变量与函数第二课时 (2)

合集下载

《变量与函数》第2课时 教学设计

《变量与函数》第2课时 教学设计

《变量与函数》教学设计第2课时进一步研究运动变化过程中变量之间的对应关系,在观察具体问题中变量之间对应关系的基础上,抽象出函数的概念.1.进一步体会运动变化过程中的数量变化;2.从典型实例中抽象概括出函数的概念,了解函数的概念.概括并理解函数概念中的对应关系.多媒体:PPT课件、电子白板.一、观察思考,分析变化问题1 下面变化过程中,是否包含两个变量?同一问题中的变量之间有什么联系?(1)汽车以60 km/h 的速度匀速行驶,行驶的时间为t h,行驶的路程为s km;(2)每张电影票的售价为10 元,设某场电影售出 x张票,票房收入为y 元;(3)圆形水波慢慢地扩大,在这一过程中,圆的半径为 r ,面积为 S ;(4)用10 m 长的绳子围一个矩形,当矩形的一边长为 x,它的邻边长为 y.[活动说明与建议]说明:本问题主要是给出具体事例让学生认识并抽象得到函数的概◆教材分析◆教学目标◆教学重难点◆◆课前准备◆◆教学过程念,函数概念的抽象应循序渐进,首先让学生知道这些事例是一个变换的过程,其次这些变换过程中都含有两个变量,这两个变量之间存在着某种联系,最后由教师引导通过具体的数据,发现当给定一个变量的值时,有唯一的另一个变量的值与之对应,这种对应关系每个问题都不同.建议:在教师的引导下,充分的让学生通过实例感知函数,感知这种对应关系.【归纳】上面每个问题中的两个变量相互联系,当其中一个变量取定一个值时,另一个变量就有唯一的值与之对应.二、观察思考,再次概括问题2:一些用图或表格表达的问题中,也能看到两个变量之间存在上面那样的关系.(1)下面是中国代表团在第23 届至30 届夏季奥运会上获得的金牌数统计表,届数和金牌数可以分别记作 x 和 y,对于表中每一个确定的届数 x,都对应着一个确定的金牌数y 吗?(2)如图是北京某天的气温变化图,你能根据图象说出某一时刻的气温吗?问题3:综合以上这些现象,你能再次归纳出上面所有事例的变量之间关系的共同特点吗?函数的定义:一般地,在一个变化过程中,如果有两个变量x 与y,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说 x 是自变量,y 是 x 的函数.如果当 x =a 时,对应的 y =b,那么 b 叫做当自变量的值为 a 时的函数值.三、初步应用,巩固知识:练习1 下列问题中,一个变量是否是另一个变量的函数?请说明理由.(1)向一水池每分钟注水0.1 m3,注水量 y(单位:m3)随注水时间 x(单位:min)的变化而变化;(2)改变正方形的边长 x,正方形的面积 S 随之变化;(3)秀水村的耕地面积是106m2,这个村人均占有耕地面积 y (单位:m2)随这个村人数 n 的变化而变化;(4)P是数轴上的一个动点,它到原点的距离记为 x,它的坐标记为 y,y 随 x 的变化而变化.练习2 下面的我国人口数统计表中,人口数y 是年份x 的函数吗?为什么?练习3 下图是一只蚂蚁在竖直的墙面上的爬行图,请问:蚂蚁离地高度 h 是离起点的水平距离 t 的函数吗?为什么?【追问】蚂蚁离起点的水平距离 t 是离地高度 h 的函数吗?为什么?练习4 你能举出一个函数的实例吗?四、课堂小结:。

八年级下数学教案-变量与函数(2)

八年级下数学教案-变量与函数(2)

八年级下数学教案-变量与函数(2) 一、课程目标通过本课程的学习,学生将会达到以下的学习目标:1.掌握变量用字母表示的方法;2.熟练掌握变量在代数式中的应用;3.熟练掌握常量与变量的区别;4.掌握函数的概念以及函数表达式的表示方法;5.掌握函数与变量的关系;二、教学重点和难点重点1.变量表示方法;2.变量在代数式中的应用;3.函数定义与函数表达式。

