量子物理基础选择题
量子力学基础试题及答案

量子力学基础试题及答案一、单项选择题(每题2分,共10分)1. 量子力学中,物质的波粒二象性是由哪位科学家提出的?A. 爱因斯坦B. 普朗克C. 德布罗意D. 海森堡答案:C2. 量子力学的基本原理之一是不确定性原理,该原理是由哪位科学家提出的?A. 玻尔B. 薛定谔C. 海森堡D. 狄拉克答案:C3. 量子力学中,描述粒子状态的数学对象是:A. 波函数B. 概率密度C. 动量D. 能量答案:A4. 量子力学中,哪个方程是描述粒子的波动性质的基本方程?A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 相对论方程答案:A5. 量子力学中,哪个原理说明了粒子的波函数在测量后会坍缩到一个特定的状态?A. 叠加原理B. 波函数坍缩原理C. 不确定性原理D. 泡利不相容原理答案:B二、填空题(每题3分,共15分)1. 在量子力学中,粒子的动量和位置不能同时被精确测量,这一现象被称为______。
答案:不确定性原理2. 量子力学中的波函数必须满足______条件,以确保物理量的概率解释是合理的。
答案:归一化3. 量子力学中的粒子状态可以用______来描述,它是一个复数函数。
答案:波函数4. 量子力学中的______方程是描述非相对论性粒子的波函数随时间演化的基本方程。
答案:薛定谔5. 量子力学中的______原理表明,不可能同时精确地知道粒子的位置和动量。
答案:不确定性三、简答题(每题5分,共20分)1. 简述量子力学与经典力学的主要区别。
答案:量子力学与经典力学的主要区别在于,量子力学描述的是微观粒子的行为,它引入了波粒二象性、不确定性原理和量子叠加等概念,而经典力学主要描述宏观物体的运动,遵循牛顿力学的确定性规律。
2. 描述量子力学中的波函数坍缩现象。
答案:波函数坍缩是指在量子力学中,当对一个量子系统进行测量时,系统的波函数会从一个叠加态突然转变到一个特定的本征态,这个过程是不可逆的,并且与测量过程有关。
量子力学选择题1

量子力学选择题(1)原子半径的数量级是:A.10-10cm; B.10-8m C. 10-10m D.10-13m(2)若氢原子被激发到主量子数为n的能级,当产生能级跃迁时可能发生的所有谱线总条数应为:A.n-1 B .n(n-1)/2 C .n(n+1)/2 D .n(3)氢原子光谱赖曼系和巴耳末系的系线限波长分别为:A.R/4 和R/9B.R 和R/4C.4/R 和9/RD.1/R 和4/R(4)氢原子赖曼系的线系限波数为R,则氢原子的电离电势为:A.3Rhc/4 B. Rhc C.3Rhc/4e D. Rhc/e(5)氢原子基态的电离电势和第一激发电势分别是:A.13.6V和10.2V; B –13.6V和-10.2V;C.13.6V和3.4V;D. –13.6V和-3.4V(6)根据玻尔理论,若将氢原子激发到n=5的状态,则:A.可能出现10条谱线,分别属四个线系B.可能出现9条谱线,分别属3个线系C.可能出现11条谱线,分别属5个线系D.可能出现1条谱线,属赖曼系(7)欲使处于激发态的氢原子发出Hα线,则至少需提供多少能量(eV)?A.13.6B.12.09C.10.2D.3.4(8)氢原子被激发后其电子处在第四轨道上运动,按照玻尔理论在观测时间内最多能看到几条线?A.1B.6C.4D.3(9)氢原子光谱由莱曼、巴耳末、帕邢、布喇开系…组成.为获得红外波段原子发射光谱,则轰击基态氢原子的最小动能为:A .0.66 eV B.12.09eV C.10.2eV D.12.75eV(10)用能量为12.75eV的电子去激发基态氢原子时,受激氢原子向低能级跃迁时最多可能出现几条光谱线(不考虑自旋);A.3B.10C.1D.4(11)按照玻尔理论基态氢原子中电子绕核运动的线速度约为光速的:A.1/10倍B.1/100倍 C .1/137倍 D.1/237倍(12)已知一对正负电子绕其共同的质心转动会暂时形成类似于氢原子的结构的“正电子素”那么该“正电子素”由第一激发态跃迁时发射光谱线的波长应为:A.3R/8 B.3R/4 C.8/3R D.4/3R(13)电子偶素是由电子和正电子组成的原子,基态电离能量为:A.-3.4eVB.+3.4eVC.+6.8eVD.-6.8eV(14)根据玻尔理论可知,氦离子H e+的第一轨道半径是:(a). a0/2 (b). a0/4 (c).2a0(d). 4a0(15)假设氦原子(Z=2)的一个电子已被电离,如果还想把另一个电子电离,若以eV为单位至少需提供的能量为:A.54.4 B.