1力学量的平均值随时间的变化

合集下载

力学量期望值随时间的变化 守恒定律

力学量期望值随时间的变化 守恒定律

[ x,pˆ x ] i [Lˆ x,Lˆ y ] iLˆz
(x)2
•(px
)2
2 4
(Lx )2
•(Ly )2
2 4
2
Lz
一、力学量的平均值随时间的变化
量子力学中,处于一定状态下的体系,在每一 时刻,不是所有的力学量都具有确定的值,而只是 具有确定的平均值及几率分布。
力学量F的平均值
F *Fˆ d *(x,t)Fˆ (x,t)dx
经典力学中守恒量:体系取确定值! ①
量子力学守恒量:不一定确定值! 但测量值几率不随时间变化!
② 量子力学定态特点:测量值几率不随时间变化!
守恒量:1、是体系特殊的力学量。
——与H对易!
VS
2、在一切状态(不管是否是定态)
——平均值、测量几率分布不随时间变化!
定态:1、是体系特殊的状态。 ——能量本征态!
Hˆ ]
[Lˆx ,
1
2r2
Lˆ2 ]
1
2r2
[Lˆx ,
Lˆ2 ]
0
同理 [Ly , L2] [Lz , L2] 0
所以
d Lˆ2 1 [Lˆ2 , Hˆ ] 0 dt i
d Lˆx dt
1 i
[Lˆx , Hˆ ] 0
d Lˆy dt
1 i
[Lˆy , Hˆ ] 0
d Lˆz dt
②力学量的可能测值的几率分布不随时间变化
如:(i)自由粒子动量
Hˆ 1 pˆ 2
2
d p 1 [ pˆ Hˆ ] 0 dt i
动量守恒 (ii)粒子在中心力场中运动的角动量

2
2r2
r
(r 2
) r

量子力学-第三章3.8力学量期望值随时间的变化--守恒定律

量子力学-第三章3.8力学量期望值随时间的变化--守恒定律

商可表述为: dF dt
Fˆ dx
t
Fˆ dx t

t
dx
而薛定谔方程及其复数共轭方程为:
t
1 i


且 Hˆ 为厄米算符:
t
1 i
(Hˆ
)
于是: dF dt
1 i
(Hˆ )Fˆ dx
Fˆ dx t
1 i
Fˆ Hˆ dx
Fˆ t
dx
1 i
(Fˆ Hˆ
Hˆ Fˆ )dx

则 Pˆ 2(x, t) CPˆ (x, t) C2(x, t)
而 Pˆ (x, t) (x, t)

Pˆ 2(x, t) Pˆ (x, t) (x, t)
于是: C2 1,即C 1
所以 Pˆ 的本征值 C 1。
即: Pˆ 1 (x, t) 1 (x, t) ; Pˆ 2 (x, t) 2 (x, t) 称 Pˆ 的本征函数中本征值为 1的 1 为有偶宇称态,本征值为 1 的 2 为有奇宇称态。
1. dF 和 dF dt dt 在经典力学中,任一力学量 F 在任何时刻都有确定值,因而
F对时间的微商: dF lim F(t t) F(t) 有确定的意义。在量
dt t0
t
子力学中则不然,除了在 Fˆ 的本征态中 F 有确定值(这时无需考
虑 F随 t 的变化)外,在一般态中, F 并没有确定值,它可以以
即: dF dt
Fˆ t
1 i
[Fˆ ,
Hˆ ]
(1)
此即为海森伯运动方程。其中右边第一项是由于 Fˆ 显含时间而引 起的,即使 不随 t 变化这一项也存在;第二项是由于 随 t 变 化而引起的,即使 F不随 t 变化这一项也存在。