难点1.理解函数的概念;2.理解函数与变量的关系;3.掌握函数表达式的表示方法。

三、教学步骤1. 导入新知识1.引入变量概念并让学生用字母表示变量;2.让学生举一些例子来解释变量;3.引入常量的概念并让学生解释常量和变量的区别;4.引入函数概念并解释函数的定义。

2. 理解变量在代数式中的应用1.让学生用字母表示式子中的变量;2.让学生举例出一个代数式然后带入数值计算。

3. 函数的定义与表示方法1.解释函数的定义;2.引入函数表达式的表示方法。

4. 函数与变量的关系1.让学生理解函数和变量的关系;2.解释函数表达式中的变量;3.让学生用变量来表示函数表达式。

5. 练习1.带入实际问题,让学生解决问题并运用所学知识。

四、教学方法1.课堂讲授;2.学生练习;3.互动式教学。

五、学习评估1.教师布置作业,让学生运用所学知识解决实际问题;2.在课堂上让学生表现所学知识;3.监测学生在学习过程中的表现。

六、教学资源1.课件PPT;2.试卷模板;3.教学实例。

以上是本节课程的完整教案,希望能够给各位教师在日常教学中提供一些参考。

加强教育良好的教学教案,提高教学效果,使学生受益。

数学:14.1《变量与函数》(第2课时)课件(人教新课标八年级上)

数学:14.1《变量与函数》(第2课时)课件(人教新课标八年级上)
人代步。独特的生活体验也只有自己知道,只有自己去感知山河水暖,日月星辰,才能拥有自己的一片晴空。现实里,真正的安宁不是远离车马喧嚣,而是在自己 的心中修篱种菊,等到秋收季节,你将收获一园的芬芳。优游 /
是的,你终将在孤独中写作,然后获得灵魂的自由。
站在街上叫一声“霞”,回头看的女人能有好几个,李巧霞就是这样一个普通的女人,衣着平常,其貌不扬。说她普通,知情的人一定会觉得有失公允,那是你没有看到她每天都干了多少活儿。
每天夜里三点半,李巧霞准时起床,日复一日,年复一年,风雨无阻。天宝路与劳动路交叉口东北角那个“老刘胡辣汤”是她家的,主要经营早餐,肉、素胡辣汤、豆腐脑、包子、稀饭、油馍、茶 鸡蛋等等,应有尽有。根本不用闹钟,到点儿自然醒,定闹钟怕惊扰了屋里的其他人,她摸索着爬起来,简单洗漱后拎着需要带的东西就出发了,不管头上有没有星星和月亮,身后有没有影子(小胡同 里没有路灯),都要硬着头皮往前走,好在去门店的路并不远,紧张害怕也就七分钟的时间。在天亮之前,她要点好一坛豆腐脑,烧好两锅胡辣汤(一肉一素),一桶小米粥,一桶八宝粥,一桶豆浆, 发好一盆蒸包子的面,和好一盆烙油饼的面,等一切安排就绪,雇用的钟点工到位,顾客将至,她才给男人打电话“过来盛汤收钱吧”。员工们无不感叹,好汉无好妻,懒汉娶花枝,老刘这福气谁敢比? 老婆带着手艺嫁给他,还这样老妈似地宠着他。老刘并不老,四十出头,长相也不着急,只是人们习惯这样叫他。

14.1(2)变量与函数(共2课时)

14.1(2)变量与函数(共2课时)

14.1.1(2)变量与函数学习目标:1、通过探索具体问题中的数量关系和变化规律来了解常量、变量的意义;2、学会用含一个变量的代数式表示另一个变量;3、结合实例,理解函数的概念以及自变量的意义;在理解掌握函数概念的基础上,确定函数关系式;4、会根据函数解析式和实际意义确定自变量的取值范围。