-54.4 C.13.6 D.3.4(16)在H e+离子中基态电子的结合能是:A.27.2eVB.54.4eVC.19.77eVD.24.17eV(17)处于基态的氢原子被能量为12.09eV的光子激发后,其轨道半径增为原来的A.4倍 B.3倍 C.9倍 D.16倍(18)为了证实德布罗意假设,戴维孙—革末于1927年在镍单晶体上做了电子衍射实验从而证明了:A.电子的波动性和粒子性B.电子的波动性C.电子的粒子性D.所有粒子具有波粒二象性(19)如果一个原子处于某能态的时间为10-7S,原子这个能态能量的最小不确定数量级为(以焦耳为单位):A.10-34; B.10-27; C.10-24; D.10-30(20)将一质子束缚在10-13cm的线度内,则估计其动能的量级为:A. eV;B. MeV;C. GeV,D.10-20J(21)按量子力学原理,原子状态用波函数来描述.不考虑电子自旋,对氢原子当nl确定后,对应的状态数为:A.n2;B.2n;C.l;D.2l+1(22).用波尔-索末菲(Bohr-Sommerfeld)的量子化条件得到的一维谐振子的能量为(n = 0,1,2,L)A.En=nħω .B. En=(n+1/2) ħωC. En = (n+1)ħω .D. En= 2nħω .(23). 康普顿效应证实了A.电子具有波动性.B. 光具有波动性.C.光具有粒子性.D. 电子具有粒子(24). 设ψ(x)=δ(x),在x −x+dx 范围内找到粒子的几率为A.δ (x )B.δ (x)dxC.δ2(x)D.δ2(x)dx(25).设ψ1(x)和ψ2(x)分别表示粒子的两个可能运动状态,则它们线性迭加的态c 1ψ1+ c 2ψ2的几率分布为(26).波函数应满足的标准条件是A.单值、正交、连续.B.归一、正交、完全性.C.连续、有限、完全性.D.单值、连续、有限.(27).有关微观实物粒子的波粒二象性的正确表述是A.波动性是由于大量的微粒分布于空间而形成的疏密波.B.微粒被看成在三维空间连续分布的某种波包.C.单个微观粒子具有波动性和粒子性.D. A, B, C 都对(28).下列哪种论述不是定态的特点A.几率密度和几率流密度矢量都不随时间变化.B.几率流密度矢量不随时间变化.C.任何力学量的平均值都不随时间变化.D.定态波函数描述的体系一定具有确定的能量(29).在一维无限深势阱中运动的粒子,其体系的A.能量是量子化的,而动量是连续变化的.B.能量和动量都是量子化的.C.能量和动量都是连续变化的.D.能量连续变化而动量是量子化的(30).线性谐振子的A.能量是量子化的,而动量是连续变化的.B.能量和动量都是量子化的.C.能量和动量都是连续变化的.D.能量连续变化而动量是量子化的.(31).在极坐标系下,氢原子体系在不同球壳内找到电子的几率为(32). 在极坐标系下,氢原子体系在不同方向上找到电子的几率为*21*212*12*12222112*1212222112*121222*********.2...ψψψψψψψψψψψψψψψψC C C C C C D C C C C C C C C C B C C A ++++++++dr r r R D rdr r R C r r R B r r R A nl nl nl nl 222222)(.)(.)(.)(.(33). F和G是厄密算符,则A.FG必为厄密算符.B.FG−GF必为厄密算符.C.i(FG+GF)必为厄密算符.D.i(FG−GF)必为厄密算符(34).一维自由粒子的运动用平面波描写,则其能量的简并度为A.1.B. 2.C. 3.D. 4.(35).若不考虑电子的自旋,氢原子能级n=3 的简并度为A. 3.B. 6.C. 9.D. 12(36).氢原子能级的特点是A.相邻两能级间距随量子数的增大而增大.B.能级的绝对值随量子数的增大而增大.C.能级随量子数的增大而减小.D.相邻两能级间距随量子数的增大而减小.(37).一维自由粒子的能量本征值A. 可取一切实数值.B.只能取不为负的一切实数.C.可取一切实数,但不能等于零.D.只能取不为正的实数.(38).体系处于ψ=C1Y11+C2Y10态中,则ψA.是体系角动量平方算符、角动量Z 分量算符的共同本征函数.B.是体系角动量平方算符的本征函数,不是角动量Z 分量算符的本征函数.C.不是体系角动量平方算符的本征函数,是角动量Z 分量算符的本征函数.D.即不是角动量平方算符的本征函数,也不是角动量Z 分量算符的本征函数.(39).幺正变换A.不改变算符的本征值,但可改变其本征矢.B.不改变算符的本征值,也不改变其本征矢.C.