《信号检测与估计》第十章习题解答

合集下载

《信号估值与检测》习题

《信号估值与检测》习题

1. 令观测样本由1(,....)i ix s w i n =+=给出,其中{}i w 是一高斯白噪声,其均值为零,方差为1。

假定s的先验概率密度为22())s f a a =-试用平方和均匀代价函数分别求s 的贝叶斯估计。

解:2()(|))2i i x s p x s -=-,1,...,i n =222111()()1(|)(|))()exp()222n n n ni ii i i i x s x s p s p x s π===--==-=-∑∏x且12221()()exp(2)2p s s s π=-=-(1) 采用平方代价函数,相应贝叶斯估计为最小均方误差估计mse s[|](|)mse sE s sp s ds +∞-∞==⎰x x21222121221222112221112()(|)()111(|)()exp()()exp(2)()()222()11()exp(2)()22(2)11()exp()()22(1)211()exp()exp(()22n ni i n ni i nn ii i nn i i i i x s p s p s p s s p p x s s p xx s s s p x n s x s p πππππ=+=+=+==-==---=---++=-+-=--∑∑∑∑x x x x x x x 221112222211112)2(1)(2)111()exp()exp()()222()(())1111()exp()exp()1()222(1)nnnin ii i nnni i n ii i i x xn s s n p x x x s n n p n ππ+==+===+-+=----++--+∑∑∑∑∑∑x x 分析(|)p s x ,发现其为高斯型的;而mse s为其条件均值,因此可以直接得到 1()1ni mse i x s n ==+∑ (2) 采用均方代价函数,相应贝叶斯估计为最大后验估计map sln((|))|0map p s s ss∂==∂x ,也即满足 ln((|))ln(())[]|0map p s p s ss s∂∂+==∂∂x x 故有1()0nmapmap ii x ss=--=∑ 所以111n map i i s x n ==+∑2. 设观测到的信号为x n =θ+其中n 是方差为2n σ、均值为零的高斯白噪声。

《信号检测与估计》第十章习题解答

《信号检测与估计》第十章习题解答

《信号检测与估计》第十章习题解答10.1 设线性滤波器的输入信号为()()()t n t s t x +=,其中()[]0E =t s ,()[]0E =t n ,并且已知()ττ-e =S R ,()ττ-2e=N R ,()0=τsn R ,求因果连续维纳滤波器的传递函数。

解:连续维纳滤波器与离散维纳滤波器的形式是相同的,即()()()()+⎦⎤⎢⎣⎡−⋅⋅=s B s P s B s H xs w112opt σ 因此需要求解()t s 的复功率谱和()t x 的时间信号模型。

考虑到信号与噪声不相关,因此观测数据的功率谱就等于信号的复功率谱加上噪声的复功率谱。

对观测数据的复功率谱进行谱分解,就可以得到()t x 的时间信号模型。

()t s 的复功率谱为()()()20s -10s 1-s --121111e e e e s s s d d d s P S −=−++=+==∫∫∫∞−+∞++∞∞−τττττττ ()t n 的复功率谱为()2s -2-44e es d s P N −==∫+∞∞−τττ因此,观测数据的复功率谱为()()()()()()()()()s s s s ss ss s P s P s P N S X −+−++=−+−=+=2211-226441122 取12=w σ()()()()s s ss B +++=2126()()()()()()()()()s s s s s s s s B s P s B s P N xs +=−==1-2-262-2-1-2612--2令()()()s B s P s F xs -=,()τf 是()s F 的拉普拉斯反变换。

要求()τf 是因果的,可将s 平面右半平面的极点扔掉,()()()[]12e 61,e Re e21-s s +=−==∫τττπτs F s ds s F jf C给()τf 取因果,并做拉普拉斯变换,得到()s d s F +⋅+=⋅⋅+=∫∞++11126e e 1260s --τττ()()()()()()())()()122261112626211112opt +++=+×+×+++×=⎦⎤⎢⎣⎡−⋅⋅=+ss ss s s s B s P s B s H xs wσ10.2 设已知()()()n n n s n x +=,以及()()()z z z G S 4.014.0192.01−−=−,()1=z G N ,()0=z G sn ()n s 和()n n 不相关。

信号检测与估计知识点

信号检测与估计知识点

信号检测与估计知识点一、知识概述《信号检测与估计知识点》①基本定义:信号检测与估计呢,简单说就是从一堆有干扰的数据里找到真正的信号,还得把这个信号的一些特征估摸出来。

