(完整版)九年级利用频率估计概率练习题
青岛版初中数学九年级下册《用频率估计概率》分层练习

每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通
过大量重复摸球试验后发现,摸到黄球的频率稳定在 30%,那么可以推算出 n
大约是( )
A.6 B.10 C.18 D.20
7.在英语句子“wish you success!”(祝你成功!)中任选一个字母,这个字母
为“s”的概率为____.
青岛版初中数学
青岛版初中数学 重点知识精选
掌握知识点,多做练习题,基础知识很重要! 青岛版初中数学 和你一起共同进步学业有成!
TB:小初高题库
用频率估计概率
青岛版初中数学
1.“兰州市明天降水概率是 30%”,对此消息下列说法中正确的是( )
A.兰州市明天将有 30%的地区降水
B.兰州市明天将有 30%的时间降水
8.从某玉米种子中抽取 6 批,在同一条件下进行发芽试验,有关数据如下:
种子粒数 100 400 800 1 000 2 000 5 000
发芽种子
85 粒数
298 652 793 1 604 4 005
发芽频率 0.850 0.745 0.815 0.793 0.802 0.801
根据以上数据可以估计,该玉米种子发芽的概率约为____(精确到 0.1).
则绿豆发芽的概率估计值是( )
382 0.955
570 0.950
948 0.948
1 912 6 B.0.95 C.0.94 D.0.90
TB:小初高题库
青岛版初中数学
6.一个不透明的盒子里有 n 个除颜色外其他都相同的小球,其中有 6 个黄球,
9.有一箱规格相同的红、黄两种颜色的小塑料球共 1 000 个.为了估计这两种
颜色的球各有多少个,小明将箱子里面的球搅匀后从中随机摸出一个球记下颜
北师大版九年级数学《用频率估计概率》同步练习2(含答案)

3.2 用频率估计概率一、填空题1、当试验的结果有很多并且各种结果发生的可能性相同时,我们可以用________的方式得出概率.2、当试验的所有可能的结果不是有限个或各种可能的结果发生的可能性不相等时,我们一般通过_____来估计概率.3、在同样条件下,大量重复试验时,根据一个随机事件发生的频率逐渐稳定到一个______可以估计这个事件发生的概率.4、人们常用模拟试验的方法估计事件发生的概率,常用的模拟方法有实物模拟和______两种.5、我们在抽取一张卡片时,若干个数字中的某个数字会随机地出现.大量重复试验就会产生一串数,这样的一串数称为________.6、一个口袋中有12个白球和若干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的白球数与10的比值分别为0.4,0.1,0.2,0.1,0.2.根据上述数据,小亮可估计口袋中大约有_______个黑球.7、将含有4种花色的36张扑克牌正面都朝下.每次抽出一张记下花色后再原样放回,洗匀牌后再抽,不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有________张.8、某公司有50名职工,现有6张会议入场券,经理决定任意地分配给6名职工,他们将50名职工按l ~50进行编号,用计算器随机产生_______~________之间的整数,随机产生的______个整数所对应的编号的人就去参加会议.9、从一副52张(没有大小王)的扑克牌中每次抽出l 张.然后放 回洗匀再抽,研究恰好出现“黑桃”的机会,若用计算器模拟试验,则要在____到______范围中产生随机数,若产生随机数是_____,则代表“出现黑桃”,否则就不是,无论进行多少次试验都可以知道“出现黑桃”的机会为_____.10、要在一只不透明的袋中放入若干个只有颜色不同的乒乓球,搅匀后,使得从袋中任意摸出一个乒乓球是黄色的概率是 52,可以怎样放球______(只写一种).11、用6个球(除颜色外没有区别)设计满足以下条件的游戏:摸到白球的概率为21,摸到红球的概率为31,摸到黄球的概率为61.则应设____个白球,_____个红球,_____个黄球.12、有副残缺的扑克牌,只有红心和黑桃两种花色的牌,并且缺6 张,通过若干次抽样调查知道红心和黑桃出现的频率分别为 45%和55%,则共有红心牌______张.13、现有50张大小、质地及背面图案均相同的北京奥运会吉祥物福娃卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘福娃的名字后原样放回,洗匀后再抽,不断重复上述过程,最后记录抽到欢欢的频率为20%.则这些卡片中欢欢约为______张.二、选择题1、下列说法正确的是( )A .一颗质地均匀的已连续抛掷了2000次的骰子.其中,抛掷出5点的次数最少,则第2001次一定抛出5点B .某种彩票中奖的概率是l %,因此买100张该种彩票一定会中奖C .天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨D .抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等2、下列试验能用编号为“l ~6”卡片(均匀)搅匀作为替代试验的有( )①抛掷四面体 ②抛掷两枚硬币 ③抛掷一枚骰子④在“黑桃5一黑桃10'中任抽一张牌 ⑤转四等分的圆转盘A .1个B .2个C .3D .4个3、下列试验中,所选择的替代物不合适的是( )A .不透明的袋中有1个红球、1个黑球,每次摸一个球,可用一枚均匀的硬币代替B .不透明的袋中有3个红球、2个黑球,每次摸一个球,可以用一个圆面积5等分,其中3个扇形涂成红色,2个扇形涂成黑色的转盘替代C .掷一颗均匀的骰子.可用三枚均匀的币替代D .抽屉中,2副白手套、l 副黑手套,可用2双白袜子、l 双黑袜子替代4、在“抛一枚均匀硬币”的试验中,如果没有硬币,下列试验一种不能作为替代试验?( )A .2张扑克.“黑桃”代表“正面”,“红桃”代表“反面”B .掷1枚图钉C .2个形状大小完全相同,但1红1白的两个乒乓球D .人数均等的男生、女生,以抽签的方式随机抽取1人5、甲、乙两名同学在一次用频率去估计概率的试验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是( )A .掷一枚正六面体的骰子,出现l 点的概率B .从一个装有2个白球和1个红球的袋子中任取1个球,取到红球的概率C .抛一枚硬币,出现正面的概率D .任意写一个整数,它能被2整除的概率6、下列说法不正确的是( )A .明天下雨的概率是90%,则明天不一定下雨B .因为掷一枚均匀的硬币,正面朝上的概率为21,所以小明掷10次硬币,若前5次均为反面朝上,第六次一定是正面朝上C .袋子中有红白两个球,随意摸出一球放回袋中,再随意摸一次,有可能两次摸到的都是红球D .某彩票的中奖率是百分之一,则某人只买一张也可能中奖7、在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小李通过多次摸球试验后,发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中自色球的个数很可能是( )A .6B .16C .18D .248、做重复实验:抛掷同一枚啤酒瓶盖1000次,经过统计得“凸面向上”的频率约为0.44,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为( )A . 0.22B .0.44C .0.50D .0.56三、解答题1、甲乙两同学投掷一枚骰子,用字母p ,q 分别表示两人各投掷一次的点数.(1)求满足关于x 的x 2 + px + q =0方程有实数解的概率.(2)求(1)中方程有两个相同实数解的概率.2、小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色则可以配成紫色.此时小刚得1分,否则小明得1分.这个游戏规则对双方公平吗?请说明理由.若你认为不公平,如何修改规则才能使游戏对双方公平?3、学校门口经常有小贩搞摸奖活动,某小贩在一只黑色的 口袋里装有颜色不同的50只小球,其中红色1只,黄色2只,绿色10只,其余为白球,搅拌均匀后,每2元摸1球,奖品的情况标注在球上(如图):(1)如果花2元摸1个球,那么摸不到奖的概率是多少?(2)如果花4元同时摸2个球,那么获得10元奖品的概率是多少?红球 黄球 绿球 白球4、中央电视台举办的第14届“蓝色经典.