改变算符的本征值,但不改变其本征矢.D.即改变算符的本征值,也改变其本征矢.(40).氢原子的一级斯塔克效应中,对于n = 2 的能级由原来的一个能级分裂为A. 五个子能级.B. 四个子能级.C. 三个子能级.D. 两个子能级.(41).Stern-Gerlach 实验证实了A. 电子具有波动性.B.光具有波动性.C. 原子的能级是分立的.D. 电子具有自旋.(42).下列有关全同粒子体系论述正确的是A.氢原子中的电子与金属中的电子组成的体系是全同粒子体系.B.氢原子中的电子、质子、中子组成的体系是全同粒子体系.C.光子和电子组成的体系是全同粒子体系.D.α粒子和电子组成的体系是全同粒子体系.(43).全同粒子体系中,其哈密顿具有交换对称性,其体系的波函数A.是对称的.B.是反对称的.C.具有确定的对称性.D.不具有对称性.(44). 完全描述微观粒子运动状态的是:( )(A) 薛定谔方程(B)测不准关系(C)波函数(D) 能量(45). 完全描述微观粒子运动状态变化规律的是:( )(A)波函数(B) 测不准关系(C) 薛定谔方程(D) 能级(46). 若光子与电子的波长相等,则它们:( )(A)动量及总能量均相等(B) 动量及总能量均不相等(C)动量相等,总能量不相等(D)动量不相等,总能量相等。
量子力学试题及答案

量子力学试题及答案一、选择题(每题2分,共20分)1. 量子力学的基本原理之一是:A. 牛顿运动定律B. 薛定谔方程C. 麦克斯韦方程组D. 热力学第二定律2. 波函数的绝对值平方代表:A. 粒子的动量B. 粒子的能量C. 粒子在某一位置的概率密度D. 粒子的波长3. 以下哪个不是量子力学中的守恒定律?A. 能量守恒B. 动量守恒C. 角动量守恒D. 电荷守恒4. 量子力学中的不确定性原理是由哪位物理学家提出的?A. 爱因斯坦B. 波尔C. 海森堡D. 薛定谔5. 在量子力学中,一个粒子的波函数可以表示为:B. 一个复数C. 一个向量D. 一个矩阵二、简答题(每题10分,共30分)1. 简述海森堡不确定性原理,并解释其在量子力学中的意义。
2. 解释什么是量子纠缠,并给出一个量子纠缠的例子。
3. 描述量子隧道效应,并解释它在实际应用中的重要性。
三、计算题(每题25分,共50分)1. 假设一个粒子在一维无限深势阱中,其波函数为ψ(x) = A *sin(kx),其中A是归一化常数。
求该粒子的能量E。
2. 考虑一个二维电子在x-y平面上的波函数ψ(x, y) = A * e^(-αx) * cos(βy),其中A是归一化常数。
求该电子的动量分布。
答案一、选择题1. B. 薛定谔方程2. C. 粒子在某一位置的概率密度3. D. 电荷守恒4. C. 海森堡二、简答题1. 海森堡不确定性原理指出,粒子的位置和动量不能同时被精确测量,其不确定性关系为Δx * Δp ≥ ħ/2,其中ħ是约化普朗克常数。
这一原理揭示了量子世界的基本特性,即粒子的行为具有概率性而非确定性。
2. 量子纠缠是指两个或多个量子系统的状态不能独立于彼此存在,即使它们相隔很远。
例如,两个纠缠的电子,无论它们相隔多远,测量其中一个电子的自旋状态会即刻影响到另一个电子的自旋状态。
3. 量子隧道效应是指粒子在经典物理中无法穿越的势垒,在量子物理中却有一定概率能够穿越。
上海理工 大学物理 第十三章 量子力学基础1答案

(黑体辐射、光电效应、康普顿效应、玻尔理论、波粒二象性、波函数、不确定关系)一. 选择题[ D]1. 当照射光的波长从4000 Å变到3000 Å时,对同一金属,在光电效应实验中测得的遏止电压将:(A) 减小0.56 V.(B) 减小0.34 V.(C) 增大0.165 V.(D) 增大1.035 V.[](普朗克常量h =6.63×10-34 J·s,基本电荷e =1.60×10-19 C)解题要点:)()(1212λλccehvvehUa-=-=∆∴[ C]2. 下面四个图中,哪一个正确反映黑体单色辐出度M Bλ(T)随λ 和T的变化关系,已知T2 > T1.解题要点:斯特藩-玻耳兹曼定律:黑体的辐射出射度M0(T)与黑体温度T的四次方成正比,即.M0 (T)随温度的增高而迅速增加维恩位移律:随着黑体温度的升高,其单色辐出度最大值所对应的波长mλ向短波方向移动。