曾谨言《量子力学教程》(第3版)配套题库【课后习题-力学量随时间的演化与对称性】

曾谨言《量子力学教程》(第3版)配套题库【课后习题-力学量随时间的演化与对称性】

第4章力学量随时间的演化与对称性4.1 判断下列提法的正误:(正确○,错误×)(a)在非定态下,力学量的平均值随时间变化;(×)(b)设体系处于定态,则不含时力学量的测值的概率分布不随时间变化;(○)(c)设Hamilton量为守恒量,则体系处于定态;(×)(d)中心力场中的粒子,处于定态,则角动量取确定值;(×)(e)自由粒子处于定态,则动量取确定值;(×)(f)一维粒子的能量本征态无简并;(×)(g)中心力场中的粒子能级的简并度至少为(2ι/+1),ι=0,1,2,….(○)4.2 设体系有两个粒子,每个粒子可处于三个单粒子态φ1、φ2、φ3中的任何一个态.试求体系可能态的数目,分三种情况讨论:(a)两个全同Bose子;(b)两个全同Fermi子;(c)两个不同粒子.【解答与分析见《量子力学习题精选与剖析》[下],7.1题.】7.1 考虑由两个全同粒子组成的体系.设可能的单粒子态为φ1、φ2、φ3,试求体系的可能态数目.分三种情况讨论:(a)粒子为Bose子(Bose统计);(b)粒子为Fermi 子(Fermi统计);(c)粒子为经典粒子(Boltzmann统计).解:以符号△、○、口分别表示φ1、φ2、φ3态.Bose子体系的量子态对于两个粒子的交换必须是对称的,Fermi子体系则必须是反对称的,经典粒子被认为是可区分的,体系状态没有对称性的限制.当两个粒子处于相同的单粒子态时,体系的状态必然是交换对称的,这种状态只能出现于Bose子体系和经典粒子体系,体系波函数的构造方式为当两个粒子处于不同的单粒子态(φi和φj,i≠j)时,如果是经典粒子,有两种体系态,即由单粒子态φi和φj可以构成对称和反对称的体系态各一种,即对称态适用于Bose子体系,反对称态适用于Fermi子体系.对于两粒子体系来说,Bose子体系的可能态总数与Fermi子体系的可能态总数之和,显然正好等于经典粒子(可区分粒子)体系的可能态总数.如可能的单粒子态为k个,则三种两粒子体系的可能态数目如下:经典粒子N=k2本题k=3,Fermi子、Bose子、经典粒子体系的可能态数目分别为3、6、9.体系态的构造方式如下:Bose子体系态(共6种,均为交换对称态)有Fermi子体系态(反对称态)只有3种:当全同粒子体系的粒子数超过两个时,一般来说,对于粒子间的交换完全对称的状态(适用于Bose子)数目与完全反对称的状态(适用于Fermi子)数目之和,总是小于没有对称性限制的体系状态(适用于经典粒子)总数.亦即,后者除了完全对称态和完全反对称态,还有一些没有对称性或只有混杂对称性的状态.例如,由三个全同粒子组成的体系,如可能的单粒子态有3种,则在Boltzmann统计、Bose统计、Fermi统计下,体系的可能态数目分别为27、10和1.4.3 设体系由3个粒子组成,每个粒子可能处于3个单粒子态(φ1,φ2和φ3)中任何一个态,分析体系的可能态的数目,分三种情况:(a)不计及波函数的交换对称性;(b)要求波函数对于交换是反对称;(c)要求波函数对于交换是对称.试问:对称态和反对称态的总数为多少?与(a)的结果是否相同?对此做出说明.解:(a)不计及波函数的交换对称性,其可能态的数目为33=27;(b)要求波函数对于交换是反对称的,其可能态的数目为1;(c)要求波函数对于交换是对称的,其可能态的数目为1+6+3=10(参见《量子力学教程》4.5.4节,94页的例题).对称态和反对称态的总数=10+1=11,而不计及交换对称性的量子态的数目(即(a)的结果)为27,两者并不相同.原因在于全同粒子的交换对称性对量子态的限制所造成.4.4 设力学量A不显含t,H为体系的Hamilton量,证明证明:对于不显含t的力学量A,有上式两边再对t求导,则有即4.5 设力学量A不显含t,证明在束缚定态下证明:定态是能量本征态,满足对于束缚态,是可以归一化的,即取有限值.而对于不显含t的力学量A,因此4.6 表示沿z方向平移距离口的算符.证明下列形式波函数(Bloch波函数):是D x(a)的本征态,相应本征值为证明:利用可得而对于形式为的波函数所以,即是D x(a)的本征态,相应本征值为e-ika.4.7 设体系的束缚能级和归一化能量本征态分别为En和,n为标记包含Hamilton 量H在内的力学量完全集的本征态的一组好量子数.设H含有一个参数A,证明此即Feynman-Hellmann定理.【证明见《量子力学习题精选与剖析》[下],5.1题.】5.1 设量子体系的束缚态能级和归一化能量本征态分别为E n和(n为量子数或编号数),设λ为Hamilton算符H含有的任何一个参数.证明(1)这称为Feynman-Hellmann定理.以后简称F-H定理.证明:满足能量本征方程(2)其共轭方程为(2')视λ为参变量,式(2)对λ求导,得到(3)以左乘式(3),利用式(2')和归一化条件,即得式(1).4.8 设包含Hamilton量H在内的一组守恒量完全集的共同本征态和本征值分别为丨n>和E n,n为一组完备好量子数.证明,力学量(算符)F随时间的变化,在此能量表象中表示为【证明见《量子力学习题精选与剖析》[下],2.1题.】2.1 给定总能量算符H(,,p),以表示其本征值和本征函数.态矢量简记为按照Heisenber9运动方程,力学量算符A(r,p)的时间变化率为(1)定义能量表象中矩阵元(2)证明(3)其中。