就好比在很嘈杂的菜市场找朋友的声音(信号),还得判断朋友声音的大小之类的特征(估计)。

②重要程度:在通信、雷达、图像处理这些学科里超级重要。

就拿雷达来说,如果不能准确检测和估计信号,那根本就不知道飞机在哪呢,整个防空系统都得乱套。

③前置知识:得先知道概率论、随机过程这些基础知识。

不然,信号检测与估计里那些关于概率、随机变量啥的根本理解不了。

④应用价值:在通信领域,可以提升信号传输准确性;在医学上,检测病人的生理信号,像心电图啥的,估计其参数有助于诊断病情;在工业自动化里,对检测到的信号进行估计,能更好控制生产流程。

二、知识体系①知识图谱:信号检测与估计在信号处理这个大的学科里面是很核心的部分,就像心脏在人体里的位置一样重要。

②关联知识:和信号处理里的滤波、调制解调关系密切。

比如说滤波后的信号可能才更有利于检测和估计,而检测估计的结果可以反馈给调制解调改变参数。

③重难点分析:- 掌握难度:这个知识点有点难,难点在于要同时考虑到噪声和信号的混合情况,还得建立合适的模型。

按我的经验,很多时候分不清哪些是噪声干扰带来的变化,哪些是信号本身的特征。

- 关键点:把握好概率统计的方法,准确地建立信号模型是关键。

④考点分析:- 在考试中很重要,如果是在电子通信等相关专业的考试里,经常考。

- 考查方式可能是给一些含噪声的信号数据,让你进行检测和估计参数,也可能是叫你设计一个简单的信号检测方案。

三、详细讲解【理论概念类】①概念辨析:- 信号检测就是判断信号是否存在。

咱们看谍战片里的电台接收情报,接收员得判断接收到的微弱声音(可能包含信号和噪声)里是不是有真正要接收的情报信号,这就是信号检测。

- 信号估计是对信号的各种参数,像幅度、相位等进行估计。

好比知道有信号了,还得估摸这个信号是多强、频率是多少之类的。

信号检测估计复习资料

信号检测估计复习资料

信号检测估计复习资料第二章随机信号及其统计描述1.两个随机过程不相关一定独立。

()2.严格的平稳随机过程不一定是宽平稳随机过程。

()3.平稳随机过程的功率谱密度与自相关函数是一对傅里叶变换。

()4.白噪声是一种理想化模型,在实际中是不存在的。

()5.功率谱密度是样本函数x在单位频带内在1欧姆电阻上的平均功率值。

()6.加性噪声按功率谱密度分为()噪声和()噪声。

7.有色噪声的功率谱密度在频率范围内是均匀分布的。

()8.对于白噪声下面哪个量是均匀分布的()。

A.噪声电压B.噪声电流C.噪声功率D.噪声功率谱密度9.在信号检测与估计理论中,通信接收机中的噪声可以近似为平稳随机过程。

()第三章经典检测理论1.什么是二元检测,其本质是什么?画出其理论模型。

2.二元检测中有两类错误的判决概率,两类正确判决概率。

( )3.下面哪种概率是虚警概率()。

A.P(D0|H0)B.P(D1|H0)C.P(D1|H1)D. P(D0|H1)4.二元检测中有先验概率和后验概率,P(H0)是()概率,P (H0|x)是()概率。

5.下面哪个为后验概率密度函数()。

A.f(x|H0)B.f(x|H1,a)C.f(a|x)D.f(a)6.经典检测理论中常用的4个检测准则分别为()、()、()和()。

7.最大后验概率准则和最小错误概率准则判决公式是不同的。

()8.最大后验概率准则为何称为理想观测者准则?9.极大极小风险准则是在先验概率未知的情况下,使可能出现的最大风险达到极小的判别准则。

()10.Neyman-Pearson准则规定,在给定( )概率情况下,使得()概率尽可能大。

11.最大后验估计和最大似然估计的使用条件。

12.下面哪种判决准则是时平均风险最小的准则()。

A.最大后验概率准则B.最小错误概率准则C.Bayes准则D.Neyman-Pearson准则13.当先验概率未知和代价函数均未知时,使用的判决准则是Neyman-Pearson准则。

信号检测估计理论与识别技术习题参考答案

信号检测估计理论与识别技术习题参考答案

2-1 1[()]2E x t =,1212(,)3X t t R t t = 2-2 略。

2-3111[()]sin cos 333E x t t t=++12112212121111111(,)sin cos sin cos sin()cos()9999999X R t t t t t t t t t t =+++++++-2-4 [()]0E X t =,20(,)cos R t t w τστ+=2-5 [()]0E X t =,20(,)cos 2a R t t w ττ+= 2-6 略。