[ D]3. 在康普顿散射中,如果设反冲电子的速度为光速的60%,则因散射使电子获得的能量是其静止能量的(A) 2倍.(B) 1.5倍.(C) 0.5倍.(D) 0.25倍.解题要点:(B)因散射使电子获得的能量:202c m mc K -=ε 静止能量:20c m[ C ]4. 根据玻尔的理论,氢原子在n =5轨道上的动量矩与在第一激发态的轨道动量矩之比为(A) 5/4. (B) 5/3.(C) 5/2. (D) 5.解题要点:L = m e v r = n 第一激发态n =2[ B ]5. 氢原子光谱的巴耳末线系中谱线最小波长与最大波长之比为 (A) 7/9. (B) 5/9. (C) 4/9. (D) 2/9.解题要点:从较高能级回到n=2的能级的跃迁发出的光形成巴耳末系l h E E h -=νc =λν23max E E ch-=λ2min E E ch-=∞λ[ B ]6. 具有下列哪一能量的光子,能被处在n = 2的能级的氢原子吸收? (A) 1.51 eV . (B) 1.89 eV .(C) 2.16 eV . (D) 2.40 eV .解题要点:26.13n eV E n -=l h E E h -=ν=⎪⎭⎫⎝⎛---2226.136.13eV n eV[ D ]7. 将波函数在空间各点的振幅同时增大D 倍,则粒子在空间的分布概率将 (A) 增大D 2倍. (B) 增大2D 倍. (C) 增大D 倍. . (D) 不变.解题要点:注意与各点的概率密度区分开来.二. 填空题1. 康普顿散射中,当散射光子与入射光子方向成夹角φ =___π___时,散射光子的频率小得最多;当φ = ___0___ 时,散射光子的频率与入射光子相同.解题要点:频率小得最多即波长改变量最大2. 氢原子基态的电离能是 __13.6__eV .电离能为+0.544 eV 的激发态氢原子,其电子处在n =__5__ 的轨道上运动.解题要点:电离能是指电子从基态激发到自由状态所需的能量. ∴氢原子基态的电离能E =1E E -∞=⎪⎭⎫⎝⎛--∞-2216.136.13eV eV E =n E E -∞ 即 +0.544 eV=26.13neV3. 测量星球表面温度的方法之一,是把星球看作绝对黑体而测定其最大单色辐出度的波长λm ,现测得太阳的λm 1 = 0.55 μm ,北极星的λm 2 = 0.35 μm ,则太阳表面温度T 1与北极星表面温度T 2之比T 1:T 2 =___7:11___.解题要点:由维恩位移定律: T m λ=b∴m λ∝T1 即21T T =12m m λλ 4. 令)/(c m h e c =λ(称为电子的康普顿波长,其中e m 为电子静止质量,c 为真空中光速,h 为普朗克常量).当电子的动能等于它的静止能量时,它的德布罗意波长是λλc .解题要点:电子的动能:22c m mc e K -=ε 静止能量:2c m e22c m mc e K -=ε=2c m e221cu m m e -=21⎪⎭⎫ ⎝⎛-===c u u m h m u h p h e λ 5. 若太阳(看成黑体)的半径由R 增为2 R ,温度由T 增为2 T ,则其总辐射功率为原来的__64__倍.解题要点:由斯特藩-玻耳兹曼定律:太阳的总辐射功率:024M R M ⋅=π424T R σπ⋅=6. 波长为0.400μm 的平面光波朝x 轴正向传播.若波长的相对不确定量∆λ / λ =10-6,则光子动量数值的不确定量 ∆p x =___s m kg /1066.133⋅⨯-_ _,而光子坐标的最小不确定量∆x =___0.03m___.解题要点:λh p =λλλλλ∆⋅=∆=∆h h p 2三. 计算题1. 图中所示为在一次光电效应实验中得出的曲线(1) 求证:对不同材料的金属,AB 线的斜率相同.(2) 由图上数据求出普朗克恒量h .解:(1)由得A h U e a -=ν e A e h U a /-=ν 常量==e h d U d a ν/ ∴对不同金属,曲线的斜率相同 (2)s J eetg h ⋅⨯=⨯--==-3414104.610)0.50.10(00.2θ |14Hz)2. 用波长λ0 =1 Å的光子做康普顿实验. (1) 散射角φ=90°的康普顿散射波长是多少? (2) 反冲电子获得的动能有多大?(普朗克常量h =6.63×10-34 J ·s ,电子静止质量m e =9.11×10-31 kg)解:(1)λλλ∆+=0m 1010024.1-⨯=(2)根据能量守恒:∴反冲电子获得动能:202c m mc K -=εννh h -=0λλchch-=0)(00λλλλ∆+∆=hceV J 2911066.417=⨯=-3. 实验发现基态氢原子可吸收能量为 12.75 eV 的光子. (1) 试问氢原子吸收该光子后将被激发到哪个能级?(2) 受激发的氢原子向低能级跃迁时,可能发出哪几条谱线?