【原创】R使用LASSO回归预测股票收益论文(代码数据)
【原创】R使用LASSO回归预测股票收益论文(代码数据)

咨询QQ:3025393450有问题百度搜索“”就可以了欢迎登陆官网:/datablogR使用LASSO回归预测股票收益数据分析报告来源:大数据部落使用LASSO预测收益1.示例只要有金融经济学家,金融经济学家一直在寻找能够预测股票收益的变量。
对于最近的一些例子,想想Jegadeesh和Titman(1993),它表明股票的当前收益是由前几个月的股票收益预测的,侯(2007),这表明一个行业中最小股票的当前回报是通过行业中最大股票的滞后回报预测,以及Cohen和Frazzini (2008),这表明股票的当前回报是由其主要客户的滞后回报预测的。
两步流程。
当你考虑它时,找到这些变量实际上包括两个独立的问题,识别和估计。
首先,你必须使用你的直觉来识别一个新的预测器,然后你必须使用统计来估计这个新的预测器的质量:咨询QQ:3025393450有问题百度搜索“”就可以了欢迎登陆官网:/datablog但是,现代金融市场庞大。
可预测性并不总是发生在易于人们察觉的尺度上,使得解决第一个问题的标准方法成为问题。
例如,联邦信号公司的滞后收益率是2010 年10月一小时内所有纽约证券交易所上市电信股票的重要预测指标。
你真的可以从虚假的预测指标中捕获这个特定的变量吗?2.使用LASSOLASSO定义。
LASSO是一种惩罚回归技术,在Tibshirani(1996)中引入。
它通过投注稀疏性来同时识别和估计最重要的系数,使用更短的采样周期- 也就是说,假设在任何时间点只有少数变量实际上很重要。
正式使用LASSO意味着解决下面的问题,如果你忽略了惩罚函数,那么这个优化问题就只是一个OLS 回归。
惩罚函数。
但是,这个惩罚函数是LASSO成功的秘诀,允许估算器对最大系数给予优先处理,完全忽略较小系数。
为了更好地理解LASSO如何做到这一点,当右侧变量不相关且具有单位方差时。
一方面,这个解决方案意味着,如果OLS估计一个大系数,那么LASSO将提供类似的估计。
【原创】在R语言中实现Logistic逻辑回归数据分析报告论文(代码+数据)

咨询QQ:3025393450有问题百度搜索“”就可以了欢迎登陆官网:/datablog在R语言中实现Logistic逻辑回归数据分析报告来源:大数据部落|原文链接/?p=2652逻辑回归是拟合回归曲线的方法,当y是分类变量时,y = f(x)。
典型的使用这种模式被预测Ÿ给定一组预测的X。
预测因子可以是连续的,分类的或两者的混合。
R中的逻辑回归实现R可以很容易地拟合逻辑回归模型。
要调用的函数是glm(),拟合过程与线性回归中使用的过程没有太大差别。
在这篇文章中,我将拟合一个二元逻辑回归模型并解释每一步。
数据集我们将研究泰坦尼克号数据集。
这个数据集有不同版本可以在线免费获得,但我建议使用Kaggle提供的数据集,因为它几乎可以使用(为了下载它,你需要注册Kaggle)。
数据集(训练)是关于一些乘客的数据集合(准确地说是889),并且竞赛的目标是预测生存(如果乘客幸存,则为1,否则为0)基于某些诸如服务等级,性别,年龄等特征。
正如您所看到的,我们将使用分类变量和连续变量。
咨询QQ:3025393450有问题百度搜索“”就可以了欢迎登陆官网:/datablog数据清理过程在处理真实数据集时,我们需要考虑到一些数据可能丢失或损坏的事实,因此我们需要为我们的分析准备数据集。
作为第一步,我们使用该函数加载csv数据read.csv()。
确保参数na.strings等于c("")使每个缺失值编码为a NA。
这将帮助我们接下来的步骤。
training.data.raw < - read.csv('train.csv',header = T,na.strings = c(“”))现在我们需要检查缺失的值,并查看每个变量的唯一值,使用sapply()函数将函数作为参数传递给数据框的每一列。
sapply(training.data.raw,function(x)sum(is.na(x)))PassengerId生存的Pclass名称性别0 0 0 0 0 年龄SibSp Parch票价177 0 0 0 0 小屋着手687 2 sapply(training.data.raw,函数(x)长度(unique(x)))PassengerId生存的Pclass名称性别891 2 3 891 2 年龄SibSp Parch票价89 7 7 681 248 小屋着手148 4对缺失值进行可视化处理可能会有所帮助:Amelia包具有特殊的绘图功能missmap(),可以绘制数据集并突出显示缺失值:咨询QQ:3025393450有问题百度搜索“”就可以了欢迎登陆官网:/datablog咨询QQ:3025393450有问题百度搜索“”就可以了欢迎登陆官网:/datablog可变机舱有太多的缺失值,我们不会使用它。
用R进行Lassoregression回归分析

用R进行Lassoregression回归分析glmnet是由斯坦福大学的统计学家们开发的一款R包,用于在传统的广义线性回归模型的基础上添加正则项,以有效解决过拟合的问题,支持线性回归,逻辑回归,泊松回归,cox回归等多种回归模型,链接如下/web/packages/glmnet/index.html对于正则化,提供了以下3种正则化的方式1.ridge regression,岭回归sso regression,套索回归3.elastic-net regression,弹性网络回归这3者的区别就在于正则化的不同,套索回归使用回归系数的绝对值之和作为正则项,即L1范式;岭回归采用的是回归系数的平方和,即L2范式;弹性网络回归同时采用了以上两种策略,其正则项示意如下可以看到,加号左边对应的是lasso回归的正则项,加号右边对应的是ridge回归的正则项。