量子力学_第三章3.8力学量期望值随时间的变化__守恒定律

量子力学_第三章3.8力学量期望值随时间的变化__守恒定律
2 dinger 方程不仅可以直接描写 ( r , t ) 的变化,而且还能间 Schr o
dinger 方程 o 接地描写各力学量的变化。当然,我们也可以由 Schr
推出一个力学量随时间变化的一般方程,即量子力学运动方程或 海森堡运动方程,由它可以更直接的描述力学量的变化,并可得 出一些重要结论。
ˆ 的本征值 C 1 。 所以 P
ˆ (x, t) (x, t) ; P ˆ (x, t) (x, t) 即: P 1 1 2 2
ˆ 的本征函数中本征值为 1 的 为有偶宇称态,本征值为 1 称P 1
的 2 为有奇宇称态。
ˆ 在空间反演不变时的宇称守恒: c. H
ˆ F 1 ˆH ˆ H ˆF ˆ ) dx dx ( F t i

ˆ 1 d F F ˆ,H ˆ] 即: [F dt t i
(1)
ˆ 显含时间而引 此即为海森伯运动方程。 其中右边第一项是由于 F
起的,即使 不随 t 变化这一项也存在;第二项是由于 随 t 变 化而引起的,即使 F 不随 t 变化这一项也存在。
2 2 ˆ L 2 ˆ 2 , H] ˆ [L ˆ2 , ˆ2 , ˆ 2 , U(r)] 0 [L (r )] [L ] [L 2r 2 r r 2r 2 ˆ ,H ˆ ] 0; ˆ2 ,L ˆ ] 0 , [L ˆ ,H ˆ ] [L ˆ2 , L ˆ ]0, ˆ ,H ˆ ] [L ˆ2 , L ˆ ]0 [L [ L [L z x z
y
x
y
ˆ ˆ2 L L 0, x t t dL d L2 所以: 0; x dt dt
ˆ L y
ˆ L z =0 t t dL y dL z 0; 0 0; dt dt