天之蓝”杯青年歌手大奖赛,由部队文工团的A(海政)、B(空政)C(武警)组成种子队,由部队文工团的D(解放军)和地方文工团的E(云南)、F(新疆)组成非种子队.现从种子队A、B、C与非种子队D、E、F中各抽取一个队进行首场比赛.(1)请用适当方式写出首场比赛出场的两个队的所有可能情况(用代码A、B、C、D、E、F表示)(2)求首场比赛出场的两个队都是部队文工团的概率P.参考答案一、填空题1、P(A)=m/n2、统计频率3、常数4、计算器产生随机数5、随机数6、487、98、1~50,69、1,4,1,0.2510、2个黄球,5个白球(答案不唯一)11、3,2,112、913、10二、选择题1、D2、B3、C4、B5、B6、B7、B8、D三、解答题1、两人投掷骰子共有36种等可能的情况.(1)其中方程有实数解共有19种情况,故其概率为19/36.(2)方程有相等实数解共有2种情况,故其概率为1/18 .2、列表得:因为2/9 ≠ 7/9 所以游戏对双方不公平.修改规则的方法不唯一,只要合理即可.(如可改为:若配成紫色时小刚得7分,否则小明得2分)3、(1)因为白球的个数为50-1-2-10=37,所以摸不到奖的概率是 5037. (2)摸到10元奖品只有一种可能,即同时摸出两个黄球,所以获得10元奖品的概率是502 ×491 =12251 4、(1)由题意画树状图 略所有可能情况是:(A ,D)(A ,E)(A ,F)(B ,D)(B ,E)(B,F)(C,D)(C,E)(C,F)(2)所有可能出场的等可能结果有9个,其中首场比赛出场两个队都是文工团的结果 有3个,所以P(两个队都是部队文工团)=3/9=1/3。
用频率估计概率(习题)

3.2用频率估计概率分层训练提分要义【基础题】1.在一个不透明的袋子中,装有红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.若小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在0.15.和0.45,则该袋子中的白色球可能有()A.6个B.16个C.18个D.24个2.某农科所在相同条件下做某作物种子发芽率的试验,结果如表所示:有下面四个推断:①种子个数是700时,发芽种子的个数是624,所以种子发芽的概率是0.891;②随着种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性,可以估计种子发芽的概率约为0.9(精确到0.1);③种子个数最多的那次试验得到的发芽种子的频率一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽.其中正确的是()A.①②B.③④C.②③D.②④3.为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下.人数60 260 550 130 根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于170cm的概率是()A.0.32 B.0.55 C.0.68 D.0.874.对一批衬衣进行抽检,得到合格衬衣的频数表如下,若出售1200件衬衣,则其中次品的件数大约是()抽取件数50 100 150 200 500 800 1000 (件)合格频数48 98 144 193 489 784 981 A.12 B.24 C.1188 D.11765.为庆祝建党99周年,某校八年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:A、“北斗卫星”:B、“5G时代”;C、“智轨快运系统”;D、“东风快递”;E、“高铁”.统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“5G时代”的频率是()A.0.25 B.0.3 C.25 D.306.如图为某一试验结果的频率随试验次数变化趋势图,则下列试验中不符合该图的是()A.掷一枚普通正六面体骰子,出现点数不超过2B.掷一枚硬币,出现正面朝上C.从装有2个黑球、1个白球的不透明布袋中随机摸出一球为白球D.从分别标有数字l,2,3,4,5,6,7,8,9的九张卡片中,随机抽取一张卡片所标记的数字不小于77.老师组织学生做分组摸球实验.给每组准备了完全相同的实验材料,一个不透明的袋子,袋子中装有除颜色外都相同的3个黄球和若干个白球.先把袋子中的球搅匀后,从中随意摸出一个球,记下球的颜色再放回,即为一次摸球.统计各组实验的结果如下:一组二组三组四组五组六组七组八组九组十组摸球的次数100 100 100 100 100 100 100 100 100 100摸到白球的次数41 39 40 43 38 39 46 41 42 38请你估计袋子中白球的个数是()A.1个B.2个C.3个D.4个8.在一次心理健康教育活动中,张老师随机抽取了40名学生进行了心理健康测试,并将测试结果按“健康、亚健康、不健康”绘制成下列表格,其中测试结果为“健康”的频率是().类型健康亚健康不健康数据(人)32 7 1A.32 B.7 C.710D.459.某班学生做“用频率估计概率”的实验时,给出的某一结果出现的频率折线图,则符合这一结果的实验可能是()A.抛一枚硬币,出现正面朝上B.从标有1,2,3,4,5,6的六张卡片中任抽一张,出现偶数C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D.从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球10.如图,已知不透明的袋中装有红色、黄色、蓝色的乒乓球共120个,某学习小组做“用频率估计概率”的摸球实验(从中随机摸出一个球,记下颜色后放回),统计了“摸出球为红色”出现的频率,绘制了如图折线统计图,那么估计袋中红色球的数目为()A.20 B.30 C.40 D.6011.从淄博汽车站到银泰城有甲,乙,丙三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从淄博汽车站到银泰城的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:线路/公交车用时的30≤t≤35 35≤t≤40 40≤t≤45 45≤t≤50 合计频数/公交车用时甲59 151 166 124 500乙50 50 122 278 500丙45 265 167 23 500早高峰期间,乘坐线路上的公交车,从淄博汽车站到银泰城“用时不超过45分钟”的可能性最大.()A.甲B.乙C.丙D.无法确定12.某位篮球爱好者进行了三轮投篮试验,结果如下表:轮数投球数命中数命中率第一轮10 8 0.8则他的投篮命中率为()A.45B.23C.34D.不能确定13.为了解某市九年级男生的身高情况,随机抽取了该市100名九年级男生,他们的身高x (cm)统计如下:根据以上结果,全市约有3万名男生,估计全市男生的身高不高于180cm 的人数是()A.28500 B.17100 C.10800 D.1500【中档题】14.一个不透明的袋子中装有4个白球和若干个黄球,它们除颜色外完全相同,从袋子中随机摸出一球,再放回,不断重复,共摸球30次,其中10次摸到白球,则估计袋子中大约有黄球______个.15.某数学小组做抛掷一枚质地不均匀纪念币的实验,整理同学们获得的实验数据,如表.则抛掷该纪念币正面朝上的概率约为_________.(精确到0.01)16.对一批口罩进行抽检,统计合格口罩的只数,得到合格口罩的频率如下:估计从该批次口罩中任抽一只口罩是合格品的概率为_____.17.在一个不透明的袋中装有除颜色外其余均相同的n个小球,其中有6个黑球,从袋中随机摸出一球,记下其颜色,称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球,以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:根据列表,可以估计出n的值是____.【综合题】18.“网红”长沙入选2021年“五一”假期热门旅游城市.本市某景点为吸引游客,设置了一种游戏,其规则如下:凡参与游戏的游客从一个装有12个红球和若干个白球(每个球除颜色外,其他都相同)的不透明纸箱中,随机摸出一个球,摸到红球就可免费得到一个景点吉祥物.