在glmnet中,引入一个新的变量α, 来表示以上公式可以看到,随着α取值的变化,正则项的公式也随之变化1.alpha = 1, lasso regression2.alpha = 0, ridge regression3.alpha 位于0到1之间, elastic net regression利用alpha的取值来确定回归分析的类型,然后就只需要关注lambda值就可以了。
除此之外,还有一个关键的参数family, 用来表示回归模型的类型,其实就是因变量y的数据分布,有以下几种取值1.gaussian, 说明因变量为连续型变量,服从高斯分布,即正态分布,对于的模型为线性回归模型2.binomial, 说明因变量为二分类变量,服从二项分布,对应的模型为逻辑回归模型3.poisson, 说明因变量为非负正整数,离散型变量,服从泊松分布,对应的模型为泊松回归模型4.cox, 说明因变量为生存分析中的因变量,同时拥有时间和状态两种属性,对应的模型为cox回归模型5.mbinomial, 说明因变量为多分类的离散型变量,对应的模型为逻辑回归模型6.mgaussian, 说明因变量为服从高斯分布的连续型变量,但是有多个因变量,输入的因变量为一个矩阵,对应的模型为线性回归模型理解这两个参数之后,就可以使用这个R包来进行分析了。
【原创】R语言线性回归案例数据分析可视化报告(附代码数据)

R语言线性回归案例数据分析可视化报告在本实验中,我们将查看来自所有30个职业棒球大联盟球队的数据,并检查一个赛季的得分与其他球员统计数据之间的线性关系。
我们的目标是通过图表和数字总结这些关系,以便找出哪个变量(如果有的话)可以帮助我们最好地预测一个赛季中球队的得分情况。
数据用变量at_bats绘制这种关系作为预测。
关系看起来是线性的吗?如果你知道一个团队的at_bats,你会习惯使用线性模型来预测运行次数吗?散点图.如果关系看起来是线性的,我们可以用相关系数来量化关系的强度。
.残差平方和回想一下我们描述单个变量分布的方式。
回想一下,我们讨论了中心,传播和形状等特征。
能够描述两个数值变量(例如上面的runand at_bats)的关系也是有用的。
从前面的练习中查看你的情节,描述这两个变量之间的关系。
确保讨论关系的形式,方向和强度以及任何不寻常的观察。
正如我们用均值和标准差来总结单个变量一样,我们可以通过找出最符合其关联的线来总结这两个变量之间的关系。
使用下面的交互功能来选择您认为通过点云的最佳工作的线路。
# Click two points to make a line.After running this command, you’ll be prompted to click two points on the plot to define a line. Once you’ve done that, the line you specified will be shown in black and the residuals in blue. Note that there are 30 residuals, one for each of the 30 observations. Recall that the residuals are the difference between the observed values and the values predicted by the line:e i=y i−y^i ei=yi−y^iThe most common way to do linear regression is to select the line that minimizes the sum of squared residuals. To visualize the squared residuals, you can rerun the plot command and add the argument showSquares = TRUE.## Click two points to make a line.Note that the output from the plot_ss function provides you with the slope and intercept of your line as well as the sum of squares.Run the function several times. What was the smallest sum of squares that you got? How does it compare to your neighbors?Answer: The smallest sum of squares is 123721.9. It explains the dispersion from mean. The linear modelIt is rather cumbersome to try to get the correct least squares line, i.e. the line that minimizes the sum of squared residuals, through trial and error. Instead we can use the lm function in R to fit the linear model (a.k.a. regression line).The first argument in the function lm is a formula that takes the form y ~ x. Here it can be read that we want to make a linear model of runs as a function of at_bats. The second argument specifies that R should look in the mlb11 data frame to find the runs and at_bats variables.The output