量子力学中的力学量 Ⅴ. 力学量平均值随时间的变化,运动常数, 埃伦费斯脱定理(继)

量子力学中的力学量 Ⅴ. 力学量平均值随时间的变化,运动常数, 埃伦费斯脱定理(继)

n
dAˆ 0
dt
我们称与体系 Hˆ 对易的不显含时间的力 学量算符为体系的运动常数。
运动常数并不都能同时取确定值。因 它们之间可能不对易。 B. 位力定理 ( virial Theorem )
已经证明,在定态上有位力定理
2Tˆ r V(r)
若 V(x, y,z) 是 x,y,z 的 n 次齐次函
l(l 1)2 2mr2
Rkl (r)
2k 2 2m
Rkl (r)
当 l 0 ,则有
2 2m
1 r
d2 dr 2
r Rk0
2k 2 2m
Rk0
从而得
1
d2 d 2
R k 0
Rk0
其中 kr 。显然,它有两个解
Rk0 sin( )
Rk0 cos()
但要求 Rk0 r0 0 ,所以取解
m)! m)!
1 sinm
(
d dcos
)lm
sin2l
称为连带勒让德函数(Associated Legendre
function)。
当 l,m 给定,也就是 Lˆ2, Lz的本征值
给定,那就唯一地确定了本征函数 Ylm(, ) 其性质:
a. 正交归一
Yl*m (, )Ylm (, )d llmm
Pˆr2
(l
1)l2 r2
Rkl1
所以
R kl1
l1Rkl Rkl1
事实上
R kl
()l ( 1
d )l d
Sin()
正是球贝塞尔函数
jl ()
()l ( 1
d )l d
Sin()