学习重点:了解常量与变量的意义;理解函数概念和自变量的意义;确定函数关系式。

学习难点:函数概念的理解;函数关系式的确定学习过程:一、自学解决问题问题一:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时.2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含t的式子表示s.__s=_________________t的取值范围是这个问题反映了匀速行驶的汽车所行驶的路程____随行驶时间___的变化过程.二、深入探究,得出结论(一)问题探究:问题二:每张电影票的售价为10元,如果早场售出票150张,午场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元.•怎样用含x的式子表示y ?1.请同学们根据题意填写下表:2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含x的式子表示y.__y=_________________x的取值范围是这个问题反映了票房收入_________随售票张数_________的变化过程.问题三:在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm•,•每1kg•重物使弹簧伸长0.5cm,设重物质量为mkg,受力后的弹簧长度为L cm,怎样用含m的式子表示L?2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含m的式子表示L.__L=_________________m的取值范围是这个问题反映了_________随_________的变化过程.问题四:圆的面积和它的半径之间的关系是什么?要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?30 cm2呢?怎样用含有圆面积S的式子表示圆半径r?关系式:________2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含s的式子表示r.__r=_________________s的取值范围是这个问题反映了___ _ 随_ __的变化过程.问题五:用10m长的绳子围成矩形,试改变矩形的长度,观察矩形的面积怎样变化.记录不同的矩形的长度值,计算相应的矩形面积的值,探索它们的变化规律。

数学:14.1《变量与函数》(第2课时)课件(人教新课标八年级上)

数学:14.1《变量与函数》(第2课时)课件(人教新课标八年级上)
这样的憧憬一直持续到了夏天也未成行,原因是湿地是原生态的湿地,上边遍布大大小小的水洼,根本无路可行。我的喜欢便真是单相思了。而就在这时,我和蛇猝不及防地相遇了。
?刚到大院时,我便被这里的风景吸引了。院里南北两排新落成的平房,当时正值初春,站在院子的高处,往北望去,是相连的一座座飘着炊烟的村庄,连绵起伏的人间烟火;而南面,是一望无际 的海边湿地,极目远眺,可以看见远方海岸线旁郁郁葱葱的树林。
这个季节里,湿地上满眼是去年长成的半人高的芦苇和一人多高的蒲草。地面上有刚冒头的绿色苇子嫩芽在生机盎然、跃跃欲试地生长。嫩绿和枯黄那样对立又和谐地相依着。我在这美里惊叹又着 迷着。心想哪天非要在这湿地里跑到累趴下为止。
午夜的宅男福利 回望蚕的一生,共五次蜕皮,而每一次蜕皮,都是一次新生。
五次新生,五次生命的华丽转身,唱响五次新生的生命ห้องสมุดไป่ตู้歌,最后结成茧,变成蛹,化为蛾。
生被分配到了一个海边小镇的财政所。小镇是由相邻两个乡新合并成立,乡政府大院也是新建成的,位置取中,座落在原来两个乡镇交界处的一片滩涂里。作为职能部门,我们是第 一批入驻新政府大院的人。