请画出能级图(定性),并将这些跃迁画在能级图上.解:(1)l h E E h -=ν=⎪⎭⎫⎝⎛---2216.136.13eV n eV =12.75 n=4(2)可以发出41λ、31λ、21λ、43λ、42λ、32λ六条谱线4. 质量为m e 的电子被电势差U 12 = 100 kV 的电场加速,如果考虑相对论效应,试计算其德布罗意波的波长.若不用相对论计算,则相对误差是多少?(电子静止质量m e =9.11×10-31 kg ,普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C) n=1n=2n=3n=4解:考虑相对论效应:22c m mc e K -=ε=12eU221cu m m e -=21⎪⎭⎫ ⎝⎛-===c u u m h m u h p h e λ=)2(21212c m eU eU hc e +=3.71m 1210-⨯若不用相对论计算:221u m e =12eU u m h p h e =='λ=122eU m he =3.88m 1210-⨯ 相对误差:λλλ-'=4.6﹪5. 一电子处于原子某能态的时间为10-8 s ,计算该能态的能量的最小不确定量.设电子从上述能态跃迁到基态所对应的光子能量为3.39 eV ,试确定所辐射的光子的波长及此波长的最小不确定量.( h = 6.63×10-34 J ·s )解:根据不确定关系式≥∆E t∆2 =5.276J 2710-⨯=3.297eV 810-⨯ 根据光子能量与波长的关系==νh E λchEc h=λ=3.67m 710-⨯ 波长的最小不确定量为2EE hc∆=∆λ=7.13m 1510-⨯ [选做题]1. 动量为p的原子射线垂直通过一个缝宽可以调节的狭缝S ,与狭缝相距D 处有一接收屏C ,如图.试根据不确定关系式求狭缝宽度a 等于多大时接收屏上的痕迹宽度可达到最小.解:由不确定关系式 2≥∆∆y p y而 a y =∆,θsin p p y =∆ 则有 pa2sin ≥θ 由图可知,屏上痕迹宽带不小于 paD a D a y+=+=θsin 2 由0=da dy可得 pD a= 且这时 022>dayd 所以狭缝的宽度调到p D a =时屏上痕迹的宽度达到最小。
昆明理工大学物理习题集(下)第十六章元答案

昆明理工大学物理习题集(下)第十六章元答案第十六章量子物理基础一、选择题:1. 关于光的波粒二象性,下述说法正确的是 [ D ](A )频率高的光子易显示波动性(B )个别光子产生的效果以显示粒子性(C )光的衍射说明光具有粒子性(D )光电效应说明光具有粒子性2. 金属的光电效应的红限依赖于:[ C ](A )入射光的频率(B )入射光的强度(C )金属的逸出功(D )入射光的频率和金属的逸出功3. 用频率为1ν单色光照射某种金属时,测得饱和电流为1I ,以频率为2ν的单色光照射该金属时,测得饱和电流为2I ,若21I I >,则:[ D ](A )21νν> (B )21νν<(C )21νν= (D )1ν与2ν的关系还不能确定4. 光电效应中光电子的最大初动能与入射光的关系是: [ C ](A )与入射光的频率成正比(B )与入射光的强度成正比(C )与入射光的频率成线性关系(D )与入射光的强度成线性关系5. 两束频率、光强都相同的光照射两种不同的金属表面,产生光电效应,则: [ C ](A )两种情况下的红限频率相同(B )逸出电子的初动能相同(C )在单位时间内逸出的电子数相同(D )遏止电压相同6. 钾金属表面被蓝光照射时,有光电子逸出,若增强蓝光强度,则:[ A ](A )单位时间内逸出的光电子数增加(B )逸出的光电子初动能增大(C )光电效应的红限频率增大(D )发射光电子所需的时间增长7. 用频率为1ν的单色光照射一金属表面产生光电效应,用频率为2ν的单色光照射该金属表面也产生光电效应,而且测得它们的光电子有E k 1>E k 2的关系,则:[ A ](A )1ν>2ν (B )1ν<2ν (C )1ν=2ν (D )不能确定8. 当照射光的波长从4000?变到3000?时,对同一金属,在光电效应实验中测得的遏止电压将:[ D ](A )减小V 56.0 (B )增大V 165.0 (C )减小V 34.0 (D )增大V 035.19. 钠光的波长是λ,设h 为普朗克恒量,c 为真空中的光速,则此光子的:[ C ](A )能量为c h /λ (B )质量为λc h / (C )动量为λ/h(D )频率为c /λ (E )以上结论都不对10. 以下一些材料的功函数(逸出功)为:铍—eV 9.3、钯—5.0eV 、铯—1.9eV 、钨—4.5eV 。