2-7 [()]0E X t =,10(,)200R t t τττ⎧=⎪+=⎨⎪≠⎩2-8 1210()()()2cos(10)(21)X X X R R R eτττττ-=+=++,2[()](0)5X E X t R ==,2(0)2X X R σ==2-9 11()()cos 22jw jw X X o G w R e d w e d τττττ∞∞---∞-∞==⎰⎰00()()()22X P w w w w w ππδδ=-++2-10 00()(()())2Y X X aG w G w w G w w =-++2-11 ())()X R u ττ=+-3-1 二元信号统计检测的贝叶斯平均代价C 为110000000100100110111111()()=()()()() ()()()()ij i i j j i C c P H P H H c P H P H H c P H P H H c P H P H H c P H P H H ===+++∑∑ 利用01()1()P H P H =-1101()1()P H H P H H =- 0010()1()P H H P H H =-得平均代价C 为[][]0011010110011011110100101110111000111011000101()1()1()() ()()()1() ()() ()()()()()()C c P H P H H c P H P H H c P H P H H c P H P H H c c c P H H P H c c c c P H H c c P H H =-⎡-⎤+-+⎣⎦+⎡-⎤⎣⎦=+-+⎡-+---⎤⎣⎦3-2 1)由于各假设j H 的先验概率()(0,1,2)j P H j =相等,所以采用最大似然准则。

信号检测与估计试题——答案(不完整版)

信号检测与估计试题——答案(不完整版)

一、概念:1. 匹配滤波器。

概念:所谓匹配滤波器是指输出判决时刻信噪比最大的最佳线性滤波器。

应用:在数字信号检测和雷达信号的检测中具有特别重要的意义。

在输出信噪比最大准则下设计一个线性滤波器是具有实际意义的。

2. 卡尔曼滤波工作原理及其基本公式(百度百科)首先,我们先要引入一个离散控制过程的系统。

该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:X(k)=A X(k-1)+B U(k)+W(k)再加上系统的测量值:Z(k)=H X(k)+V(k)上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。

A和B是系统参数,对于多模型系统,他们为矩阵。

Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。

W(k)和V(k)分别表示过程和测量的噪声。

他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance 分别是Q,R(这里我们假设他们不随系统状态变化而变化)。

对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。

下面我们来用他们结合他们的covariances 来估算系统的最优化输出(类似上一节那个温度的例子)。

首先我们要利用系统的过程模型,来预测下一状态的系统。

假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:X(k|k-1)=A X(k-1|k-1)+B U(k) (1)式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。

到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的covariance还没更新。

我们用P表示covariance:P(k|k-1)=A P(k-1|k-1) A’+Q (2)式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A’表示A的转置矩阵,Q是系统过程的covariance。

信号检测与估计填空题集

信号检测与估计填空题集

一、填空题说明填空题(每空1分,共10分)或(每空2分,共20分)二、第1章填空题1.从系统的角度看,信号检测与估计的研究对象是 加性噪声情况信息传输系统中的接收设备 。