据统计参与这种游戏的游客共有60000人,景点一共为参与该游戏的游客免费发放了景点吉祥物15000个.(1)求参与该游戏可免费得到景点吉祥物的频率;(2)请你估计纸箱中白球的数量接近多少?19.在不透明的口袋中装有1个白色、1个红色和若干个黄色的乒乓球(除颜外其余都相同),小明为了弄清黄色乒乓球的个数,进行了摸球的实验(每次只摸一个,记录颜色后放回,搅匀后重复上述步骤),下表是实验的部分数据:(1)请你估计:摸出一个球恰好是白球的概率大约是(精确到0.01),黄球有个;(2)如果从上述口袋中,同时摸出2个球,求结果是一红一黄的概率.20.一个不透明的箱子里装有3个红色小球和若干个白色小球,每个小球除颜色外其他完全相同,每次把箱子里的小球摇匀后随机摸出一个小球,记下颜色后再放回箱子里,通过大量重复实验后,发现摸到红色小球的频率稳定于0.75左右.(1)请你估计箱子里白色小球的个数;(2)现从该箱子里摸出1个小球,记下颜色后放回箱子里,摇匀后,再摸出1个小球,求两次摸出的小球颜色恰好不同的概率(用画树状图或列表的方法).21.新冠疫情期间,某校有“录播”和“直播”两种教学方式供学生自主选择其中一种进行居家线上学习.为了了解该校学生线上学习参与度情况,从选择这两种教学方式的学生中,分别随机抽取50名进行调查,调查结果如表(数据分组包含左端值不包含右端值).0~20% 20%~50% 50%~80% 80%~100%录播 5 18 14 13 直播2152112(1)从选择教学方式为“录播”的学生中任意抽取1名学生,试估计该生的参与度不低于50%的概率;(2)若该校共有1200名学生,选择“录播”和“直播”的人数之比为3:5,试估计选择“录播”或“直播”参与度均在20%以下的共有多少人?22.某超市经营某品牌的一种乳制品,根据往年销售经验,每天销售量与当天最高气温t (单位:C ︒)有关.为了制定六月份的订购计划,统计了前三年六月份每天的最高气温、销售量与最高气温的关系得到下表: 最高气温t(单位:C ︒)天数每天销售量(瓶)20t < 15 240 2025t ≤< 30 300 25t ≥45500(1)估计超市今年六月份某一天这种乳制品的销售量不超过300瓶的概率; (2)估计超市这种乳制品今年六月份平均每天的销售量;(3)设进货成本为每瓶4元,售价为每瓶6元,结合前三年六月份的销售数据,估计超市今年六月份经营这种乳制品的总利润.23.对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频率表如下:(1)计算表中a,b的值并估计任抽一件衬衣是合格品的概率.(2)估计出售2000件衬衣,其中次品大约有几件.24.一只不透明袋子中装有1个白球和若干个红球,这些球除颜色外都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出1个球,记下颜色后放回、搅匀,不断重复这个过程,获得数据如下:(1)该学习小组发现,随着摸球次数的增多,摸到白球的频率在一个常数附近摆动,请直接写出这个常数(精确到0.01),由此估出红球有几个?(2)在这次摸球试验中,从袋中随机摸出1个球,记下颜色后放回,再从中随机摸出1个球,利用画树状图或列表的方法表示所有可能出现的结果,并求两次摸到的球恰好1是个白球,1个是红球的概率.。
北师大版九年级数学《用频率估计概率》分层练习(含答案)

3.2 用频率估计概率◆基础训练1.假设抛一枚硬币10次,有2次出现正面,8次出现反面,则出现正面的概率是______,出现反面的频数是_______;出现正面的频率是_______,出现反面的频率是_______.2.下面是33名学生某次数学考试的成绩:(单位:分)72 82 85 93 90 67 82 74 87 85 9780 71 65 69 81 89 92 90 78 86 8594 84 99 68 77 88 90 100 81 82 86填写下表:3.从标有1,2,3,4的四张卡片中任取两张,卡片上的数字之和为奇数的概率是()A.13B.12C.23D.344.现有2008年奥运会福娃卡片20张,其中贝贝6张,晶晶5张,欢欢4张,迎迎3张,妮妮2张,每张卡片大小,质地相同,将画有福娃的一面朝下反扣在桌面上,从中随机抽取一张,抽到晶晶的概率是()A.110B.310C.14D.155.将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是()A.1216B.172C.136D.1126.公路上行驶的一辆客车,车牌号码是奇数的概率为()A.50% B.100%C.由客车所在的单位决定D.无法确定7.某校三个年级的初中在校学生共829名,学生的出生月份统计如下,•根据图中数据回答以下问题:(1)出生人数最少是几月?(2)出生人数少于60人的月份有哪些?(3)这些学生至少有两人生日在8月5日是可能的,不可能的,还是必然的?(4)如果你随机地遇到这些学生中的一位,那么该学生生日在哪一个月的概率最大?8.王强与李刚两位同学在学习概率时,做掷骰子(均匀正方体形状)实验,他们共抛了54次,出现向上点数的次数如下表:(1)请计算出现向上点数分别为3和5的频率;(2)王强说:“根据实验,一次试验中出现向上点数为5的概率最大”.李刚说:“如果抛540次,那么出现向上点数为6的次数正好是100次.”请判断王强和李刚说法的对错;(不必说明理由)(3)如果王强和李刚各抛一枚骰子,求出现向上点数之和为3的倍数的概率.9.一粒木质中国象棋子“兵”,它的正面雕刻了一个“兵”字,它的反面是平的.将它从一定高度下掷,落地反弹后可能是“兵”字面朝上,也可能是“兵”字面朝下,由于棋子的两面不均匀,为了估计“兵”字面朝上的概率,某实验小组做了棋子下掷实验,实验数据如下表:(1)请将数据表补充完整;(2)在下图中画出“兵”字面朝上的频率分布折线图;(3)如果实验继续进行下去,根据上表的数据,这个实验的频率将稳定在它的概率附近,请你估计这个概率是多少?◆提高训练10.在□x 2□2x□1的空格中,任意填上“+”、“-”,共有_____种不同的代数式,其中能构成完全平方式的占________.11.在如下图的甲、乙两个转盘中,指针指向每一个数字的机会是均等的,当同时转动两个转盘,停止后指的两个数字表示两条线段的长,如果第三条线段的长为5,那么这三条线段不能构成三角形的概率是( )A.625 B.925 C.1225 D.162512.张彬和王华两位同学为得到一张观看足球比赛的入场券,各自设计了一种方案:张彬:如图2-2-7,设计了一个可以自由转动的转盘,随意转动转盘,当指针指向阴影区域时,张彬得到了入场券.否则,王华得到入场券;王华:将三个完全相同的小球分别标上数字1,2,3后,放入一个不透明袋子中,从中随机取出一个小球,然后放回袋子;混合均匀后,再随机取出一个小球.若两次取出的小球上的数字之和为偶数,王华得到入场券;否则,张彬得到入场券.请你运用所学的概率知识,分析张彬和王华的设计方案对双方是否公平.13.下表是某孵鸡房对受精鸡蛋的孵化情况进行的统计:(1)填写完成表格;(2)估计一个受精鸡蛋孵出小鸡的概率是多少?(3)若实际需要15000只小鸡,则需要多少个受精鸡蛋?◆拓展训练14.某电脑公司现有A、B、C三种型号的甲品牌电脑和D、E两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.(1)写出所有选购方案;(2)如果(1)中各种选购方案被选中的可能性相同,那么A型电脑被选中的概率是多少?(3)现知希望中学购买甲、乙两种品牌电脑共36台(价格如图所示),恰好用了10万元人民币,其中甲品牌电脑为A型电脑,求购买的A型电脑有几台?参考答案◆基础训练1.2,8,0.2,0.82.频数:4,5,15,9 频率:0.1212,0. 1515,0.4545,0.2727 3.C 4.C 5.C 6.A7.(1)6月(2)2月,4月,5月,6月(3)可能的(4)10月8.(1)0.093,0.296 (2)均不正确(3)1 39.(1)18,0.55 (2)略(3)0.55 ◆提高训练10.8,1211.B 12.均不公平13.m:0,90,1920,2400;mn:1,0.80,0.84,0.961(2)约为0.95 (3)15789个◆拓展训练14.(1)6种方案:(A,D),(A,E),(B,D),(B,E),(C,D),(C,E)(2)1 3(3)•当选用(A,D)时,设购买A型号x台,D型号y台.有36,80, 60005000100000116x y xx y y+==-+==⎧⎧⎨⎨⎩⎩解得,不合题意,舍去.当选用方案(A,E)时,设购买A型号,E型号电脑分别为x台,y台.有36,7, 6000200010000029x y xx y y+==+==⎧⎧⎨⎨⎩⎩解得,所以希望中学购买了7台A型电脑.。