l Rkl Rkl1

曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解-力学量随时间的演化与对称性(圣才出

曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解-力学量随时间的演化与对称性(圣才出

第4章 力学量随时间的演化与对称性4.1 复习笔记一、力学量随时间的演化1.守恒量对于力学量A ,其平均值随时间变化关系式如下A tH A i dt A d ˆ]ˆ,ˆ[1∂∂+=η 故对于Hamilton 量H 不含时的量子体系,如果力学量A 与H 对易,力学量A 对应算符不显含时间t ,则无论体系处于什么状态(定态或非定态),A 的平均值及其测值的概率分布均不随时间改变.则把A 称为量子体系的一个守恒量.2.能级简并与守恒量的关系(1)守恒量与简并关系的定理定理 设体系有两个彼此不对易的守恒量F 和G ,即[F ,H]=0,[G ,H]=0,但[F ,G ]≠0,则体系能级一般是简并的.推论 如果体系有一个守恒量F ,而体系的某条能级部简并(即对应于某能量本征值E 只有一个本征态E ψ),则E ψ必为F 的本征态.(2)位力(virial )定理当体系处于定态下,关于平均值随时间的变化,有一个有用的定理,即位力virial )定理.设粒子处于势场V (r )中,Hamilton 量为)(2p 2r V mH += 则位力定理表述如下位力定理推论:若势场函数V(r)为r 的n 次齐次式,则有推论V T 2n =二、波包的运动,Ehrenfest 定理设质量为m 的粒子在势场V (r )中运动,用波包ψ(r ,t )描述.设粒子的Hamilton 量为)(2p 2r V mH += 作如下定义:则Ehrenfest 定理表述如下:三、Schr ödinger 图像与Heisenberg 图像(1)(1)式这种描述方式称为Schrödinger 图像(picture ).亦称Schrödinger 表象. 在Schtodlnger 图像中,态矢随时间演化,遵守Schrödinger 方程,而算符则不随时间的变化;与此相反,在Heisenberg 图像中,则让体系的态矢本身不随时间的变化而算符切随时间的变化,遵守Heisenberg方程.四、守恒量与对称性的关系1.对称性变换[Q,H]=0 (2)凡满足式(2)的变换,称为体系的对称性变换.物理学中的体系的对称性变换,总是构成一个群,称为体系的对称性群(symmetrygroup).2.对称性对应守恒量体系在Q变换下的不变性[Q,H]=0,应用到无穷小变换,就导致F就是体系的一个守恒量.这充分说明对称性变换Q必定对应一个守恒量F.典型的两个例子是:平移不变性对应动量守恒,空间旋转不变性对应角动量守恒.五、全同粒子体系与波函数的交换对称性1.全同粒子体系的交换对称性(1)全同性原理全同性原理:任何可观测到,特别是Hamilton量,对于任何两个粒子交换是不变的,即交换对称性.凡满足P ijψ=ψ的.称为对称(symmetric)波函数;满足P ijψ=-ψ的称为反对称(anti—symmetrle)波函数.(2)玻色子与费米子凡自旋为 整数倍(s=0,1,2,…)的粒子,波函数对于两个粒子交换总是对称的,如π介子(s=0).光子(s=1).在统计方法上,它们遵守Bose统计,故称为Bose 子.凡自旋为h的半奇数倍(s=1/2,3/2,…)的粒子,波函数对于两粒子交换总是反对称的,如电子,质子,中子等.它们遵守Fermi统计,故称为Fermi子.2.两个全同粒子组成的体系Pauli不相容原理:不允许有两个全同的Fermi子处于同一个单粒子态.Pauli原理是一个极为重要的自然规律,后来从量子力学波函数的反对称性来说明Pauli原理的是Heisenberg,Fermi和Dirac的贡献.3.N个全同Fermi子组成的体系设N个Fermi子分别处于k2<k z<…<k N态下,则反对称波函数可如下构成(3)P代表N个粒子的一个置换(permutation).式(3)常称为slater行列式,是归一化因子.4.N个全同Bose子组成的体系Bose子不受Pauli原理限制,可以有任意数目的Bose子处于相同的单粒子态.设有n i个Bose子处于k,态上(i=1,2,…,N),则该体系的归一化的对称波函数可表为4.2 课后习题详解4.1 判断下列提法的正误:(正确○,错误×)(a)在非定态下,力学量的平均值随时间变化;(×)(b)设体系处于定态,则不含时力学量的测值的概率分布不随时间变化;(○)(c)设Hamilton量为守恒量,则体系处于定态;(×)(d)中心力场中的粒子,处于定态,则角动量取确定值;(×)(e)自由粒子处于定态,则动量取确定值;(×)(f)一维粒子的能量本征态无简并;(×)(g)中心力场中的粒子能级的简并度至少为(2ι/+1),ι=0,1,2,….(○)4.2 设体系有两个粒子,每个粒子可处于三个单粒子态φ 1、φ 2、φ 3中的任何一个态.试求体系可能态的数目,分三种情况讨论:(a)两个全同Bose子;(b)两个全同Fermi 子;(c)两个不同粒子.【解答与分析见《量子力学习题精选与剖析》[下],7.1题.】7.1 考虑由两个全同粒子组成的体系.设可能的单粒子态为φ1、φ2、φ3,试求体系的可能态数目.分三种情况讨论:(a)粒子为Bose子(Bose统计);(b)粒子为Fermi子(Fermi统计);(c)粒子为经典粒子(Boltzmann统计).解:以符号△、○、口分别表示φ1、φ2、φ3态.Bose子体系的量子态对于两个粒子的交换必须是对称的,Fermi子体系则必须是反对称的,经典粒子被认为是可区分的,体系状态没有对称性的限制.当两个粒子处于相同的单粒子态时,体系的状态必然是交换对称的,这种状态只能出现于Bose子体系和经典粒子体系,体系波函数的构造方式为当两个粒子处于不同的单粒子态(φi和φj,i≠j)时,如果是经典粒子,有两种体系态,即由单粒子态φi和φj可以构成对称和反对称的体系态各一种,即对称态适用于Bose子体系,反对称态适用于Fermi子体系.对于两粒子体系来说,Bose子体系的可能态总数与Fermi子体系的可能态总数之和,显然正好等于经典粒子(可区分粒子)体系的可能态总数.如可能的单粒子态为k个,则三种两粒子体系的可能态数目如下:经典粒子N=k2本题k=3,Fermi子、Bose子、经典粒子体系的可能态数目分别为3、6、9.体系态。