of lm is an object that contains all of the information we need about the linear model that was just fit. We can access this information using the summary function.Let’s consider this output piece by piece. First, the formula used to describe the model is shown at the top. After the formula you find the five-number summary of the residuals. The “Coefficients” table shown next is key; its first column displays the linear model’s y-intercept and the coefficient of at_bats. With this table, we can write down the least squares regression line for the linear model:y^=−2789.2429+0.6305∗atbats y^=−2789.2429+0.6305∗atbatsOne last piece of information we will discuss from the summary output is the MultipleR-squared, or more simply, R2R2. The R2R2value represents the proportion of variability in the response variable that is explained by the explanatory variable. For this model, 37.3% of the variability in runs is explained by at-bats.output, write the equation of the regression line. What does the slope tell us in thecontext of the relationship between success of a team and its home runs?Answer: homeruns has positive relationship with runs, which means 1 homeruns increase 1.835 times runs.Prediction and prediction errors Let’s create a scatterplot with the least squares line laid on top.The function abline plots a line based on its slope and intercept. Here, we used a shortcut by providing the model m1, which contains both parameter estimates. This line can be used to predict y y at any value of x x. When predictions are made for values of x x that are beyond the range of the observed data, it is referred to as extrapolation and is not usually recommended. However, predictions made within the range of the data are more reliable. They’re also used to compute the residuals.many runs would he or she predict for a team with 5,578 at-bats? Is this an overestimate or an underestimate, and by how much? In other words, what is the residual for thisprediction?Model diagnosticsTo assess whether the linear model is reliable, we need to check for (1) linearity, (2) nearly normal residuals, and (3) constant variability.Linearity: You already checked if the relationship between runs and at-bats is linear using a scatterplot. We should also verify this condition with a plot of the residuals vs. at-bats. Recall that any code following a # is intended to be a comment that helps understand the code but is ignored by R.6.Is there any apparent pattern in the residuals plot? What does this indicate about the linearity of the relationship between runs and at-bats?Answer: