直线与平面所成的角的定义
直线和平面所成的角

案例二:机械工程中的直线和平面所成的角
总结词
机械工程中,直线和平面所成的角对于机器 的运转和性能至关重要。
详细描述
在机械设计中,直线和平面所成的角涉及到 机器的传动、导向和定位等方面。例如,在 制造精密机床时,需要精确控制导轨的角度 和位置,以确保机床的加工精度和稳定性。 同时,在机器运转过程中,直线和平面所成 的角也需要进行实时监测和调整,以确保机 器的正常运转和性能。
THANKS
感谢观看
利用向量计算
总结词
通过向量的数量积和向量的模长来计算直线和平面所成的角,是一种简便的方法 。
详细描述
首先,选取平面上任意一点,并确定一个方向向量。然后,计算这个方向向量与直 线向量的夹角的余弦值。最后,利用公式:θ = arccos(cos(θ)),其中θ为直线和平 面所成的角。
利用几何定理计算
建筑设计
在建筑设计中,可以利用直线和 平面所成的角来设计建筑物的外 观和结构,例如斜屋顶的角度和 楼梯的角度等。
机械设计
在机械设计中,可以利用直线和 平面所成的角来设计机械零件的 形状和尺寸,例如斜齿轮的角度 和轴承的角度等。
道路建设
在道路建设中,可以利用直线和 平面所成的角来设计道路的坡度 和弯度,以确保车辆安全行驶。
直线在平面上
当直线上的所有点都在平 面上时,称为直线在平面 上。
02
直线和平面所成的角
角的定义和性质
角的定义
角是由两条射线共同端点形成的平面空间,这两条射线称为角的边,而它们的公共端点称为角的顶点 。
角的性质
角的大小是由其两边的射线所夹的角度决定的,与边的长度无关。此外,角的大小不会因为角的边做 平移或旋转而改变。
直线和平面所成的角
直线与平面所成的角

直线与平面所成的角1、直线和平面所成的角,应分三种情况:(1)直线与平面斜交时,直线和平面所成的角是指此直线和它在平面上的射影所成的锐角;(2)直线和平面垂直时,直线和平面所成的角的大小为90°;(3)直线和平面平行或在平面内时,直线和平面所成的角的大小为0°.显然,斜线和平面所成角的范围是(0,);直线和平面所成的角的范围为[0,].2、一条直线和一个平面斜交,它们所成的角的度量问题(空间问题)是通过斜线在平面内的射影转化为两条相交直线的度量问题(平面问题)来解决的.具体的解题步骤与求异面直线所成的角类似,有如下的环节:(1)作﹣﹣作出斜线与射影所成的角;(2)证﹣﹣论证所作(或找到的)角就是要求的角;(3)算﹣﹣常用解三角形的方法(通常是解由垂线段、斜线段、斜线段的射影所组成的直角三角形)求出角.(4)答﹣﹣回答求解问题.在求直线和平面所成的角时,垂线段是其中最重要的元素,它可起到联系各线段的纽带的作用.在直线与平面所成的角的定义中体现等价转化和分类与整合的数学思想.3、斜线和平面所成角的最小性:斜线和平面所成的角是用两条相交直线所成的锐角来定义的,其中一条直线就是斜线本身,另一条直线是斜线在平面上的射影.在平面内经过斜足的直线有无数条,它们和斜线都组成相交的两条直线,为什么选中射影和斜线这两条相交直线,用它们所成的锐角来定义斜线和平面所成的角呢?原因是斜线和平面内经过斜足的直线所成的一切角中,它是最小的角.对于已知的斜线来说这个角是唯一确定的,它的大小反映了斜线关于平面的“倾斜程度”.根据线面所成的角的定义,有结论:斜线和平面所成的角,是这条斜线和这个平面内的直线所成的一切角中最小的角.用空间向量直线与平面所成角的求法:(1)传统求法:可通过已知条件,在斜线上取一点作该平面的垂线,找出该斜线在平面内的射影,通过解直角三角形求得.(2)向量求法:设直线l的方向向量为,平面的法向量为,直线与平面所成的角为θ,与的夹角为φ,则有sinθ=|cos φ|=.。
3.1.1(二课时)直线和平面所成的角

3.1.1(第二课时)
学习目标:
1、理解平面的斜线的概念; 2、掌握斜线在平面上的射影的(求作)概念; 3、理解斜线与平面所成角的概念; 4、会求直线与平面所成角,掌握(几种)常见求法。
知识探究(一):平面的斜线
思考1:当直线与平面相交时,它们可能垂直,也可能不 垂直,如果一条直线和一个平面相交但不垂直,这条直 线叫做这个平面的斜线,斜线和平面的交点叫做斜足. 那么过一点作一个平面的斜线有多少条?
PA 又 BC
PA BC
拓展训练:
P
M
C
E A
O
D N B
课堂小结与练习:
P67 练习: 1. P74习题2.3B组:2,4.
问题的提出:
直线和平面的位置关系
直线和平面的位置关系
直线在平面内 直线与平面平行 直线与平面相交
直线与平面直交------线面垂直
直线与平面相交
直线与平面斜交------线面角
平面的斜线和它在平面内的射影所成角,是这条斜 线和这个平面内的任一条直线所成角中最小的角; 2、斜线和平面所成角
Def : 把平面的一条斜线和它在平面上的射影所成的锐
角,叫做这条斜线和这个平面所成的角. 特别地,当一条直线与平面垂直时,规定它们所
成的角为90°;当一条直线和平面平行或在平面内时, 规定它们所成的角为0°.
(2)推理模式
3、三垂线定理及其逆定理的精髓:(三组垂线)
二、 三垂线定理及逆定理:
O
C1
A1
B1
D1
C
A
D
B
课堂练习 B
2、矩形ABCD中,AB=3,BC=4,PA垂直面ABCD,且
PA=1.则P点到对角线BD的距离是( A )
浅谈线线角、线面角、面面角的定义方式及其中蕴含的数学基本思想