力学量的平均值随时间的变化

力学量的平均值随时间的变化


t
dx

1 Hˆ
t i
* 1 (Hˆ )*
t i


*

t
dx

1 i
(Hˆ
)*Fˆ
dx

1 i

*FˆHˆ
dx

Fˆ t

1 i
*HˆFˆ dx

1 i
*FˆHˆ dx

Fˆ t

1 i

*[Fˆ , Hˆ ] dx
2
[ x,
pˆ x2 ]

1
2
{pˆ x[x,
pˆ x ] [x,
pˆ x ] pˆ x}

1
2
2i
pˆ x

i

pˆ x
dx 1 [x, Hˆ ] px (对应于经典的速度)
dt i

(2)取 Fˆ pˆx ,有
[ pˆ x , Hˆ ]

[
pˆ x
,
pˆ x2
2
U ]
所以
d L2 0
dt
dLx 0 dt
即量子力学的角动量守恒定律。
dLy 0 dt
dLz 0 dt
3.哈密顿不显含时间的体系能量
若哈密顿不显含时间,即Hˆ / t 0 ,而 [Hˆ , Hˆ ] 0限深势阱、线性谐振子、氢原子等的能量均为守恒量。

Pˆ 2 (x,t) Pˆ (x,t) (x,t)
所以
c2 1 c 1
c 1 时,Pˆ (x,t) (x,t) (x,t) (x,t) 为偶宇称态;
c 1 时,Pˆ (x,t) (x,t) (x,t) (x,t) 为奇宇称态;

第五章 力学量随时间的演化与守恒量详解

第五章 力学量随时间的演化与守恒量详解

第五章 力学量随时间的演化与守恒量§1 力学量随时间的变化在经典力学中,处于一定状态下的体系的每一个力学量作为时间的函数,每一个时刻都有一个确定值;但是, 在量子力学中,只有力学量的平均值才可与实验相比较,力学量随时间的演化实质是平均值和测量值的几率分布随时间的演化。

一、守衡量力学量ˆA在任意态()t ψ上的平均值随时间演化的规律为 ˆˆ1ˆˆ,dA A A H dt t i ∂⎡⎤=+⎣⎦∂, 其中ˆH为体系的哈密顿量。

[证明] 力学量ˆA的平均值表示为()ˆ()(),()A t t A t ψψ=,()A t 对时间t 求导得 ()()ˆ()()()ˆˆ,()(),(),()ˆ11ˆˆˆˆ (),()(),()ˆ11ˆˆˆˆ (),()(),()1 d A t t t A A t t A t t dt t t t A H t A t t AH t i i t A t HA t t AH t i i tψψψψψψψψψψψψψ⎛⎫⎛⎫⎛⎫∂∂∂=++ ⎪ ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭∂⎛⎫⎛⎫=++⎪ ⎪∂⎝⎭⎝⎭∂=-+ψ+∂=ˆˆˆ,AA H i t∂⎡⎤+⎣⎦∂1ˆˆ,A H i ⎡⎤+⎣⎦1、 守恒量的定义若ˆA不显含t , 即ˆ0A t ∂∂=, 当ˆˆ,0A H ⎡⎤=⎣⎦,那么力学量ˆA 称为守恒量。

