学生能够运用频率估计概率,解决一些简单的实际问题,如抛硬币、掷骰子等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

25.3用频率估计概率教学设计【教材分析】《利用频率估计概率》是人教版九年级上册第二十五章《概率初步》的第三节。

它是学习了前两节概率和用列举法求概率的基础上,即学习了理论概率后,进一步从试验的角度来估计概率,让学生再次体会频率与概率间的关系,通过这部分内容的学习可以帮助学生进一步理解试验频率和理论概率的关系。

概率与人们的日常生活密切相关,应用十分广泛。

纵观近几年的中考题,概率已是考查的热点,同时,对此内容的学习,也是为高中深入研究概率的相关知识打下坚实基础。

【教学目标】根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。

因此,我把本节课的教学目标确定为以下三个方面:知识目标:1.理解当事件的试验结果不是有限个,或各种可能结果发生的可能性不相等时,要用频率来估计概率,进一步发展概率观念。

2.进一步理解概率与频率之间的联系与区别,培养学生根据频率集中趋势估计概率的能力。

方法与过程目标:1.选择生活中的实例进行教学,使学生在解决实际问题过程中加强对概率的认识,突出用频率的集中趋势估计概率的思想,体现数学与生活的紧密联系.2.通过对问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法.情感态度与价值观目标:1.利用生活实例,介绍数学史,激发学生学习数学的热情和兴趣。

2.结合试验的随机性和规律性,让学生理解试验频率和理论概率的关系。

【重点与难点】重点:1.体会用频率估计概率的必要性和合理性。

2.学会依据问题特点,用频率来估计事件发生的概率。

难点:1.理解频率与概率的关系,2.用频率估计概率解决实际问题。

【学生分析】学习统计概率的学生并不是难在用频率估计概率,而是难在多大程度上感受用频率估计概率的必要性以及体会用频率估计概率所蕴含的基本思想,然后自觉地运用到实际生活中。

所以,要发动学生积极参与,动手实验,在实践中感悟。

【教学方法】树立以学生为本的思想,通过创设问题情境,利用《问题生成评价单》,以多媒体为教学平台,通过精心设计的问题串和活动系列,采取精讲多练、讲练结合的方法来落实知识点并不断地制造思维兴奋点,让学生脑、嘴、手动起来,充分调动了学生的学习积极性,达到事半功倍的教学效果。

而学生在教师的鼓励引导下小结方法,克服思维定势,并通过小组讨论、组际竞赛等多种方式增强学习的成就感及自信心,从而培养浓厚的学习兴趣。

【设计理念】激发学生的学习兴趣,发展学生的数学才能,在教学过程中充分运用启发和讨论方式,发扬教学民主,关注知识的形成和发展过程,创设情境,培养学生用数学的眼光看世界的意识,发展搜集和处理信息的能力,运用所学的数学知识解释生活中发生的某些现象,从中建立起数学模型,抽象为数学问题,探究和发展其中的变化规律。

【教师准备】《问题导读---评价单》、《问题生成---评价单》、《问题训练---评价单》《25.3用频率估计概率教学设计问题导读——评价单》设计者:班级:姓名:【教学目标】根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。

因此,我把本节课的教学目标确定为以下三个方面:知识目标:1.理解当事件的试验结果不是有限个,或各种可能结果发生的可能性不相等时,要用频率来估计概率,进一步发展概率观念。

2.进一步理解概率与频率之间的联系与区别,培养学生根据频率集中趋势估计概率的能力。

方法与过程目标:1.选择生活中的实例进行教学,使学生在解决实际问题过程中加强对概率的认识,突出用频率的集中趋势估计概率的思想,体现数学与生活的紧密联系.2.通过对问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法.情感态度与价值观目标:1.利用生活实例,介绍数学史,激发学生学习数学的热情和兴趣。

2.结合试验的随机性和规律性,让学生理解试验频率和理论概率的关系。

【重点与难点】重点:1.体会用频率估计概率的必要性和合理性。

2.学会依据问题特点,用频率来估计事件发生的概率。

难点:1.理解频率与概率的关系,2.用频率估计概率解决实际问题。

1.一枚质量分布均匀的骰子,抛掷后出现“1”的概率大约为___________.2.掷两个骰子,求投掷出点数之和为7的概率.3.已知|a|=2,|b|=5,求|a+b|的值为7的概率.4.请设计一个摸球游戏,使得摸到红球的概率是21,摸到白球的概率是31.5.下列说法正确的是()①试验条件不会影响某事件出现的频率;②在相同的条件下试验次数越多,就越有可能得到较好的概率值,但各人所得的值不一定相同;③如果一枚骰子的质量分布均匀,那么抛掷后每个点数出现的概率均等;④抛掷两枚质量分布均匀的相同的硬币,出现“两个正面”“两个反面”“一正一反”的概率相同.A.①②B.②③C.③④D.①③通过预习本节内容你未解决的问题有:自我评价:小组评价:教师评价:《25.3用频率估计概率教学设计问题生成——评价单》请同学们在预习的基础上,将生成的问题充分交流后,在单位时间内完成下列题目,并准备多元化展示.带着问题走进丰富多彩的数学世界1、从一副扑克牌中取出的两组牌,分别是红桃1,2,3和方块1,2,3,将它们的背面朝上分别重新洗牌后,再从两组牌中各摸出一张. (1)用列举法列举可能出现的结果;(2)求摸出的两张牌的牌面数字之和不小于5的概率.2、袋子中装有蓝、白、红三个球,从中摸出一个再放回去,共摸三次,摸到三个红色球,摸到两个蓝色球、一个红色球,摸到一个蓝色球、一个红色球、一个白色球的概率各是多少?画树形图说明3、在有一个10万人的小镇,随机调查了2000人,其中有250人看中央电视台的早间新闻.在该镇随便问一个人,他看早间新闻的概率大约是多少该镇看中央电视台早间新闻的大约是多少人分析在上述问题中我们可以看出当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率。