量子力学试题及答案

量子力学试题及答案一、选择题1. 下列哪个不是量子力学的基本假设?A. 薛定谔方程描述了微观粒子的运动B. 波粒二象性存在C. 粒子的能量只能取离散值D. 电子具有自旋答案:A2. 量子力学中,波函数ψ的物理意义是什么?A. 粒子的位置分布概率幅B. 粒子的动量C. 粒子的自旋D. 粒子的能量答案:A3. 下列哪个是测量厄米算符A的本征值所对应的本征态?A. |A⟩= A|ψ⟩B. A|ψ⟩= λ|ψ⟩C. A|ψ⟩= |ψ⟩D. A|ψ⟩ = 0答案:B4. 对于厄米算符A和B,若它们对易(即[A, B] = 0),则可以同时拥有共同的一组本征态。
A. 正确B. 错误答案:A5. 量子力学中,双缝干涉实验的实验结果说明了下列哪个基本原理?A. 波粒二象性B. 运动不确定性原理C. 量子纠缠D. 全同粒子统计答案:A二、填空题1. 薛定谔方程的一般形式为___________。
答案:iℏ∂ψ/∂t = Hψ2. 微观粒子的自旋可取的两个可能取值是_________。
答案:±1/23. 薛定谔方程描述的是粒子的_________。
答案:波函数4. 在量子力学中,观测算符A的平均值表示为_________。
答案:⟨A⟩ = ⟨ψ|A|ψ⟩5. 测量量子系统时,波函数会坍缩到观测算符A的_________上。
答案:本征态三、简答题1. 请简要解释波粒二象性的概念及其在量子力学中的意义。
答:波粒二象性是指微观粒子既具有粒子性质又具有波动性质。
在量子力学中,波函数描述了粒子的波动性质,可以通过波函数的模的平方得到粒子在不同位置出现的概率分布。
波粒二象性的意义在于解释了微观世界中一些奇特的现象,例如双缝干涉实验和量子隧穿现象。
2. 请简要说明量子力学中的不确定性原理。
答:量子力学中的不确定性原理由海森堡提出,它表明在同时测量一粒子的位置和动量时,粒子的位置和动量不能同时具有确定的值,其精度存在一定的限制。
量子力学选择题试题一

1. 量子力学只适应于【 】A.微观客体B.低速微观客体C.宏观物体D.宏观物体和微观客体2.算符A 本征态是指【 】A.在该态上测量力学量A 没有确定值B.算符A 为厄米算符C.在该态上多次测量力学量A 有唯一确定值D.一个确定的状态3.定态是指【 】A.波函数形式为Et i e r -)(ψ的态B.波函数形式为r p i e t ∙-)(ψ的态C.波函数形式为)(21x p Et i x e-- π的态 D.波函数形式为)ˆ(23)2(1x p Et i e ∙-- π的态4.波函数和体系状态的关系是【 】A.波函数完全确定体系状态B.只有定态波函数才能唯一确定体系状态C.因不确定常数因子的影响,波函数不能完全确定体系状态D.因不确定相因子的影响,波函数不能完全确定体系状态5.波函数确定则【 】A.所有力学量的取值概率完全确定B.某些力学量的取值可以完全确定C.只有体系能量完全确定D.波函数与力学量取值无关6.可测量的物理量在量子力学中可以用厄密算符表示,原因是【 】A.厄米算符作用在波函数上得到复数乘以该波函数B.厄米算符是幺正算符C. 厄密算符的本征值都是实数D.厄密算符的本征值取值概率一定7. 中心力场中体系守恒量有【 】A.只有能量B.动量和角动量C.只有角动量D.能量和角动量8.两个电子体系的自旋波函数是A. )2()1(βαB. )1()2(βαC. )]2()1([21βα+D. )]1()2()2()1([21βαβα+9.下列说法错误的是【 】A.电子是费米子B.电子自旋在z 方向的分量是2±C. 电子是玻色子D. 电子满足Pauli 不相容原理10.下列说法错误的是【 】A.Pauli 矩阵是厄米矩阵B.y y σσσ、、x 的本征值都是1± C.在各种表象下y y σσσ、、x 的表示形式不变 D.在不同表象下y y σσσ、、x 的表示不同。
第二十一章 量子力学基础2(答案)

(不确定关系、薛定谔方程、一维无限深势阱、隧道效应、能量和角动量量子化、电子自旋、多电子原子)一. 选择题 二.[ A ] 1.(基础训练8)设粒子运动的波函数图线分别如图19-4(A)、(B)、(C)、(D)所示,那么其中确定粒子动量的精确度最高的波函数是哪个图?【提示】: 根据动量的不确定关系:2x x p ∆⋅∆≥,图(A)对应的粒子位置的不确定量大,则动量的不确定量小。