鲁教版九年级下册6.3用频率估计概率同步课时训练(word版含答案)

鲁教版九年级下册6.3用频率估计概率同步课时训练学校:___________姓名:___________班级:___________考号:___________一、单选题1.在一个不透明的袋子里装有红球,黄球共60个,这些球除颜色外其他都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是()A.9 B.15 C.18 D.242.在一个不透明的口袋里,装有仅颜色不同的黑球和白球若干只,某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放入袋中,不断重复,下表是活动中的一组数据,则摸到白球的概率约是()A.0.5 B.0.55 C.0.6 D.0.653.在一个不透明的容器中装有若干个除颜色外其他都相同的黑球和白球,张伟每次摸出一个球记录下颜色后放回,通过多次试验后发现,摸到黑球的频率稳定在0.2左右,若布袋中白球有28个,则布袋中黑球的个数可能为()A.6 B.7 C.8 D.94.在一个不透明的袋子里装有白球、红球共40个,这些球除颜色外都相同,小明通过多次实验发现,摸出红球的频率稳定在0.4左右,则袋子中红球的个数最有可能是()A.16 B.24 C.4 D.85.如图是一个正六边形转盘被分成6个全等的正三角形,指针位置固定.转动转盘后任其自由停止,其中的某个三角形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个三角形的公共边时,当作指向右边的三角形),这时称转动了转盘1次.下列说法不正确的是()A.出现1的概率等于出现3的概率B.转动转盘30次,6一定会出现5次C.转动转盘3次,出现的3个数之和等于19,这是一个不可能发生的事件D.当转动转盘36次时,出现2这个数大约有6次6.甲、乙两名同学在一次用频率去估计概率的试验中,统计了某一结果出现的频率,并绘出了如下折线统计图,则最有可能符合这一结果的试验的是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.任意写一个整数,它能被3整除的概率D.从一副去掉大小王的扑克牌中,任意抽取一张,抽到黑桃的概率7.某射击运动员在同一条件下的射击成绩记录如下:根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率约是()A.0.75 B.0.82 C.0.78 D.0.808.在一个不透明的袋子里装有红球、黄球共40个,这些球除颜色外都相同,小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中黄球的个数最有可能是()A.10 B.15 C.20 D.309.不透明的口袋内装有红球、白球和黄球共20个,这些球除颜色外其它都相同,将口袋内的球充分搅拌均匀,从中随机摸出一个球,记下颜色后放回,不断重复该摸球过程,共摸取404次球,发现有101次摸到白球,则口袋中白球的个数是()A.5 B.10 C.15 D.2010.小明在一次用“频率估计概率”的实验中,把对联“海水朝朝朝朝朝朝朝落,浮云长长长长长长长消”中的每个汉字分别写在同一种卡片上,然后把卡片无字的面朝上,随机抽取一张,并统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的实验最有可能是()A.抽出的是“朝”字B.抽出的是“长”字C.抽出的是独体字D.抽出的是带“氵”的字二、填空题11.盒子中有若干个白球,为了估计白球的个数,在盒子中又放入5个黑球摇匀,从中摸出一球记下颜色后放回,重复摸球200次,其中摸到黑球的次数为50次,盒中原有白球约______个.12.为估计种子的发芽率,做了10次试验.每次种了1000颗种子,发芽的种子都是950颗左右,预估该种子的发芽率是___________.13.一个口袋中装有8个黑球和若干个白球,小刚从袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程,共摸了200次,其中有57次摸到黑球,估计袋中的白球数是_________个.14.抛一枚均匀的硬币100次,若出现正面的次数为45次,那么出现正面的频率是____.15.一名篮球运动员在某段时间内进行定点投篮训练,其成绩如下表:试估计这名运动员在这段时间内定点投篮投中的概率是__________.16.某公司生产的4件同型号的产品中,有1件不合格品和3件合格品.若在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则x的值是______.三、解答题17.某个盒中装有若干枚黑棋和白棋,这些棋除颜色外无其他差别,现让学生进行摸棋试验:每次摸出一枚棋,记录颜色后放回摇匀.重复进行这样的试验得到以下数据:(1)根据表中数据估计,从盒中摸出一枚棋是黑棋的概率是__________(精确到0.01);(2)若盒中有1枚黑棋与3枚白棋,某同学一次摸出两枚棋,请利用画树状图法或列表法求这两枚棋子颜色不同的概率.18.一只不透明袋子中装有1个白球和若干个红球,这些球除颜色外都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出1个球,记下颜色后放回、搅匀,不断重复这个过程,获得数据如下:(1)请完成表中所空的数据;(2)该学习小组发现,摸到白球的频率在一个常数附近摆动,这个常数是______(精确到0.01),由此估出红球有______个.19.在一个不透明的口袋里装有若干个相同的红球,为了用估计袋中红球的数量,八(1)班学生在数学实验室分组做摸球实验:每组先将10个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是这次活动统计汇总各小组数据后获得的全班数据统计表:(1)按表格数据格式,表中的a=______;b=______;(2)请估计:当次数s很大时,摸到白球的频率将会接近______(精确到0.1);(3)请推算:摸到红球的概率是_______(精确到0.1);(4)试估算:这一个不透明的口袋中红球有______只.20.为弘扬我校核心文化——“坿”文化,积极培育学生“敢进取”的精神,我校举行一次数学探究实验. 在一个不透明的箱子里放有n个除颜色外其他完全相同的小球(数量不详),只知其中有5个红球.(1)若先从箱子里拿走m个红球,这时从箱子里随机摸出一个球是红球的事件为“随机事件”,则m的最大值为________.(2)若在原来的箱子里再加入3个红球后进行摸球实验,每次摸球前先将箱子里的球摇匀,任意摸出一个球记下颜色后再放回箱子,通过大量重复摸球实验后发现摸到红球的频率稳定在40%左右,你能估计n的值是多少吗?参考答案1.B2.C3.B4.A5.B6.C7.D8.D9.A10.D11.1512.95%13.2014.0.4515.0.9或9 1016.1617.(1)0.25;(2)12,见解析【详解】解:(1)根据表中重复试验的数据,黑棋的频率稳定在0.25左右,故从盒中摸出一枚棋是黑棋的概率0.25.(2)画树状图如下:由树状图可知,所有等可能结果共有12种情况,其中这两枚棋子颜色不同的结果有6种.所以这两枚棋子颜色不同的概率为61122P==.18.(1)0.36,130;(2)0.33,2.【详解】解:(1)摸球200次时摸到白球的频率=36=0.72200,摸球3200次时摸到白球的频数=4000.325=130⨯,故答案为:0.36,130;(2)观察表格发现,随着摸球次数的增多,摸到白球的频率逐渐稳定在0.33附近, 设红球有x 个,依题意得:10.331+x =,解得2x ≈ 由此估出红球有2个.故答案为:0.33,2.19.(1)123;0.404;(2)0.40;(3)0.6;(4)15.【详解】解:(1)3000.41123a =⨯=,60615000.404b =÷=;(2)当次数s 很大时,摸到白球的频率将会接近0.40;(3)由题意得:摸到白球的概率为0.4,则摸到红球的概率是10.40.6-=;(4)设红球有x 个, 根据题意得:0.610x x =+, 解得:15x =,经检验,x=15是所列分式方程的解,则口袋中红球有15只;故答案为:123,0.404;0.4;0.6;15.20.(1)4;(2)17.【详解】解:(1)∵从盒子里随机摸出一个球是红球的事件为“随机事件”∴不透明的盒子中至少有一个红球,∴m 的最大值=514-=,故答案为:4;(2)解:由题意得530.43n +=+ 解之得:n=17;经检验,17n =是原分式方程的解.。