人教版八年级数学上册变量与函数第二课时课件

人教版八年级数学上册变量与函数第二课时课件
解:时间T是自变量,水量V是T的函数
函数解析式为 V=10-0.05T
你答对了吗
三、研学教材
3、梯形的上底长2,高3,下底长大于上 底长但不超过5.写出梯形面积关于的函数 解析式及自变量的取值范围. 解:函数解析式为S=
即s=3+1.5x 自变量x的取值范围 2<x≤5
四、归纳小结
1、一般地,在一个变化过程中,如果 有 两个变量x和y,并且对于x的每一个确定的值 , y都有唯__一__确__定__的__值_ 与其对应,那么我们就说 x是自变量 ,y是x的函数。
三、研学教材
1、在y=3x+1中,如果 x 是自变量, y 是x 的函数. 2、下列问题中哪些量是自变量?哪些量是自 变量的函数?试写出函数的解析式. (1)改变正方形的边长x,正方形 的面积s随之改变。 解:边长x是自变量 ,面积S是x的函数
函数解析式为 s=x2
三、研学教材
(2)每分向一水池注水0.1m3,注水量y(单 位:m3)随注水时间x(单位:min)的变化 而变化。解:时间x是自变量, 水量y是x的函数
三、研学教材
知识点二自变量和函数的概念
1、一般地,在一个变化过程中,如果有 两个变量x和y,并且对于x的每一个确定 的值,y都有 唯一 确定的值与其对应,
那么我们就说 x 是自变量,__y__是 x 的
函数.
如果当x=a时,y=b,那么b叫做当自变量 的值为a时的 函数值 .
三、研学教材
2、在计算器中操作y=2x+5后填表:
变量与函数第二课时
一、学习目标
1、理解函数的概念,能准确识别 出函数关系中的自变量和函数;
2、确定函数中自变量的取值 范围,注意问题的实际意义.

19.1.1 变量与函数(第2课时)教学反思.1.1(2)函数的概念教学反思

19.1.1 变量与函数(第2课时)教学反思.1.1(2)函数的概念教学反思

19.1.1 变量与函数(第2课时)教学反思1、数学概念的教学一般要经历:概念的引入、概念的形成、概念的定义、概念的应用和巩固.整个概念的生成过程都必须在知觉水平上进行分析、辨认,根据事物的外部特征进行概括.2、在学生对概念认识的起始阶段,给学生提供的问题情境应该以正例为主,数量要恰当,难度要适宜,不然就会影响概念的形成.在对概念的应用、巩固中,可以通过适当的反例让学生辨析概念,达到对概念内涵和外延的掌握.3、教学过程要以学生熟悉的生活实际问题为主线,引领学生通过问题,抽象、概括数学结论,要充分体现学生在学习过程中的主体性,增强学生学习数学的积极性、主动性,培养学生喜欢数学,爱学数学.4、在对问题情境的筛选、设计上,要紧扣课题,凸显课堂教学质量和教学效果,主要要考虑以下几点:(1)、有启发性,有助于创造生动愉悦的情境,产生学习的内驱力,形成理想的教学氛围,激发学生逐步进入思维的高潮,为后阶段的能力拓展创造条件;(2)、呈阶梯式,用已知为新知作辅垫,使学生的认知沿教师设置好的阶梯拾级而上,在符合学生的认知心理的前提下,能有效地引导学生的思维向纵深发展;(3)、要多角度,概念的引入和形成,要从“特殊”到“一般”,应用概念要从“一般”到“特殊”,强化概念又要从“特殊”到“一般”,通过多加反复,促使学生对概念的理解更加严密,强化教学效果;(4)、要立足生活,密切数学与生活的联系,增加数学概念教与学的实用性、生动性,使学生真切认识到数学来源于生活,又能服务于生活,感觉到数学的美无处不在. (5)、要重成效,在数学概念学习、运用的过程中,让学生觉得自己所学的数学知识学有所用,学有所值的同时,也要感觉到:要解决现实问题,运用已有的知识是远远不够的,激发学习潜能,提高课堂教学的成效.5、学生的课堂学习既包括学也包括练,课堂练习一方面能使学生将刚刚理解的知识加以应用,在应用中加深对所学知识的理解;另一方面能及时暴露学生对新知识理解和应用中的不足。

人教版数学八年级下册19.1.1变量与函数第二课时教学课件PPT文档共33页

人教版数学八年级下册19.1.1变量与函数第二课时教学课件PPT文档共33页
人教版数学八年级下册19.1.1变量与函数 第二课时教学课件
31、园日涉以成趣,门虽设而常关。 32、鼓腹无所思。朝起暮归眠。 33、倾壶绝余沥,窥灶不见烟。
34、春秋满四泽,夏云多奇峰,秋月 扬明辉 ,冬岭 秀孤松 。 35、丈夫志四海,我愿不知老。
46、我们若已接受最坏的,就再没ห้องสมุดไป่ตู้什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