2、守恒量的性质(1)、在任意态()t ψ上,守恒量的平均值都不随时间变化0dA dt =。

(2)、在任意态()t ψ上,守恒量的取值几率分布都不随时间变化。

[证明] 由于ˆˆ[,]0A H =知,存在正交归一的共同本征函数组{}nψ(n 是一组完备的量子数),即 ˆˆn n nn n nH E A A ψψψψ⎧=⎪⎨=⎪⎩ 正交归一化条件(),n m mn ψψδ=对于体系的任意状态()t ψ可展开为: ()()n nnt a t ψψ=∑, 展开系数为()(),()n n a t t ψψ=在体系的任意态()t ψ上测量力学量ˆA 时,得到本征值nA 的几率为2|()|n a t , 而 ()()()()()()*2*()()()()()()(),,()(),,1()1() ,,()(),,11ˆ (),,()n n n n n n n n n n n n n n n da t da t d a t a t a t dt dt dtt t t t t t t t i t t i i t i t H t t i i ψψψψψψψψψψψψψψψψψψψψ=+∂∂⎛⎫⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭∂∂⎛⎫⎛⎫=-+ ⎪ ⎪∂∂⎝⎭⎝⎭=-+()()()()()()()()()()ˆ(),,()11ˆˆ (),,()(),,() (),,()(),,()0n n n n n n n n n n n n t H t t H t t H t i i E Et t t t i i ψψψψψψψψψψψψψψψψψψψψ=-+=-+= 这表明2|()|n a t 是与时间无关的量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

k2 (q2 ) k2 (qN )
kN (q2 ) kN (qN )
Slater 行列式
N个全同Bose子组成的体系
ψS n1nN
(q1,,
qN
)
ni !
i
N!
P[φk1 (q1)φk N (qN )]
P
其中P是指那些只对处于不同单粒子态上的粒子进行对换而构成 的置换,这样的置换数为
N!
ni!
1 i
[rˆ (t ),

]
1 i
eiHˆt
/ [rˆ ,
pˆ 2
/
2m]eiHˆt
/
eiHˆt / pˆ eiHˆt / pˆ
m
m
则 rˆ(t) rˆ(0) pˆ t
简并,即对应某个能量本征值E只有一个本征态ΨE, 则ΨE必为F 的本征态。
7. 位力定理: 设粒子处于势场V(r),其哈密顿为
H
p2
/
2m
V (r )
r·p的平均值随时间的变化为
i
d
r
p
[r
p, H ]
1
[r
p,
p2 ]
[r
p,V
(r )]
dt
2m
对定态有
i
p2 m
r V
第4 章 力学量随时间的演化与对称性
1. 力学量的平均值随时间的变化
d dt
A(t)
1 i
[ A,
H
]
A t
2.守恒量 若 [A, H ] 0

d A(t) 0
dt
A称为守恒量
3. 守恒量的性质
如果力学量A不含时间,若[A, H]=0(即为守恒量),则 无论体系处于什么状态,A的平均值和测值概率均不随时间变化。
V (cx, cy, cz) cnV (x, y, z) 证明 2T nV
8. Feynman-Hellmann定理
设体系的束缚态能级和归一化的能量本征态为 En , n
若H中含有参数λ,则有
En
n
H
n
9. 全同粒子体系与波函数的交换对称性
Pij , 对称波函数
Pij

反对称波函数
(1) 两个全同粒子组成的体系
t
积分得
U (t,0) eiHt/
( 7)
可以证明: U (t,0)U (t,0) U (t,0)U (t,0) 1 (8)
U(t,0) 是幺正算符。
(ψ (t),ψ (t)) (ψ (0),ψ (0)) (9)
2. Heishenberg 图像 波函数不变,算符随时间变化
A(t) (U (t,0)ψ (0), AU (t,0)ψ (0))
S k1k2
(q1,
q2
)
1 2
[
k1
(
q1
)Байду номын сангаас
k2
(q2
)
k1
(q2
)
k2
(
q1
)]
A k1k2
(q1,
q2
)
1 2
[
k1
(q1
)
k
2
(q2
)
k1
(
q2
)
k
2
(q1
)]
(2) N个全同Femi子组成的体系
三个全同Femi子:设三个无相互作用的全同Femi子,处于三个 不同的单粒子态φk1, φk2, φk3 上,则反对称波函数为
A(t )
1 i
(U
HUU
U
AHUUHU )
1 i
( HA(t )
A(t ) H
)