九年级数学下册 4.3 用频率估计概率试题 (新版)湘教版

4.3 用频率估计概率知识要点 用频率估计概率一副扑克牌去掉“大王”“小王”后,只剩下52张牌,从中任取一张,记下花色,随着试验次数的增加,出现黑桃花色的频率将稳定在_______左右.分析:利用概率公式,先求出一副牌中抽到黑桃的概率,随着次数的增加,频率会稳定在其概率左右.方法点拨:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.小军家的玩具店进了一箱除颜色外都相同的塑料球共1000个,小军将箱中的球搅匀后,随机摸出一个球记下颜色,放回箱中;搅匀后再随机摸出一个球记下颜色,放回箱中;……多次重复上述试验后,发现摸到红球的频率逐渐稳定在0.2,由此可以估计纸箱内红球的个数约是200个.分析:设红球的个数为x ,根据题意得x1000=0.2,解出x 即得到答案.方法点拨:本题利用了用大量重复性试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.1.杨彩霞参加射击训练,共射击100次,其中有38次击中靶子,由此估计,杨彩霞射击一次击中的概率是AA.1950B.35C.10063 D .无法确定 2.在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球试验后,发现摸到白球的频率约为40%,估计袋中白球有______个.3.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有________个.4.六一期间,某公园游戏场举行“迎奥运”活动.有一种游戏的规则是:在一个装有6个红球和若干个白球(每个球除颜色外其他相同)的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动为40000人次,公园游戏场发放的福娃玩具为10000个.(1)求参加一次这种游戏活动得到福娃玩具的频率;(2)请你估计袋中白球接近多少个?参考答案:要点归纳知识要点:固定数 p典例导学例1 14例2 200当堂检测1.A 2.4 3.124.解:(1)10000÷40000=14,∴参加一次这种活动得到的福娃玩具的频率为14; (2)∵试验次数很大,大数次试验时,频率接近于理论概率,∴估计从袋中任意摸出一个球,恰好是红球的概率为14.设袋中白球有x 个,根据题意得6x +6=41,解得x =18,经检验x =18是方程的解.∴估计袋中白球接近18个.。
专题03 利用频率估计概率(提高)(解析版)

专题03 利用频率估计概率要点一、利用频率估计概率当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.要点诠释:用试验去估计随机事件发生的概率应尽可能多地增加试验次数,当试验次数很大时,结果将较为精确.一、单选题1.(2020·宁夏中卫市·九年级期中)有一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出一个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约是( (A.12B.15C.18D.21【答案】B【解析】在同样的条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.解解:由题意得,×100%=20%,解得,a=15.故选B.2.(2020·全国九年级课时练习)在平行四边形ABCD中,AC(BD是两条对角线,现从以下四个关系:(AB(BC((AC(BD((AC(BD((AB(BC中任取一个作为条件,即可推出平行四边形ABCD是菱形的概率为()A.14B.12C.34D.1【答案】B【分析】根据菱形的判定,要证平行四边形ABCD是菱形,可证一组邻边相等或对角线互相垂直即可.【详解】解:∵四边形ABCD是平行四边形,((AB=BC,四边形ABCD是菱形;(AC=BD,四边形ABCD是矩形;(AC(BD,四边形ABCD是菱形;(AB(BC,四边形ABCD是矩形.只有①③可判定,所以可推出平行四边形ABCD是菱形的概率为24(12(故选(B(【点睛】菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.具体选择哪种方法需要根据已知条件来确定.用到的知识点为:概率=所求情况数与总情况数之比.3.(2019·全国九年级专题练习)在一个不透明的袋子里共有2个黄球和3个白球,每个球除颜色外都相同,小亮从袋子中任意摸出一个球,结果是白球,则下面关于小亮从袋中摸出白球的概率和频率的说明正确的是()A.小亮从袋中任意摸出一个球,摸出白球的概率是1B.小亮从袋中任意摸出一个球,摸出白球的概率是0C.在这次实验中,小亮摸出白球的频率是1D.由这次实验的频率去估计小亮从袋中任意摸出一个球,摸出白球的概率是1【答案】C【解析】【详解】解:∵袋子中共有2+3=5个小球,从中任意摸出一个球共有5种等可能结果,其中是白球的结果有3种,∴小亮从袋中任意摸出一个球,摸出白球的概率是35,由这次实验的频率去估计小亮从袋中任意摸出一个球,摸出白球的概率是35,而在这次实验中,小亮摸出白球的频率是1,故选:C.【点睛】频率和概率的区别:概率是一个虚构的理论数值;频率是实际的值,既在一定数量的某件事情上面,发生的数与总数的比值.假设事件A的概率是0.3,在100次中发生31次,那么它的频率是31/100=0.31.频率是有限次数的试验所得的结果,概率是频数无限大时对应的频率.4.(2020·全国八年级课时练习)某科研小组,为了考查某河野生鱼的数量,从中捕捞200条,作上标记后,放回河里,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该河中野生鱼有( )A.8000条B.4000条C.2000条D.1000条【答案】B【解析】试题解析:∵300条鱼中发现有标记的鱼有15条,∴有标记的占到15 300,∵有200条鱼有标记,∴该河流中有野生鱼200÷15300=4000(条);故选B.5.(2018·全国九年级单元测试)某中学初三年级四个班,四个数学老师分别任教不同的班.期末考试时,学校安排统一监考,要求同年级数学老师交换监考,那么安排初三年级数学考试时可选择的监考方案有()种.A.8B.9C.10D.12【答案】B【解析】【分析】可分4个位置,对于每个位置做出可能的判断,列出树状图即可.【详解】设4个班级分别为A、B、C、D,相对应的4个老师分别为a,b,c,d,画树状图为:由图中可以看出,共有9种情况.故选B.【点睛】本题考查了用列树状图的方法解决问题,注意应去掉本班教师监考本班学生的排法.二、填空题6.(2020·北京海淀区·北理工附中九年级一模)林业部门要考察某种幼树在一定条件下的移植成活率,下图是这种幼树在移植过程中幼树成活率的统计图:估计该种幼树在此条件下移植成活的概率为______(结果精确到0.01).【答案】0.88.【解析】【分析】首先结合现实生活,对于不同批次的幼树移植成活率往往误差会比较大,为了减少误差,我们经常采用多批次计算求平均数的方法,然后再根据算术平均数的求法计算出这种幼树移植过程中统计的10次的成活率的平均数即可.【详解】 解:1(0.8650.9040.8880.8680.8750.8920.8820.8788.8790.881)0.8810x =+++++++++≈ 故答案为0.88.【点睛】本题主要考查的是利用频率估计概率,正确理解大量反复试验下频率稳定值即是概率是解题的关键.7.(2020·全国九年级课时练习)某鱼塘里养了1600条鲤鱼、若干条草鱼和800条罗非鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右,若该鱼塘主随机在鱼塘捕捞一条鱼,则捞到鲤鱼的概率约为_________. 【答案】13【分析】根据捕捞到草鱼的频率可以估计出放入鱼塘中鱼的总数量,从而可以得到捞到鲤鱼的概率.