从信号的角度看,信号检测与估计的研究对象是 随机信号或随机过程 。

2.信号检测与估计的基本任务:以数理统计为工具,解决接收端信号与数据处理中 信息恢复与获取 问题。

3.信号检测与估计的基本任务:以数理统计为工具,从被噪声及其他干扰污染的信号中 提取、恢复 所需的信息。

4.信号检测是在噪声环境中,判断 信号是否存在或哪种信号存在 。

信号检测分为 参量检测和 非参量检测 。

参量检测是以 信道噪声概率密度已知 为前提的信号检测。

非参量检测是在 信道噪声概率密度为未知 情况下的信号检测。

5.信号估计是在噪声环境中,对 信号的参量或波形 进行估计。

信号估计分为 信号参量估计和 信号波形估计 。

信号参量估计是对 信号所包含的参量(或信息) 进行的估计。

信号波形估计是对 信号波形 进行的估计。

6.信号检测与估计的数学基础:数理统计中贝叶斯统计的 贝叶斯统计决策理论和方法 。

三、第2章填空题1.匹配滤波器是在输入为 确定信号加平稳噪声 的情况下,使 输出信噪比达到最大 的线性系统。

2.匹配滤波的目的是从含有噪声的接收信号中,尽可能 抑制噪声,提高信噪比 。

3.匹配滤波器的作用:一是使滤波器 输出有用信号成分尽可能强 ;二是 抑制噪声,使滤波器输出噪声成分尽可能小 。

4.匹配滤波器的传输函数与输入 确定信号频谱的复共轭 成正比,与输入 平稳噪声的功率谱密度 成反比。

3.匹配滤波器传输函数的幅频特性与输入 确定信号的幅频特性成 正比,与输入 平稳噪声的功率谱密度 成反比。

4.物理不可实现滤波器也称作非因果滤波器:是指 物理上不可能实现或不满足因果规律 的滤波器。

5.物理不可实现匹配滤波器的冲激响应)(t h 满足: 0)(≠t h , ∞<<∞-t 。

《信号检测与估计》第二章习题解答

《信号检测与估计》第二章习题解答

E[x]
=
0

R(t, t

)
=
R(τ
)
=
a2 2
cos ω0τ
即数学期望与时间无关,自相关函数仅与时间间隔有关,故 X (t) 为广义平稳随机过程
2.7 设有状态连续,时间离散的随机过程 X (t) = sin(2πAt),式中, t 只能取正整数,即 t = 1,2,3,L ,
A 为在区间 (0,1) 上均匀分布的随机变量,试讨论 X (t)的平稳性。
cos
t2
+
1 9
sin
t2
cos t1
=
1 9
+
1 9
sin
t1
+
1 9
cos
t1
+
1 9
sin
t2
+
1 9
cos t2
+
1 9
cos(t1
-
t2
)+
1 9
sin(t1
+
t2
)
2.4 随机过程 X (t)为 X (t) = A cosω0t + B sin ω0t
[ ] [ ] 式中,ω0 是常数,A 和 B 是两个相互独立的高斯随机变量,而且 E[A] = E[B] = 0 ,E A2 = E B2 = σ 2 。
1 ↔ e−aτ u(τ )
jω + a
所以
RX (τ ) = ⎜⎜⎝⎛
1 e− 3
3τ −
1e 3
3τ + 1 e− 22
2τ − 1 e 22
2τ ⎟⎟⎠⎞u(τ )
平均功率
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《信号检测与估计》第十章习题解答10.1 设线性滤波器的输入信号为()()()t n t s t x +=,其中()[]0E =t s ,()[]0E =t n ,并且已知()ττ-e =S R ,()ττ-2e=N R ,()0=τsn R ,求因果连续维纳滤波器的传递函数。

解:连续维纳滤波器与离散维纳滤波器的形式是相同的,即()()()()+⎦⎤⎢⎣⎡−⋅⋅=s B s P s B s H xs w112opt σ 因此需要求解()t s 的复功率谱和()t x 的时间信号模型。

考虑到信号与噪声不相关,因此观测数据的功率谱就等于信号的复功率谱加上噪声的复功率谱。

对观测数据的复功率谱进行谱分解,就可以得到()t x 的时间信号模型。

()t s 的复功率谱为()()()20s -10s 1-s --121111e e e e s s s d d d s P S −=−++=+==∫∫∫∞−+∞++∞∞−τττττττ ()t n 的复功率谱为()2s -2-44e es d s P N −==∫+∞∞−τττ因此,观测数据的复功率谱为()()()()()()()()()s s s s ss ss s P s P s P N S X −+−++=−+−=+=2211-226441122 取12=w σ()()()()s s ss B +++=2126()()()()()()()()()s s s s s s s s B s P s B s P N xs +=−==1-2-262-2-1-2612--2令()()()s B s P s F xs -=,()τf 是()s F 的拉普拉斯反变换。

要求()τf 是因果的,可将s 平面右半平面的极点扔掉,()()()[]12e 61,e Re e21-s s +=−==∫τττπτs F s ds s F jf C给()τf 取因果,并做拉普拉斯变换,得到()s d s F +⋅+=⋅⋅+=∫∞++11126e e 1260s --τττ()()()()()()())()()122261112626211112opt +++=+×+×+++×=⎦⎤⎢⎣⎡−⋅⋅=+ss ss s s s B s P s B s H xs wσ10.2 设已知()()()n n n s n x +=,以及()()()z z z G S 4.014.0192.01−−=−,()1=z G N ,()0=z G sn ()n s 和()n n 不相关。