the residuals has normal linearity of the relationship between runs ans at-bats, which mean is 0.Nearly normal residuals: To check this condition, we can look at a histogramor a normal probability plot of the residuals.7.Based on the histogram and the normal probability plot, does the nearly normal residuals condition appear to be met?Answer: Yes.It’s nearly normal.Constant variability:1. Choose another traditional variable from mlb11 that you think might be a goodpredictor of runs. Produce a scatterplot of the two variables and fit a linear model. Ata glance, does there seem to be a linear relationship?Answer: Yes, the scatterplot shows they have a linear relationship..1.How does this relationship compare to the relationship between runs and at_bats?Use the R22 values from the two model summaries to compare. Does your variable seem to predict runs better than at_bats? How can you tell?1. Now that you can summarize the linear relationship between two variables, investigatethe relationships between runs and each of the other five traditional variables. Which variable best predicts runs? Support your conclusion using the graphical andnumerical methods we’ve discussed (for the sake of conciseness, only include output for the best variable, not all five).Answer: The new_obs is the best predicts runs since it has smallest Std. Error, which the points are on or very close to the line.1.Now examine the three newer variables. These are the statistics used by the author of Moneyball to predict a teams success. In general, are they more or less effective at predicting runs that the old variables? Explain using appropriate graphical andnumerical evidence. Of all ten variables we’ve analyzed, which seems to be the best predictor of runs? Using the limited (or not so limited) information you know about these baseball statistics, does your result make sense?Answer: ‘new_slug’ as 87.85% ,‘new_onbase’ as 77.85% ,and ‘new_obs’ as 68.84% are predicte better on ‘runs’ than old variables.1. Check the model diagnostics for the regression model with the variable you decidedwas the best predictor for runs.This is a product of OpenIntro that is released under a Creative Commons Attribution-ShareAlike 3.0 Unported. This lab was adapted for OpenIntro by Andrew Bray and Mine Çetinkaya-Rundel from a lab written by the faculty and TAs of UCLA Statistics.。
R语言回归模型项目分析报告论文(附代码数据)

回归模型项目分析报告论文(附代码数据)摘要该项目包括评估一组变量与每加仑(MPG)英里之间的关系。
汽车趋势大体上是对这个具体问题的答案的本质感兴趣:* MPG的自动或手动变速箱更好吗?*量化自动和手动变速器之间的手脉差异。
我们在哪里证实传输不足以解释MPG的变化。
我们已经接受了这个项目的加速度,传输和重量作为解释汽油里程使用率的84%变化的变量。