【详解】解:∵捕捞到草鱼的频率稳定在0.5左右,设草鱼的条数为x ,可得:0.51600800x x =++ ;解得:x=2400,经检验:x=2400是原方程的解且符合实际意义∴由题意可得,捞到鲤鱼的概率为16001160024008003=++, 故答案为:13. 【点睛】本题考查了应用频率估计的概率应用,解题的关键是明确题意,由草鱼的数量和出现的频率可以计算出鱼的数量.8.(2019·江苏盐城市·)小球在如图所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球最终停留在黑色区域的概率是_____________________.【答案】29 【解析】试题分析:根据题意和图示,可知所有的等可能性为18种,然后可知落在黑色区域的可能有4种,因此可求得小球停留在黑色区域的概率为:418=29.9.(2020·全国八年级课时练习)由于各人的习惯不同,双手交叉时左手大拇指在上或右手大拇指在上是一个随机事件(分别记为A (B ),曾老师对他任教的学生做了一个调查,统计结果如下表所示:若曾老师所在学校有2 000名学生,根据表格中的数据,在这个随机事件中,右手大拇指在上的学生人数可以估计为________名.【答案】1000【解析】试题解析:频率的平均数为:(0.509+0.518+0.5+0.49+0.5)÷5=0.5034≈0.52000×0.5=1000, 故右手大拇指在上的学生人数可以估计为1000名.三、解答题10.(2015·山西九年级专题练习)4件同型号的产品中,有1件不合格品和3件合格品. (1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率((2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;(3)在这4件产品中加入x 件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x 的值大约是多少?【答案】(1(14((2(12((3(x=16(【分析】(1)用不合格品的数量除以总量即可求得抽到不合格品的概率;(2)利用独立事件同时发生的概率等于两个独立事件单独发生的概率的积即可计算; (3)根据频率估计出概率,利用概率公式列式计算即可求得x 的值.【详解】解:(1)(4件同型号的产品中,有1件不合格品,(P (不合格品)=14; (2) 共有12种情况,抽到的都是合格品的情况有6种,P (抽到的都是合格品)=612=12; (3)(大量重复试验后发现,抽到合格品的频率稳定在0.95,(抽到合格品的概率等于0.95,(x+3x+4 =0.95,解得:x=16.【点睛】本题考查利用频率估计概率;概率公式;列表法与树状图法.11.(2018·天津河西区·九年级期末)泰州具有丰富的旅游资源,小明利用周日来泰州游玩,上午从A(B 两个景点中任意选择一个游玩,下午从C(D(E 三个景点中任意选择一个游玩.用列表或画树状图的方法列出所有等可能的结果,并求小明恰好选中景点B 和C 的概率.【答案】画树状图见解析;小明恰好选中景点B和C的概率为1 6(【解析】分析:通过列表展示所有6种等可能的结果数,找出小名恰好选中B和C这两处的结果数,然后根据概率公式求解.详解:列表如下:由表可知共有6种等可能的结果数,其中小明恰好选中景点B和C的结果有1种,所以小明恰好选中景点B和C的概率为16.点睛:此题主要考查了列表法与树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.12.(2019·山东九年级课时练习)某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图所示,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元(1)若他选择转动转盘1,则他能得到优惠的概率为多少?(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明. 【答案】(1)12;(2)转动转盘1更优惠.【解析】试题分析:(1)根据转盘1,利用概率公式求得获得优惠的概率即可; (2)分别求得转动两个转盘所获得的优惠,然后比较即可得到结论.试题解析:(1)(整个圆被分成了12个扇形,其中有6个扇形能享受折扣,(P (得到优惠)=612=12;(2)转盘1能获得的优惠为:0.3×300+0.2×300×2+0.1×300×312=25元,转盘2能获得的优惠为:40×24=20元,所以选择转动转盘1更优惠. 考点:列表法与树状图法.13.(2019·全国九年级单元测试)甲、乙两位同学做抛骰子(均匀正方体形状)实验,他们共抛了60次,出现向上点数的次数如表:(1)计算出现向上点数为6的频率.(2)丙说:“如果抛600次,那么出现向上点数为6的次数一定是100次.”请判断丙的说法是否正确并说明理由.(3)如果甲乙两同学各抛一枚骰子,求出现向上点数之和为3的倍数的概率.【答案】(1)16;(2)丙的说法不正确,理由详见解析;(3)13.【解析】【分析】(1)用出现6的次数除总次数即可得解;(2(丙的说法不正确,理由:(1)因为实验次数较多时,向上点数为6的频率接近于概率,但不说明概率就等一定等于频率;(2)从概率角度来说,向上点数为6的概率是16的意义是指平均每6次出现1次;(3)根据列出表格,由表格得到所有等结果与点数和为3的倍数的情况,然后根据概率公式求解即可.【详解】解:(1)出现向上点数为6的频率(101 606((2)丙的说法不正确,理由:(1)因为实验次数较多时,向上点数为6的频率接近于概率,但不说明概率就等一定等于频率;(2)从概率角度来说,向上点数为6的概率是16的意义是指平均每6次出现1次;(3)用表格列出所有等可能性结果:共有36种等可能性结果,其中点数之和为3的倍数可能性结果有12个((P(点数之和为3的倍数)121 363 ==(【点睛】本题主要考查频率与概率,用列表法或画树状图求概率,解此题的关键在于熟练掌握其知识点.14.(2020·全国九年级课时练习)2019年女排世界杯中,中国女排以11站全胜且只丢3局的成绩成功卫冕本届世界杯冠军.某校七年级为了弘扬女排精神,组建了排球社团,通过测量同学们的身高(单位:cm),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.(1)填空:样本容量为___,a=___;(2)把频数分布直方图补充完整;(3)若从该组随机抽取1名学生,估计这名学生身高低于165cm的概率.【答案】(1)样本容量为100,a=30;(2)见解析(3)4 5【分析】(1)用A组的频数除以它所占的百分比得到样本容量,然后计算B组所占的百分比得到a 的值;(2)利用B组的频数为30补全频数分布直方图;(3)计算出样本中身高低于165cm的频率,然后利用样本估计总体和利用频率估计概率求解.【详解】解:(1)15÷54360=100,所以样本容量为100;B组的人数为100-15-35-15-5=30,所以a%=30100×100%=30%,则a=30;故答案为100,30;(2)补全频数分布直方图为:(3)样本中身高低于165cm的人数为15+30+35=80,样本中身高低于165cm的频率为804 1005,所以估计从该地随机抽取1名学生,估计这名学生身高低于165cm的概率为45.【点睛】本题考查了利用频率估计概率:用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了统计中的有关概念.15.(2017·全国九年级单元测试)一堆彩球有红、黄两种颜色,首先数出的50个球中有49个红球,以后每数出8个球中都有7个红球,一直数到最后8个球,正好数完,在已经数出的球中红球的数目不少于90(((1)这堆球的数目最多有多少个?(2)在(1)的情况下,从这堆彩球中任取两个球,恰好为一红一黄的概率有多大?【答案】(1(210个(2(0.18【解析】试题分析:(1)模了n次,利用已知列概率,令其大于等于0.9.(2)利用乘法原理.试题解析:(1(210个.设每次摸8个球,共模了n次,则497950810nn+≥+((20n≤当n(20时,共有210个球,∴这堆球的数目最多有210个.(2)在(1)的情况下,210个球中有21个黄球,189个红球,从中摸两个,恰为一黄一红的概率约为0.18.先取红色再取黄色,或者先黄色再红色,2118920.18210209⨯⨯=.。