19.1.1变量与函数(第二课时)
教学内容
19.1.1变量与函数(第二课时) 教材p72-74. 教学目标
知识与技能:
1.经过回顾思考认识变量中的自变量与函数. 2.进一步理解掌握确定函数关系式. 3.会确定自变量取值范围.
过程与方法:
1.经历回顾思考过程、提高归纳总结概括能力.
2.通过从图或表格中寻找两个变量间的关系,提高识图及读表能力,体会函数的不同表达方式.
情感、态度与价值观:
1.积极参与活动、提高学习兴趣.
2.形成合作交流意识及独立思考的习惯. 教学重点
1.进一步掌握确定函数关系的方法. 2.确定自变量的取值范围. 教学难点
认识函数、领会函数的意义 教学方法
回顾思考─探索交流─归纳总结 教学准备 Ppt 教学过程
(一).创设情境
我们先来回顾一下上节课所学习的内容。

1. 复习巩固 什么叫做常量?什么叫做变量?
2.小试身手 请说出下列关系式中的常量与变量。

y=2x s=(n-2) ×180
(二).导入新课
一、探索研究
1、小明到商店买练习簿,每本单价2元,总金额y (元)
与购买的总数x (本)的关系式,可以表示为 y=2x r c π2=2180x
y -=
请同学们根据题意填写下表
2、圆的周长C 与半径r 的关系式________________
请同学们根据题意填写下表
3、n 边形的内角和S 与边数n 的关系式____ s=(n-2) ×180 ___;
请同学们根据题意填写下表
4、
等腰三角形
的顶角为x 度,那么底角y 的度数用含x 的式子表示为 ______________.
请同学们根据题意填写下表
问题:以上1—4题中是否各有两个变量?同一个问题中的变量之间有什么联系? 学生思考后,回答自己的发现。

发现:
• 1 每个变化的过程中都存在着(两个)变量.
• 2 两个变量互相联系,当其中一个变量每取一个值时,另一个变量就会有(唯一确定的值与其对
应)
知识归纳:
一般地,在一个变化过程中,如果有两个变量, (假定为x 和y ),对于x 的每一个确定的值,y 都有
唯一确定的值与其对应,那么我们就说x 是自变量, (y 是因变量), y 是x 的函数.
解释函数的特征: (1)两个变量;
(2)两个变量之间有一种对应关系:
即:当x 每取一个值时,y 都有唯一确定的值与
x 对应. r
c π2=2
180x y -=
例如:对于函数y = 2 x ,当x=3时,y都有唯一的值y=6与x=3对应,
因此,我们把6叫做当自变量的值为3时的函数值.
一般地,如果当x=a时,y=b,则b叫做当自变量为a时的函数值。