()n s 代表所希望得到的信号,()n n 代表加性白噪声。

求其物理可实现的因果维纳滤波器的()z H opt 及()[]min 2E n e ,非因果情况的结果如何?试作比较。

解:首先考虑因果解,维纳滤波器的最佳解为()()()()+−⎦⎤⎢⎣⎡⋅⋅=1211z B z G z B z H xs wopt σ 由于信号与噪声不相关,因此()()z G z G S xs =()()()z G z G z G N S X +=根据()n x 的复功率谱进行谱分解,可以求出()z B 和2w σ()()()()()()()()()()()()z z z z z z z z z z z G z G z G N S X 4.014.012.012.0124.014.014.008.2142.0142.0192.01-1-1-1-1-−−−−=−−+−=+−−=+= 取22=wσ,得到 ()1-1-4.012.01z z z B −−=令()()()1−=z B z G z F xs ,由于信号与噪声不相关,()()z G z G S xs =,因此 ()()()()()()()()()11114.012.0192.04.012.014.014.0192.0−−−−−−=−−−−===z z zz z z z B z G z B z G z F S xs 设()n f 是()z F 的Z 反变换,考虑到要对()n f 取因果,因此不考虑单位圆外的极点,应用留数定理求解:()()()[]n n Cn z z F dz zz F jn f 4.04.0,Res 2111=⋅=⋅=−−∫π对()n f 取因果有()()()()n u n u n f n f n 4.0==+ ()n f +的Z 变换记为()z F +,得到()14.0114.0−+∞=−+−=⋅=∑zz z F n n n因此因果维纳滤波器的最佳解为()()()111122.015.04.0112.014.012111−−−−+−=−×−−×=⋅⋅=z z z z z F z B z H w opt σ()[]()()()[]()()()()()()()()()()()()5.02.0,2.04.0146.0Res 2.04.0146.0212.012.05.04.014.0192.0214.014.0192.02.015.04.014.0192.021211111111min 2=⎥⎦⎤⎢⎣⎡−−=−−=⋅−−⋅−−=⎦⎤⎢⎣⎡−−×−−−−=−=∫∫∫∫−−−−−−−z z dzz z jz dzz z z z j z dz z z z z z jzdz z G z Hz G j n e E C C C Cxsopt Sππππ 非因果情况下,()()()()()()()()()()()()()11112.012.0146.04.014.012.012.0124.014.0192.0−−−−−−=−−−−×−−===z z z z z z z z z G z G z G z G z H X S X xs opt ()[]()()()[]()()()()()()()()()()48232.0,12.012.0146.0Res 2.012.0146.0214.014.0192.02.012.0146.04.014.0192.02121111111min 2=⎥⎦⎤⎢⎣⎡⋅−−=⋅−−=⎦⎤⎢⎣⎡−−×−−−−−=−=−−−−−−∫∫∫z z z z dz z z j z dz z z z z z z jzdzz G z Hz G j n e E C C Cxs optSπππ 10.3 已知一维平稳随机信号()n x 的状态方程和量测方程分别为()()()115.0−+−=k w k x k x 和()()()k n k x k y +=,其中,()k w 、()k n 为白噪声,且()[]1E 2=k w ,()[]1E 2=k n ,以及对于任意k 、l 有()()[]0E =l n k w 和()()[]0E =l n k x 。

(1)列出并化简相应的卡尔曼滤波公式。

(2)分析当∞→k 时,()k P 的极限形式。

解:(1)由状态方程和量测方程可知, 5.01=−k A ,11=−k Γ,1=k C由题可知()[]1E 2==k w k Q ,()[]1E 2==k n k R ,[][]0E E ˆ00===k X X X ()()()zzz z z z G X 5.01325.01345.015.01111−+−=−−=−− 所以()[]15.0134−+−=z z G X()()[]34lim 0==+∞→z G R X z X 所以[][]()3402200====X k R X E X E P 因为滤波增益:[]1T1T 1−−−+=kk k k k k k k k R C P C C P H滤波误差方差:()1−−=k k k k k k P C H I P由预测误差方差T 111T 1111−−−−−−−+=k k k k k k k k ΓQ ΓA P A P 可得225.0111+−=−k k P P由最优预测估计可知11ˆ5.0ˆ−−=k k k X X 由最优滤波估计公式[][][]k k k k k k k k k k k k k k k k k Y P X P Y H X P X C Y H X X +−=+−=−+=−−−−1111ˆ15.0ˆ1ˆˆˆ 于是卡尔曼滤波可简化为如下形式初始条件:()00ˆ=X ,34=P L ,3,2,1=k 滤波误差方差:225.0111+−=−k k P P最优滤波估计:()[]()()k y k x k xk k P P +−−=1ˆ15.0ˆ (2)当∞→k 时,卡尔曼滤波进入稳定状态,这时∞−∞→∞→==P P P 1lim lim k k k k因而可得225.011+−=∞∞P P解之得53.0=∞P因此()[]()()()()k y k x k y k x k xk k 53.01ˆ235.01ˆ15.0ˆ+−=+−−=P P。

相关文档
最新文档