人教版九年级数学上册用频率估计概率专题练习(含答案)

人教版九年级数学上册用频率估计概率专题练习1.某口袋放有编号1~6的6个球,先从中摸出一球,将它放回口袋中后,再摸一次,两次摸到的球相同的概率是( )A .B .C .D .36118161212.某科研小组,为了考查某河流野生鱼的数量,从中捕捞200条,作上标记后,放回河里,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该河流中有野生鱼()A .8000条B .4000条C .2000条D .1000条3.一口袋中有6个红球和若干个白球,除颜色外均相同,从口袋中随机摸出一球,记下颜色,再把它放回口袋中摇匀.重复上述实验共300次,其中120次摸到红球,则口袋中大约有______个白球.4.某班级有学生40人,其中共青团员15人,全班分成4个小组,第一小组有学生10人,其中共青团员4人.如果要在班内任选一人当学生代表,那么这个代表恰好在第一小组内的概率为______;现在要在班级任选一个共青团员当团员代表,问这个代表恰好在第一小组内的概率是______.5.均匀的正四面体各面分别标有1,2,3,4四个数字,同时抛掷两个这样的四面体,它们着地一面数字相同的概率是______.如果没有正四面体,设计一个模拟实验用来替代此实验:______________________________.6.有4根完全相同的绳子放在盒子中,然后分别将它们的两端相接连成一条绳子,问一根绳子的两端刚好都接有绳子的概率是______.7.对某厂生产的直径为4cm 的乒乓球进行产品质量检查,结果如下:(1)计算各次检查中“优等品”的频率,填入表中;抽取球数n 5010050010005000优等品数m 45924558904500优等品频率nm (2)该厂生产乒乓球优等品的概率约为多少?8.某封闭的纸箱中有红色、黄色的玻璃球若干,为了估计出纸箱中红色、黄色球的数目,小亮向纸箱中放入25个白球,通过多次摸球实验后,发现摸到白球的频率为25%,摸到黄球的频率为40%,试估计出原纸箱中红球、黄球的数目.9.在5瓶饮料中有2瓶已过了保质期,从5瓶饮料中任取2瓶,则取到的2瓶都过了保质期的可能性是多少?请你用替代物进行模拟实验,估计问题的答案.10.某笔芯厂生产圆珠笔芯,每箱可装2000支.一位质检员误把一些已做标记的不合格产品也放入箱子里,若随机拿出100支,共做10次实验,这100支中不合格笔芯的平均数是5,你能估计箱子里有多少支不合格品吗?若每支合格品的利润为0.5元,如果顾客发现不合格品,需双倍赔偿(即每支赔1元),如果让这箱含不合格品的笔芯走上市场,根据你的估算这箱笔芯是赚是赔?赚多少或赔多少?11.为估计某一池塘中鱼的总数目,小英将100尾做了标记的鱼投入池塘中,几天后,随机捕捞,每次捕捞后做好记录,然后将鱼放回,如此进行20次,记录数据如下:总条数50456048103042381510标记数2132011201总条数53362734432618222547标记数2121211212(1)估计池塘中鱼的总数.根据这种方法估算是否准确?(2)请设计另一种标记的方法,使得估计更加精准.12.某数学兴趣小组为了估计π的值设计了投针实验.平行线间的距离α=0.5m,针长为0.1m,向地面随机投了150次,经统计有19次针与平行线相交.试求出针与平行线相交的概率的近似值,并估计出π的值.13.小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC.为了知道它的面积,小明在封闭图形内划出了一个半径为1m的圆,在不远处向圈内掷石子,且记录如下:掷子次数50次150次300次石子落在⊙O内144393 (含⊙O上)的次数m石子落在图形内的次数n1985186你能否求出封闭图形ABC的面积?试试看.14.地面上铺满了正方形的地砖(40cm×40cm).现在向其上抛掷半径为5cm的圆碟,圆碟与地砖间的间隙相交的概率大约是多少?15.设计一个方案,估计10个人中有2个人生日相同的概率是多少?写出你的方案设计.16.一次战争期间,参战的一方的一名间谍深入敌国内部,他侦察到的情报如下:(1)该国参战部队有220个班建制;(2)他在敌国参战部队的不同地点侦察了22个班;22个班中有20个班严重缺员,另外2个班只是基本满员;(3)敌国的士气不振.因此,他向本国发回消息:“敌国已基本失去战斗力”.你认为这名间谍的消息正确吗?17.小明在乒乓球馆训练完后,不慎将若干白球放入了装有30个橙色球的袋子中,已知两种球除颜色外都相同,你能帮他设计一个方案来估计放进多少白球吗?18.北京联通公司市场部经理小张想了解市内移动公司等对手的市场占有率及用户数量,你能帮他设计一种方案估计出其他公司用户的数量吗?19.一口袋中只有若干粒白色围棋子,没有其他颜色的棋子;而且不许将棋子倒出来数,请你设计一个方案估计出其中白色棋子的数目.20.某学校有50位女教师,但不知其校男教师的人数,一位同学为了弄清该校男教师的人数,他对每天进校时的第一位老师的性别进行了记录,他一共记录了200次,记录到女教师有80次.你能根据这位同学的记录估计出该校男教师的人数吗?请说明理由.参考答案1.C . 2.B . 3. 9. 4.⋅154;415.略.,416.⋅217.(1)频率依次为0.90,0.92,0.91,0.89,0.90;(2)概率是0.9.8.可估计三色球总数为个,则黄球约为40个,红球约为100-40-25=35个.100%2525=9.可能性是可取3个白球和两个红球,用红球代表过了保质期的饮料,从这5个球中;101任取两个,这两个均为红球的概率即为所求.10.(1)(支),估计箱子里有100支不合格产品;10010052000=⨯(2)0.5×(2000-100)-1×100=850(元),这箱笔芯能赚钱,赚了850元.11.(1)先求有标记数与总条数的比得池塘鱼数条,估计可能不太,67928242567928100=÷=准确,因为实验次数太少.(2)可以先捞出一定数目的鱼(比如30条),做上标记再放回,一天后,在池塘里随机捞取,每次捞50条,求带有标记和不带有标记鱼的数目比.重复实验100次,求出平均值,然后用30除以平均比值,即可估计池塘里的鱼数.12.估计又,127.015019==≈N n P .149.35.0127.01.022π,π2=⨯⨯=≈∴=Pa l a l P 13.随实验次数的增加,可以看出石子落在⊙O 内(含⊙O 上)的频率趋近0.5,有理由相信⊙O 面积会占封闭图形ABC 面积的一半,所以求出封闭图形ABC 的面积为2π.14.如图,当所抛圆碟的圆心在图中边框内(宽为5cm )部分时,圆碟将与地砖间的间隙相交,因此所求概率等于一块正方形地砖内的边框部分和该正方形的面积比,结果为⋅16715.用计算器设定1~365(一年按365天计)共365个随机数,每组取10个随机数,有两个数相同的记为1,否则记为0,做10组实验,求出现两个数相同的频率,用此数据来估计概率.16.由于间谍侦查到的班是随机的,设敌国有x 个班严重缺员,那么解得x =,2202220x =200,可见敌国有200个班严重缺员,仅有的20个班基本满员,又加上士气不振,可以说“敌国已基本上无战斗力了”.17.从袋中随机摸取一球,记下颜色放回摇匀,摸20次为一次实验,若摸出n 个橙球,则摸到橙球的频率为重复多次实验,用实验频率估计理论概率;用求出袋中;20n 2030n÷球的总数,再用总数减去30个橙球数,就得出放进去的白球数.18.首先统计出联通用户数量m ,然后随机调查1000名手机用户,如果其中有n 名中国联通用户,则可估计对手的市场占有率为对手用户数量为名.,10001n-m nm -100019.方案一:从口袋中摸出10粒棋子做上标记,然后放回口袋.拌匀后从中摸出20粒棋子,求出标记的棋子与20的比值,不断重复上述过程30次,有标记的棋子与20的比值的平均数为则估计袋中棋子有10m 粒.,1m方案二:另拿10粒黑色棋子放到袋中,拌匀后,重复方案一中的过程.黑棋子与20的比值平均数为估计袋中原有白棋子(10n -10)粒.,1n20.能.设男教师人数为x ,则解得x =75,估计该校约有75位男教师.,200805050=+x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级
利用频率估计概率练习题
一、选择题
(每题3分,共24分)
1.下列说法正确的是( ).