d dt
A(t )
1 i
[A(t),H ]
(12)
上式称为Heisenberg方程。
例题1 自由粒子 H p2 / 2m [ p, H ] 0
p为守恒量,则 p(t)=p(0)=p
d dt
rˆ (t )
力学量平均值随时间的变化
d dt
A(t)
1 i
[
A,
H
]
( 3)
波函数随时间演化可写成
ψ (t) U (t,0)ψ (0), (4)
U (0,0) 1
( 5)
U(t,0) 称为时间演化算符。
(4) 代入(2)得到
i U (t,0)ψ (0) HU(t,0)ψ (0)
t

i U(t,0) HU(t,0) (6)
d A(t) 0 dt
d dt
ak (t) 2
0
4. 经典与量子力学中的守恒量间的关系
(1) 与经典力学中的守恒量不同,量子力学中的守恒量不一定取 确定的数值. 守恒量对应的量子数称为好量子数 (2) 量子体系的各守恒量并不一定都可以同时取确定值。
5. 守恒量与定态 (1) 定态是体系的一种特殊状态,即能量本征态,而守恒量则 是一种特殊的力学量,与体系的Hamilton量对易。
(ψ (0),U (t,0)AU (t,0)ψ (0))
(ψ (0), A(t)ψ (0))
(10 )
A(t) U (t,0) AU (t,0)
(11)
算符的演化方程----Heisenberg 方程
d A(t) d U (t,0) AU (t,0) U (t,0) A d U (t,0)
A k1k 2 k3
(q1,
q2
,
q3
)
1 3!
k1 k2 k3
(q1 ) (q1 ) (q1 )
k1 (q2 ) k2 (q2 ) k3 (q2 )
k1 (q3 ) k2 (q3 ) k3 (q3 )
A k1k N
(q1,,
qN
)
k1 (q1) 1 k2 (q1)
N!
kN (q1)
k1 (q2 ) k1 (qN )
i
§4.3 Schrödinger图像和Heisenberg图像
1. Schrödinger 图像
力学量不随时间变化,而波函数随时间变化。
力学量的平均值
A(t) (ψ (t), Aψ (t)) (1)
波函数随时间演化方程---Schrödinger 方程
i ψ (t) Hψ (t) (2)
t
d
r
p
0
dt
(定态下力学量的平均值不随时间 变化)

1
p2
r V
m
2T r V
思考题: r·p并不是厄米算符,应进行厄米化
r
p
1
(r
p
pr)
2
这是否会影响位力定理得证明。
答:从位力定理的证明可以看出,将r·p厄米化后并不能影响到 定理的证明。
例题1 设V(x,y,z)是x,y,z的n次齐次函数,即
dt
dt
dt
1 i
(
U
HAU
U AHU )
利用U的幺正性,及U+HU=H
d dt
A(t )
1 i
(U
HUU
U
AHUUHU )
1 i
( HA(t )
A(t ) H
)

d dt
A(t )
1 i
[A(t),H ]
(12)
上式称为Heisenberg方程。
利用U的幺正性,及U+HU=H
d dt
(2)在定态下一切力学量的平均值和测值概率都不随时间改变; 而守恒量则在一切状态下的平均值和测值概率都不随时间改变
6. 能级简并与守恒量的关系
定理 设体系有两个彼此不对易的守恒量F和G,即 [F,H]=0,[G,H]=0,[F,G]≠0, 则体系能级一般是简并的。
推论: 如果体系有一守恒量F,而体系的某条能级并不
相关文档
最新文档