知识穿插:
函数一语,起用于公元1692 年,最早见自德国数学家莱布尼兹的著作。

他是德国最重要的自然科学家、数学家、物理学家、历史学家和哲学家,一个举世罕见的科学天才,和牛顿同为微积分的创建人。

他博览群书,涉猎百科,对丰富人类的科学知识宝库做出了不可磨灭的贡献。

二、自我挑战
判断下列问题中的变量y是不是x的函数?
(1)在y = 2x 中的y与x;
(2)在y = x 2 中的y与x;
(3)在y2 = x 中的y与x;
(4).在下面的我国人口统计表中,年份与人口数可以记作两个变量x与y,对于表中每一个确定的年份x,都对应着一个确定的人口数y吗?
(5)如图,是体检时的心电图,其中横坐标x表示时间,纵坐标y表示心脏某部位的生物电流,它们是两个变量,其中y是x的函数吗?
从上面的学习中可知许多问题中的变量之间都存在函数关系.
活动一:在计算器上按照下面的程序进行操作.
下表中的x与y是输入的5个数与相应的计算结果:
教师活动:
引导学生正确操作、分析思考、寻求理由证据,确定按键及函数关系式.
学生活动:
在教师引导下,1.经历操作、填表、分析、推理、确认等一系列过程,更加深刻理解函数意义.2.通过观察、讨论、分析、猜想、验证、确立等一系列过程,进一步掌握建立函数关系式的办法.活动结论:
1.从计算结果完全可以看出,每输入一个x的值,操作后都有一个唯一的y值与其对应,所以在这两个变量中,x是自变量、y是x的函数.
这两个键,且每个x•的值都有唯一一个y值与2.从表中两行数据中不难看出第三、四按键是1
其对应,所以在这两个变量中,x是自变量,y是x的函数.关系式是:y=2x+5
[师]通过以上活动,我们对函数意义认识更深刻了,并完善掌握了函数关系式确定的方法.为了进一步学好函数,我们再来完成一个问题.
[活动二]
活动内容设计:
例1 一辆汽车油箱现有汽油50L,如果不再加油,那么油箱中的油量y(L)随行驶里程x(km)的增加而减少,平均耗油量为0.1L/km.
1.写出表示y与x的函数关系式.
2.指出自变量x的取值范围.
3.汽车行驶200km时,油桶中还有多少汽油?
设计意图:
通过这一活动,再次加深对函数意义理解,熟练掌握函数关系式确立的办法.学会确定自变量的取值范围,并能通过关系式解决一些简单问题.
教师活动:
注意学生在活动中对函数意义的认识水平,引导其总结归纳自变量取值范围的方法.
学生活动:
通过活动,感知体会函数意义,学会确立函数关系式及自变量取值范围,并能掌握其一般方法.活动过程及结果:
1.行驶里程x是自变量,油箱中的油量y是x的函数.
行驶里程x时耗油为:0.1x
所以函数关系式为:y=50-0.1x
2.仅从式子y=50-0.1x 上看,x 可以取任意实数,但是考虑到x •代表的实际意义是行驶里程,所以不能取负数,并且行驶中耗油量为0.1x ,它不能超过油箱中现有汽油50L ,即0.1x≤50,x≤500. 因此自变量x 的取值范围是: 0≤x≤500
3.汽车行驶200km 时,油箱中的汽油量是函数y=50-0.1x 在x =200时的函数值,将x=200代入y=50-0.1x 得: y=50-0.1×200=30
汽车行驶200km 时,油箱中还有30升汽油.
[师]通过这个活动,我们在巩固函数意义理解认识及确立函数关系式基础上,又学会了如何确定自变量取值范围和求函数值的方法.知道了自变量取值范围的确定,不仅要考虑函数关系式的意义,而且还要注意问题的实际意义.
例2 求出下列函数中自变量的取值范围
(1) y=2x
(三)、当堂检测
1.写出下列各问题中的关系式,并指出其中的自变量与函数。

(1)正方形的面积S 随边长 x 的变化
(2)秀水村的耕地面积是106m2,这个村人均耕地面积y 随着人数x 的变化而变化
2.下列各曲线中不表示 y 是 x 的函数的是( ) 省略
(2) 1
-=
n m 2
3
+=
x y (4)
1
1+-=k k
h (3)长方形的周长是18 ,它的长是m ,宽是n ; 3.下列关系中,y 不是x 函数的是( )
2
.x y A =
2
.x y B =x y C =.x
y D =.(3)
4. 等腰三角形ABC的周长为10, 底边BC长为y , 腰AB长为x ,
求:
(1) y 关于x 的函数解析式;
(2) 腰长AB=3时,底边的长;
(3) 自变量的取值范围。

(四)、课堂小结
通过这节课的学习,你有什么收获?
1.函数的概念
2.自变量的取值范围。

相关文档
最新文档