归纳利用频率估计概率的数学依据是大数定律:当试验次数很大时,随机事件A 出现的频率,稳定地在某个数值P 附近摆动.这个稳定值P ,叫做随机事件A 的概率,并记为P(A)=P 。

注意利用频率估计出的概率是近似值。

例1、某水果公司以2元/千克新进了10000千克柑橘,如果公司希望这些柑橘能够获得税前利润5000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适分析:(1)从表可以看出,柑橘损坏的频率在常数_____左右摆动,并且随统计量的增加这种规律逐渐______,那么可以把柑橘损坏的概率估计为这个常数.如果估计这个概率为0.1,则柑橘完好的概率为_______. (2)根据表中数据填空:完好柑橘的质量为千克,完好柑橘的实际成本为______元/千克,总价为______元/千克, (3)柑橘损坏的概率是______,则完好柑橘的概率是_______,如果某水果公司以2元/千克的成本进了10000千克柑橘,则这批柑橘中完好柑橘的质量是________,若公司希望这些柑橘能够获利5000元,那么售价应定为_______元/千克比较合适., 例2、一个学习小组有6名男生3名女生,老师要从小组的学生中先后随机的抽取3人参加几项测试,并且每名学生都可以被重复抽取,你能设计一种实验来估计:“被抽取的3人中有2名男生1名女生”的概率吗?小组评价:教师评价:《25.3用频率估计概率教学设计问题训练——评价单》设计者:班级:姓名1、下列说法中不正确的是()A.试验中,随着试验次数的增加,随机事件发生的频率逐渐稳定到一个数值,这个数值可以作为这一随机事件发生概率的估计值B.通过试验的方法用频率估计概率的大小,必须要求试验是在相同条件下进行C.抛两枚硬币的试验,可用这样的试验替换:在两个袋子中各放一黑一白两球,闭上眼睛分别从两个袋子中各摸一只球,若摸出两个黑球,代表两个正面D.转除半径大小不同外其他都一样的两个转盘(如图),转大转盘时指针落入红色的概率比转小转盘时指针落入红色的概率大. 2、某批乒乓球产品质量检查情况如下表:柑橘总质量(n)/千克 损坏柑橘质量(m)/千克 柑橘损坏的频率() 50 5.50 0.110100 10.50 0.105 15015.15200 19.42250 24.2530030.93350 35.32400 39.24450 44.57500 51.54抽取球数n51200 5001002000优等品数m4592 194470954 1902优等品频率nm(1)算出各种情况下的优等品频率n;(2)估计这批乒乓球的优等率. 3、一个硬币抛起后落地时“正面朝上”的概率有多大?(1)写出你的猜测.(2)一位同学在做这个试验时说:“我只做了10次试验就得到了正面朝上的概率约为30%.”你认为他说的对吗?为什么?(3)还有一位同学在做这个试验中觉得用硬币麻烦,改用可乐瓶盖做这个试验,你认为他的做法科学吗?为什么?4、准备10张小卡片,上面分别写上数1到10,然后将卡片放在一起,每次随意抽出一张,然后放回洗匀再抽.试验次数 2040 6080 100120 140 160 出现3的倍数的次数出现3的倍数的频率(2)从上面的图表中可以发现出现了3的倍数的频率有何特点?(3)这十张卡片的10个数中,共有________张卡片上的数是3的倍数,占整个卡片张数的________,你能据此对上述发现作些解释吗?《25.3用频率估计概率教学设计问题导读——评价单》答案1、612、总共36种结果,点数之和为7;有6种,则其概率是61. 3、P(|a+b|=7)=42=21.4、解:除颜色外都相同的小球6个,其中红的3个,白的2个,蓝的1个.求任意摸一个球的概率. 5、B《25.3用频率估计概率教学设计问题生成——评价单》答案【夯实基础】 1、D 2、解:(1)抽取球数n 5010020050010002000优等品数m45921944709541902优等品频率nm0.90.920.970.940.9540.951(2)这批乒乓球的优等率接近0.95. 3、解:(1)21; (2)不对,试验次数较小,事件出现的频率与事件出现的概率有较大差距,不能据此估计事件发生概率; (3)不对,试验条件不同. 【拓展提升】4、(1)因为每个人的试验都是随机的,所以只要是自己动手试验的数据都可;(2)出现3的倍数的频率逐渐稳定于30%左右;(3)3,103,出现3的倍数的机会是103,当试验次数很大时,出现3的倍数的频率非常接近103.。

相关文档
最新文档