分析表明,通过使用我们的最佳拟合模型来解释哪些变量解释了MPG 的大部分变化,我们可以看到手册允许我们以每加仑2.97多的速度驱动。
(A.1)1.探索性数据分析通过第一个简单的分析,我们通过箱形图可以看出,手动变速箱肯定有更高的mpg结果,提高了性能。
基于变速箱类型的汽油里程的平均值在下面的表格中给出,传输比自动传输产生更好的性能。
根据附录A.4,通过比较不同传输的两种方法,我们排除了零假设的0.05%的显着性。
第二个结论嵌入上面的图表使我们看到,其他变量可能会对汽油里程的使用有重要的作用,因此也应该考虑。
由于simplistisc模型显示传播只能解释MPG变异的35%(AppendiX A.2。
)我们将测试不同的模型,我们将在这个模型中减少这个变量的影响,以便能够回答,如果传输是唯一的变量要追究责任,或者如果其他变量的确与汽油里程的关系更强传输本身。
(i.e.MPG)。
### 2.模型测试(线性回归和多变量回归)从Anova分析中我们可以看出,仅仅接受变速箱作为与油耗相关的唯一变量的模型将是一个误解。
一个更完整的模型,其中的变量,如重量,加速度和传输被考虑,将呈现与燃油里程使用(即MPG)更强的关联。
一个F = 62.11告诉我们,如果零假设是真的,那么这个大的F比率的可能性小于0.1%的显着性是可能的,因此我们可以得出结论:模型2显然是一个比油耗更好的预测值仅考虑传输。
为了评估我们模型的整体拟合度,我们运行了另一个分析来检索调整的R平方,这使得我们可以推断出模型2,其中传输,加速度和重量被选择,如果我们需要,它解释了大约84%的变化预测汽油里程的使用情况。
【原创】在R语言中实现Logistic逻辑回归数据分析报告论文(含代码数据)

咨询QQ:3025393450有问题百度搜索“”就可以了欢迎登陆官网:/datablog在R语言中实现Logistic逻辑回归数据分析报告来源:大数据部落|逻辑回归是拟合回归曲线的方法,当y是分类变量时,y = f(x)。
典型的使用这种模式被预测Ÿ给定一组预测的X。
预测因子可以是连续的,分类的或两者的混合。
R中的逻辑回归实现R可以很容易地拟合逻辑回归模型。
要调用的函数是glm(),拟合过程与线性回归中使用的过程没有太大差别。
在这篇文章中,我将拟合一个二元逻辑回归模型并解释每一步。
数据集我们将研究泰坦尼克号数据集。
这个数据集有不同版本可以在线免费获得,但我建议使用Kaggle提供的数据集,因为它几乎可以使用(为了下载它,你需要注册Kaggle)。
数据集(训练)是关于一些乘客的数据集合(准确地说是889),并且竞赛的目标是预测生存(如果乘客幸存,则为1,否则为0)基于某些诸如服务等级,性别,年龄等特征。
正如您所看到的,我们将使用分类变量和连续变量。
数据清理过程咨询QQ:3025393450有问题百度搜索“”就可以了欢迎登陆官网:/datablog在处理真实数据集时,我们需要考虑到一些数据可能丢失或损坏的事实,因此我们需要为我们的分析准备数据集。
作为第一步,我们使用该函数加载csv数据read.csv()。
确保参数na.strings等于c("")使每个缺失值编码为a NA。
这将帮助我们接下来的步骤。
training.data.raw < - read.csv('train.csv',header = T,na.strings = c(“”))现在我们需要检查缺失的值,并查看每个变量的唯一值,使用sapply()函数将函数作为参数传递给数据框的每一列。
sapply(training.data.raw,function(x)sum(is.na(x)))PassengerId生存的Pclass名称性别0 0 0 0 0 年龄SibSp Parch票价177 0 0 0 0 小屋着手687 2 sapply(training.data.raw,函数(x)长度(unique(x)))PassengerId生存的Pclass名称性别891 2 3 891 2 年龄SibSp Parch票价89 7 7 681 248 小屋着手148 4对缺失值进行可视化处理可能会有所帮助:Amelia包具有特殊的绘图功能missmap(),可以绘制数据集并突出显示缺失值:咨询QQ:3025393450有问题百度搜索“”就可以了欢迎登陆官网:/datablog咨询QQ:3025393450有问题百度搜索“”就可以了欢迎登陆官网:/datablog可变机舱有太多的缺失值,我们不会使用它。
【原创】R语言经济指标回归、时间序列分析报告论文附代码数据

【原创】R语言经济指标回归、时间序列分析报告论文附代码数据
本文使用R语言对经济指标进行回归和时间序列分析,旨在探讨经济指标对GDP的影响以及GDP的未来走势。
首先,我们使用OLS回归分析了GDP与各经济指标之间的关系,并通过分析结果
得出相关结论。
接着,我们引入时间序列分析工具ARIMA模型对GDP进行预测,并对预测结果进行解读,为决策者提供参考。
除此之外,我们还附上了相关代码和数据,以便读者复现整个分析过程。
本文的主要内容包括:
1. 数据获取和处理
2. OLS回归分析
3. 时间序列分析
4. 结论与反思
通过本文的分析和打磨,我们不仅对R语言的应用和经济分析方法有了进一步的了解,更得出了一些有价值的结论,这些结论对
于制定经济政策有一定的参考意义。
同时,本文的数据和代码也可以为读者在以后的应用和研究中提供参考价值。
需要说明的是,本文中使用的数据来自官方统计机构的公开数据,数据的准确性和真实性得到了验证。
为了避免涉及版权问题,本文中没有引用其他的资料。
我们相信,本文对于对经济分析和R语言感兴趣的读者有一定帮助,同时也欢迎大家提出宝贵的意见和建议,以便我们进一步提高分析的质量和深度。
【原创】R语言股票回归、时间序列分析报告论文附代码数据