[ C ] 2.(基础训练10) 氢原子中处于2p 状态的电子,描述其量子态的四个量子数(n ,l ,m l ,m s )可能取的值为(A) (2,2,1,21-). (B) (2,0,0,21).(C) (2,1,-1,21-). (D) (2,0,1,21).【提示】:2p 电子:n =2,l =1。
[ C ] 3.(基础训练11)在激光器中利用光学谐振腔 (A) 可提高激光束的方向性,而不能提高激光束的单色性. (B) 可提高激光束的单色性,而不能提高激光束的方向性. (C) 可同时提高激光束的方向性和单色性. (D) 既不能提高激光束的方向性也不能提高其单色性.[ A ] 4.(自测提高5)已知粒子在一维矩形无限深势阱中运动,其波函数为:a x ax 23cos 1)(π⋅=ψ, ( - a ≤x ≤a )那么粒子在x = 5a /6处出现的概率密度为 (A) 1/(2a ). (B) 1/a . (C) a 2/1. (D) a /1【提示】:25/61()2x a x aψ==[ B ] 5.(自测提高7)一维无限深方势阱中,已知势阱宽度为a .应用测不准关系估计势阱中质量为m 的粒子的零点能量为 (A) )/(2ma . (B) )2/(22ma .(C) )2/(2ma . (D) )2/(2ma . [ ]x (A) x (B)x (C) x(D) 图 19-4【提示】:根据动量的不确定关系:x x p ∆⋅∆ ,以及2()2x p E m∆=,题中:x a ∆=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
量子物理基础选择题
1. 用频率为ν1的单色光照射某一种金属时,测得光电子的最大动能为E K 1;用频率为ν2的单色光照射另一种金属时,测得光电子的最大动能为E K 2.如果E K 1 >E K 2,那么
(A) ν1一定大于ν2. (B) ν1一定小于ν2.
(C) ν1一定等于ν2. (D) ν1可能大于也可能小于ν2. [ ]
2. 用频率为ν1的单色光照射某种金属时,测得饱和电流为I 1,以频率为ν2的单色光照射该金属时,测得饱和电流为I 2,若I 1> I 2,则
(A) ν1 >ν2. (B) ν1 <ν2.
(C) ν1 =ν2. (D) ν1与ν2的关系还不能确定. [ ]
3. 已知一单色光照射在钠表面上,测得光电子的最大动能是 1.2 eV ,而钠的红限波长是5400 Å ,那么入射光的波长是
(A) 5350 Å. (B) 5000 Å.
(C) 4350 Å. (D) 3550
Å. [ ]
4. 一定频率的单色光照射在某种金属上,测
出其光电流的曲线如图中实线所示.然后在光强度不变的条件下增大照射光的频率,测出其光电流的曲线如图中虚线所示.满足题意的图是:
[ ]
5. 关于光电效应有下列说法:
(1) 任何波长的可见光照射到任何金属表面都能产生光电效应;
(2) 若入射光的频率均大于一给定金属的红限,则该金属分别受到不同频率的光照射时,释出的光电子的最大初动能也不同;
(3) 若入射光的频率均大于一给定金属的红限,则该金属分别受到不同频率、强度相等的光照射时,单位时间释出的光电子数一定相等;
(4) 若入射光的频率均大于一给定金属的红限,则当入射光频率不变而强度增大一倍时,该金属的饱和光电流也增大一倍.
其中正确的是
(A) (1),(2),(3).
(B) (2),(3),(4).
(C) (2),(3).
(D) (2),(4). [ ]
6. 保持光电管上电势差不变,若入射的单色光光强增大,则从阴极逸出的光电子的最大初动能E 0和飞到阳极的电子的最大动能E K 的变化分别是
(A) E 0增大,E K 增大. (B) E 0不变,E K 变小.
(C) E 0增大,E K 不变. (D) E 0不变,E K 不变. [ ]
7. 用强度为I ,波长为λ 的X 射线(伦琴射线)分别照射锂(Z = 3)和铁(Z = 26).若在同一散射角下测得康普顿散射的X 射线波长分别为λLi 和λFe (λLi ,λFe >λ),它们对应的强度分别
为I Li和I Fe,则
(A) λLi>λFe,I Li< I Fe(B) λLi=λFe,I Li = I Fe
(C) λLi=λFe,I Li.>I Fe(D) λLi<λFe,I Li.>I Fe[]
8. 康普顿效应的主要特点是
(A) 散射光的波长均比入射光的波长短,且随散射角增大而减小,但与散射体的性质无关.
(B) 散射光的波长均与入射光的波长相同,与散射角、散射体性质无关.
(C) 散射光中既有与入射光波长相同的,也有比入射光波长长的和比入射光波长短的.这与散射体性质有关.