A.一颗质地均匀的已连续抛掷了2 000次的骰子。其中,抛掷出5点的次数最少,则第
2 001次一定抛出5点
B.某种彩票中奖的概率是l%,因此买100张该种彩票一定会中奖
C.天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨
D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等
2.下列试验能用编号为“l~6”卡片(均匀)搅匀作为替代试验的有( ).
①抛掷四面体②抛掷两枚硬币 ③抛掷一枚骰子④在“黑桃5一黑桃10'中任抽一张牌⑤
转四等分的圆转盘
A.1个 B.2个 C.3 D.4个
3.下列试验中,所选择的替代物不合适的是( ).
A.不透明的袋中有1个红球、1个黑球,每次摸一个球,可用一枚均匀的硬币代替
B.不透明的袋中有3个红球、2个黑球,每次摸一个球,可以用一个圆面积5等分,其
中3个扇形涂成红色,2个扇形涂成黑色的转盘替代
C.掷一颗均匀的骰子。可用三枚均匀的币替代
D.抽屉中,2副白手套、l副黑手套,可用2双白袜子、l双黑袜子替代
4.在“抛一枚均匀硬币”的试验中,如果没有硬币,下列试验一种不能作为替代试验?( )
A.2张扑克。“黑桃”代表“正面”,“红桃”代表“反面”
B.掷1枚图钉
C.2个形状大小完全相同,但1红1白的两个乒乓球
D.人数均等的男生、女生,以抽签的方式随机抽取1人
5.甲、乙两名同学在一次用频率去估计概率的试验中统计了某一结果出现的频率,绘出的
统计图如图所示,则符合这一结果的试验可能是( ).
A.掷一枚正六面体的骰子,出现l点的概率
B.从一个装有2个白球和1个红球的袋子中任取1个球,取到红球的概率
C.抛一枚硬币,出现正面的概率
D.任意写一个整数,它能被2整除的概率
6.下列说法不正确的是( ).
A.明天下雨的概率是90%,则明天不一定下雨
40%
30%
20%
10%
频率
200
400
600
次数
0
B.因为掷一枚均匀的硬币,正面朝上的概率为21,所以小明掷10次硬币,若前5次
均为反面朝上,第六次一定是正面朝上
C.袋子中有红白两个球,随意摸出一球放回袋中,再随意摸一次,有可能两次摸到的
都是红球
D.某彩票的中奖率是百分之一,则某人只买一张也可能中奖
7.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小
李通过多次摸球试验后,发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋
中自色球的个数很可能是( ). .
A.6 B.16 C.18 D.24
8.做重复实验:抛掷同一枚啤酒瓶盖1000次,经过统计得“凸面向上”的频率约为0.44,
则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为
( )
A. 0.22 B. 0.44 C .0.50 D. 0.56
二、填空题:(每题2分,共26 分)
1.当试验的结果有很多并且各种结果发生的可能性相同时,我们可以用__________ 的方式
得出概率.
2.当试验的所有可能的结果不是有限个或各种可能的结果发生的可能性不相等时,我们一
般通过_____ 来估计概率.
3.在同样条件下,大量重复试验时,根据一个随机事件发生的频率逐渐稳定到一个______
可以估计这个事件发生的概率.
4.人们常用模拟试验的方法估计事件发生的概率,常用的模拟方法有实物模拟和______两
种.
5.我们在抽取一张卡片时,若干个数字中的某个数字会随机地出现。大量重复试验就会产
生一串数,这样的一串数称为________.
6.一个口袋中有12个白球和若干个黑球,在不允许将球倒出来数的前
提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,
求出其中白球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的
白球数与10的比值分别为O.4,O.1,0.2,O.1,0.2.根据上述数据,小亮可估计
口袋中大约有_______个黑球.
7.将含有4种花色的36张扑克牌正面都朝下.每次抽出一张记下花色后再原样放回,洗匀
牌后再抽,不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红
心的大约有________张.
8.某公司有50名职工,现有6张会议入场券,经理决定任意地分配给6名职工,他们将
50名职工按l~50进行编号,用计算器随机产生_______~________之间的整数,随机
产生的______个整数所对应的编号的人就去参加会议.
9.从一副52张(没有大小王)的扑克牌中每次抽出l张。然后放 回洗匀再抽,研究恰好出
现“黑桃”的机会,若用计算器模拟试验,则要在____到______范围中产生随机数,若
产生随机数是_____,则代表“出现黑桃”,否则就不是,无论进行多少次试验都可以知
道“出现黑桃”的机会为_____.
10.要在一只不透明的袋中放入若干个只有颜色不同的乒乓球,搅匀后,使得从袋中任意摸
出一个乒乓球是黄色的概率是 52,可以怎样放球_______(只写一种).
11.用6个球(除颜色外没有区别)设计满足以下条件的游戏:摸到白球的概率为21,摸到
红球的概率为31,摸到黄球的概率为61.则应设_____个白球,_____个红球,_____个
黄球.
12.有副残缺的扑克牌,只有红心和黑桃两种花色的牌,并且缺6 张,通过若干次抽样调
查知道红心和黑桃出现的频率分别为 45%和55%,则共有红心牌______张.
13.现有50张大小、质地及背面图案均相同的北京奥运会吉祥物福娃卡片,正面朝下放置
在桌面上,从中随机抽取一张并记下卡片正面所绘福娃的名字后原样放回,洗匀后再抽,
不断重复上述过程,最后记录抽到欢欢的频率为20%。则这些卡片中欢欢约为______
张.
三、解答题 (每题10分,共50分)
1甲乙两同学投掷一枚骰子,用字母p ,q分别表示两人各投掷一次的点数。
(1)求满足关于x的x2 + px + q =0方程有实数解的概率。
(2) 求(1)中方程有两个相同实数解的概率。
2.小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其
中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色。此时小刚得1分,否则
小明得1分。
这个游戏规则对双方公平吗请说明理由。若你认为不公平,如何修改规则才能使游戏
对双方公平
3、学校门口经常有小贩搞摸奖活动,某小贩在一只黑色的 口袋里装有颜色不同的50只
小球,其中红色1只,黄色2只,绿色10只,其余为白球,搅拌均匀后,每2元摸
1球,奖品的情况标注在球上(如图):
(1)如果花2元摸1个球,那么摸不到奖的概率是多少
(2)如果花4元同时摸2个球,那么获得10元奖品的概率是多少
4、 中央电视台举办的第14届“蓝色经典。天之蓝”杯青年歌手大奖赛,由部
队文工团的A(海政)、B(空政)C(武警)组成种子队,由部队文工团的D(解放军)
和地方文工团的E(云南)、F(新疆)组成非种子队。现从种子队A、B、C与非种子队
D、E、F中各抽取一个队进行首场比赛。
(1)请用适当方式写出首场比赛出场的两个队的所有可能情况(用代码A、B、C、D、E、
F表示)
(2)求首场比赛出场的两个队都是部队文工团的概率P.
5、如图所示:有一个可以自由转动的圆形转盘,被平均分成四个扇形,四个
扇形内分别标有数字1,2,-3,-4,若将转盘转动两次,每一次停止转动后,指针指向
的扇形内的数字分别记为a,b(若指针恰好指在分界线上,则该次不计,重新转动一次,
直至指针落在扇形内)。
请你用列表法或树状图求a与b的乘积等于2的概率。
红 黄
蓝
红 白
蓝
8元 奖品 5元 奖品 1元 奖品 无
奖品
红球 黄球 绿球 白球
1 -4
2 -3