【原创】R语言股票回归、时间序列分析报告论文附代码数据论文题目:股票价格回归分析报告摘要:主要思路为了准确的估计股票价格,了解股票的一般规律,更好的为资本市场提供参考意见和帮助股民进行投资股票作出正确的决策,本文从股票价格指数与整个经济环境角度出发,采用多元回归分析方法,应用月度时间序列数据,通过选取综合反映股票市场上所有公司股票价格整体水平的指标建立了线性回归模型,得出了股票价格趋势变动的影响因素.关键词:回归模型;指数模型;股票价格;预测一、引言主要思路为了准确的估计股票价格,本文从股票价格指数与整个经济环境角度出发,采用多元回归分析方法,应用月度时间序列数据建立了线性回归模型,具体分析步骤:1.关系分析基于以上原理,为大致了解股票价格与诸因素之间的关系,先分别绘制股票价格与各个因素之间的散点图,并分析它们之间的关系.股价用上证A股指数来表示,这样可以减少人为因素对股票价格的影响,尽量将注意力集中在我们假设选用的自变量上.我们采用的数据是2012年和2015年上半年的月度数据,分析影响我国股市趋势的因素。
之所以选取2012年和2015年7月的统计资料是基于以下两点考虑:中国股市发展时间较短,采用年度数据会因为样本量太小而使得回归分析失去意义;数据取得的存在较大难度,因季度数据不全而只能选取月度数据.因此选取2012年和2015年7月份月度数据作为样本.2.指数光滑时间序列展望模子3.挑选多项式回来模子3.1变量选取通过向前向后逐步迭代回归模型筛选出显著性较强的变量进行回归建模。
3.2明显性检修根据F值和p值统计量来判别模子是不是具有明显的统计意义。
3.3拟合预测使用得到的模型对实际数据进行拟合和预测。
4.分析得出结论得出各个自变量之间的关系,和它们对因变量的影响极端经济意义。
二、获取数据及预处理获取2012年1月到2015年7月的上证指数数据,泉币供给量,消耗价格指数群众币美圆汇率和存款利率数据绘制变量之间的散点图plot(data)par(mfrow=c(2,2))plot(美圆汇率,上证指数数据)plot(人民币存款利率,上证指数数据)三、指数平滑时间序列模型预测表示时间序列l2012 263.670 19.925 240.655 131.620 245.665 368. -51.615 -156.545 69.235 -46.705 -329.040 -181.635 -2. -65.535 87.565 79.200 37.740 -157.900 -118.655 59. -50.230 142.300 -11.580 -25.710 47.830 -92.995 -115.865Aug Sep Oct Nov Dec2012 -130.350 -216.610 125.145 163.415 44.4802013 145.310 5.895 236.405 97.135 -142.5552014 -176.755 -108.775 -71.055 32.655 -149.3202015Jan Feb Mar Apr May Jun Ju利用HoltWinters函数展望:p.hw<-XXX,h=24)h=24透露表现展望24个值四、进行多元回归模型并进行分析summary(lmmod)显示回来成效Call:lm(formula = y ~ x1 + x2 + x3 + x4, data = data)Residuals:Min 1Q Median 3Q Max-543.94 -90.09 1.69 113.01 500.68Coefficients:Estimate Std. Error t value Pr(>|t|)(Intercept) -3.457e+04 9.319e+03 -3.710 0. ***x1 3.325e-03 1.369e-03 2.430 0. *x2 1.341e+01 2.663e+01 0.503 0.x3 4.787e+01 1.400e+01 3.420 0. **x4 7.870e+02 3.380e+02 2.328 0. *---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1Residual standard error: 246.5 on 38 degrees of freedomMultiple R-squared: 0.4804, Adjusted R-squared: 0.4257F-statistic: 8.783 on 4 and 38 DF, p-value: 4.012e-05回来成效分析从输出成效能够看出,回来方程为,变量和的统计量的估量值分别为-3.457e+04, 3.325e-03, 1.341e+01,4.787e+01和7.870e+02,除x2以外由对应的值都比显著性水平0.05小,可得两个偏回归系p数在显著性水平0.05下均显著不为零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
咨询QQ:3025393450
有问题百度搜索“”就可以了
欢迎登陆官网:/datablog
R使用LASSO回归预测股票收益数据分析报告
来源:大数据部落
使用LASSO预测收益
1.示例
只要有金融经济学家,金融经济学家一直在寻找能够预测股票收益的变量。
对于最近的一些例子,想想Jegadeesh和Titman(1993),它表明股票的当前收益是由前几个月的股票收益预测的,侯(2007),这表明一个行业中最小股票的当前回报是通过行业中最大股票的滞后回报预测,以及Cohen和Frazzini (2008),这表明股票的当前回报是由其主要客户的滞后回报预测的。
两步流程。
当你考虑它时,找到这些变量实际上包括两个独立的问题,识别和估计。
首先,你必须使用你的直觉来识别一个新的预测器,然后你必须使用统计来估计这个新的预测器的质量:
咨询QQ:3025393450
有问题百度搜索“”就可以了
欢迎登陆官网:/datablog
但是,现代金融市场庞大。
可预测性并不总是发生在易于人们察觉的尺度上,使得解决第一个问题的标准方法成为问题。
例如,联邦信号公司的滞后收益率是2010 年10月一小时内所有纽约证券交易所上市电信股票的重要预测指标。
你真的可以从虚假的预测指标中捕获这个特定的变量吗?