(D) 散射光中有些波长比入射光的波长长,且随散射角增大而增大,有些散射光波长与入射光波长相同.这都与散射体的性质无关.[]
9. 用X射线照射物质时,可以观察到康普顿效应,即在偏离入射光的各个方向上观察到散射光,这种散射光中
(A) 只包含有与入射光波长相同的成分.
(B) 既有与入射光波长相同的成分,也有波长变长的成分,波长的变化只与散射方向有关,与散射物质无关.
(C) 既有与入射光相同的成分,也有波长变长的成分和波长变短的成分,波长的变化既与散射方向有关,也与散射物质有关.
(D) 只包含着波长变长的成分,其波长的变化只与散射物质有关与散射方向无关.[]
10. 要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是
(A) 1.5 eV.(B) 3.4 eV.
(C) 10.2 eV.(D) 13.6 eV.[]
11. 由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出:
(A) 一种波长的光.(B) 两种波长的光.
(C) 三种波长的光.(D) 连续光谱.[]
12. 根据玻尔理论,氢原子中的电子在n =4的轨道上运动的动能与在基态的轨道上运动的动能之比为
(A) 1/4.(B) 1/8.
(C) 1/16.(D) 1/32.[]
13. 按照玻尔理论,电子绕核作圆周运动时,电子的动量矩L的可能值为
(A) 任意值.(B) nh,n = 1,2,3,…
(C) 2π nh,n = 1,2,3,…(D) nh/(2π),n = 1,2,3,…
[]
14. 具有下列哪一能量的光子,能被处在n = 2的能级的氢原子吸收?
(A) 1.51 eV.(B) 1.89 eV.
(C) 2.16 eV.(D) 2.40 eV.[]
15. 已知氢原子从基态激发到某一定态所需能量为10.19 eV,当氢原子从能量为-0.85
eV 的状态跃迁到上述定态时,所发射的光子的能量为
(A) 2.56 eV . (B) 3.41 eV .
(C) 4.25 eV . (D) 9.95 eV . [ ]
16. 若α粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则α粒子的德布罗意波长是
(A) )2/(eRB h . (B) )/(eRB h .
(C) )2/(1eRBh . (D) )/(1eRBh . [ ]
17. 电子显微镜中的电子从静止开始通过电势差为U 的静电场加速后,其德布罗意波长是 0.4 Å ,则U 约为
(A) 150 V . (B) 330 V .
(C) 630 V . (D) 940 V . [ ]
(普朗克常量h =6.63×10-34 J ·s)
18. 如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的
(A) 动量相同. (B) 能量相同.
(C) 速度相同. (D) 动能相同. [ ]
19. 不确定关系式 ≥⋅∆∆x p x 表示在x 方向上
(A) 粒子位置不能准确确定.
(B) 粒子动量不能准确确定.
(C) 粒子位置和动量都不能准确确定.
(D) 粒子位置和动量不能同时准确确定. [ ]
20. 设粒子运动的波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定粒子
动量的精确度最高的波函数是哪个图?
[ ]
21. 关于不确定关系 ≥∆∆x p x ()2/(π=h ,有以下几种理解:
(1) 粒子的动量不可能确定.
(2) 粒子的坐标不可能确定.
(3) 粒子的动量和坐标不可能同时准确地确定.
(4) 不确定关系不仅适用于电子和光子,也适用于其它粒子.
其中正确的是:
(A) (1),(2). (B) (2),(4).
(C) (3),(4). (D) (4),(1). [ ]
22. 直接证实了电子自旋存在的最早的实验之一是
(A) 康普顿实验. (B) 卢瑟福实验.
(C) 戴维孙-革末实验. (D) 斯特恩-革拉赫实验. [ ] x (A)
x (B)x (C)x (D)
23. 下列各组量子数中,哪一组可以描述原子中电子的状态?
(A) n = 2,l = 2,m l = 0,2
1=
s m . (B) n = 3,l = 1,m l =-1,2
1-=s m . (C) n = 1,l = 2,m l = 1,2
1=s m . (D) n = 1,l = 0,m l = 1,21-=s m . [ ]
24. 氢原子中处于3d 量子态的电子,描述其量子态的四个量子数(n ,l ,m l ,m s )可能取的值为
(A) (3,0,1,21-
). (B) (1,1,1,2
1-). (C) (2,1,2,21). (D) (3,2,0,21). [ ]
25. 氢原子中处于2p 状态的电子,描述其量子态的四个量子数(n ,l ,m l ,m s )可能取的值为
(A) (2,2,1,2
1-
). (B) (2,0,0,21). (C) (2,1,-1,21-). (D) (2,0,1,21). [ ]
26. 在氢原子的L 壳层中,电子可能具有的量子数(n ,l ,m l ,m s )是
(A) (1,0,0,2
1-
). (B) (2,1,-1,21). (C) (2,0,1,21-). (D) (3,1,-1,21-). [ ]。