2.使用LASSO
LASSO定义。
LASSO是一种惩罚回归技术,在Tibshirani(1996)中引入。
它通过投注稀疏性来同时识别和估计最重要的系数,使用更短的采样周期- 也就是说,假设在任何时间点只有少数变量实际上很重要。
正式使用LASSO意味着解决下面的问题,如果你忽略了惩罚函数,那么这个优化问题就只是一个OLS 回归。
惩罚函数。
但是,这个惩罚函数是LASSO成功的秘诀,允许估算器对最大系数给予优先处理,完全忽略较小系数。
为了更好地理解LASSO如何做到这一点,当右侧变量不相关且具有单位方差时。
一方面,这个解决方案意味着,如果OLS估计一个大系数,那么LASSO将提供类似的估计。
另一方面,解决方案意味着,如果
咨询QQ:3025393450
有问题百度搜索“”就可以了
欢迎登陆官网:/datablog
OLS估计了足够小的系数,那么LASSO将会选择。
因为LASSO可以将除少数系数之外的所有系数设置为零,即使样本长度比可能的预测变量的数量短得多,它也可用于识别最重要的预测变量。
如果只有预测变量非零,那么你应该只需要几个观察选择然后估计这几个重要系数的大小。
3.模拟分析
我运行模拟来展示如何使用LASSO来预测未来的回报。
您可以在原文找到所有相关代码。
数据模拟。
每次模拟都涉及为期间的股票产生回报。
每个时期,所有股票的回报都受到一部分股票的回报,以及特殊冲击的影响
使模型适合数据。
这意味着使用时间段来估计具有潜在变量的模型。
我估计了一个OLS回归真正的预测因子是右侧变量。
显然,在现实世界中,你不知道真正的预测变量是什么,但是这个规范给出了你可以达到的最佳拟合的估计。
在将每个模型拟合到先前的数据之后,然后我在st期间进行样本外预测。
预测回归。
然后,我通过分析一系列预测回归分析调整后的统计数据,检查这些预测与第一个资产的实现回报的紧密程度。
例如,我将LASSO的回报预测用于估算下面的回归
咨询QQ:3025393450
有问题百度搜索“”就可以了
欢迎登陆官网:/datablog
4.调整参数
惩罚参数选择。
使LASSO拟合数据涉及选择惩罚参数。
我这样做是通过选择在数据的第一个时段期间具有最高样本外预测的惩罚参数。
这就是为什么上面的预测回归仅使用从而不是使用数据开始的原因。
下图显示了模拟中惩罚参数选择的分布。
预测数量。
最后,如果你看一下调整后数字中标有“Oracle”的面板,你会发现LASSO的样本外预测能力大约是真实模型预测能力的三分之一。
这是因为LASSO没有完美地选择稀疏信号。
下图的右侧面板显示LASSO通常只选出这些信号中最重要的信号。
更重要的是,左侧面板显示LASSO还锁定了大量的虚假信号。
这一结果表明,您可以通过选择更高的惩罚参数来提高LASSO的预测能力。