浅谈线线角、线面角、面面角的定义方式北京市顺义区第九中学101300高中阶段在学习空间线、面位置关系的时候,会给出线线角、线面角及面面角的定义,本文以角形成的定义方式及蕴含的基本思想为主,进行研究。
1、直线与直线所成的角:(1)共面:同一平面内的两直线所成角,是利用两直线位置关系,平行、重合所成角为0度,如果相交就取交线所构成的锐角(或直角)。
(2)异面:如图所示,已知两条异面直线a和b,经过空间任一点O分别作直线a′∥a,b′∥b,我们把直线a′与b′所成的角叫做异面直线a与b所成的角(或夹角)。
θ定义方式:是发生定义法(即构造定义方式)定义中的“空间中任取一点O”,意味着:角的大小与O 点选取的位置无关;通过平移把异面直线所成角转化成两相交直线,是将空间图形问题转化成平面图形问题的定义方式,体现了定义的纯粹性和完备性。
2、直线和平面所成的角:如图,一条直线和一个平面相交,但不与这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点A叫做斜足.过斜线上斜足以外的一点P向平面引垂线PO,过垂足O和斜足A的直线AO叫做斜线在这个平面上的射影.平面的一条斜线和它在平面上的射影所成的角,叫做这条直线和这个平面所成的角。
规定:一条直线垂直于平面,我们说它们所成的角是直角;一条直线和平面平行,或在平面内,我们说它们所成的角是0°的角。
3、面面所成的角:(1)在二面角的棱l上任取一点O,以该点O为垂足,在半平面和内分别作垂直于棱l的射线OA和OB,则射线OA和OB构成的角称为二面角的平面角.( 2)作二面角的平面角的方法方法一:(定义法)在二面角的棱上找一个特殊点,在两个半平面内分别作垂直于棱的射线.如图所示,∠AOB为二面角αaβ的平面角.方法二:(垂线法)过二面角的一个面内一点作另一个平面的垂线,过垂足作棱的垂线,连接该点与垂足,利用线面垂直可找到二面角的平面角或其补角.如图所示,∠ACB为二面角αmβ的平面角.4、线线、线面、面面所成角的定义方式线线、线面、面面所成角的定义方式是“属加种差定义法”。
直线与平面所成角范围

直线与平面所成角范围
一条直线和一个平面所形成的角的范围是0°到180°。
0°表示这条直线和平面平行,而180°表示这条直线和平面垂直。
两条直线之间的角可以用很多不同的方法来描述,其中之一就是角范围。
它表示两条直线之间从0°到180°所形成的角,也就是说两条直线之间最大可能形成的角就是180°。
当一条直线和一个平面相交时,它们之间也可能形成角。
两条直线之间的角范围仍然是0°到180°。
当它们交叉时,这个角就被称为交叉角,其角度可以是90°。
如果两条直线平行,则它们之间的角度将为0°。
另一方面,当它们垂直时,它们之间的角度则为180°。
因此,一条直线与平面之间的角范围从0°到180°。
这种形式的角范围在几何学以及物理学中都非常重要,因为它被用来描述不同物体之间的关系。
比如,物理学家研究电磁学时,就需要了解直线与平面的角的范围,以确定电磁波的性质。
几何学家也有类似的用途,比如当他们研究空间结构时,几何形状之间的各种角的范围便可以得出一个准确的结论。
因此,一条直线和一个平面所形成的角的范围是0°到180°。
它们可以交叉,并形成一个90°的交叉角,也可以平行或垂直,分别形成0°和180°的角。
无论它们之间形成何种角度,都将在0°到180°范围内。
(2019新教材)人教A版高中数学必修第二册:直线与平面所成的角、直线与平面垂直的性质定理

所以
MC=BMsin∠MBC=5sin
60°=5×
23=5 2
3 .
在 Rt△MAB 中,MA= MB2-AB2= 52-42=3.
在
Rt△MAC
中,sin∠MCA=MMAC=5
3
3=2 5
3 .
2
即直线
MC
与平面
CAB
所成的角的正弦值为2
5
3 .
线面垂直的性质定理的应用 如图,已知正方体 A1C. (1)求证:A1C⊥B1D1; (2)M,N 分别为 B1D1 与 C1D 上的点,且 MN⊥B1D1,MN⊥C1D, 求证:MN∥A1C.
关的垂直问题
问题导学 预习教材 P151-P155 的内容,思考以下问题: 1.直线与平面所成的角的定义是什么? 2.直线与平面所成的角的范围是什么? 3.直线与平面垂直的性质定理的内容是什么? 4.如何求直线到平面的距离? 5.如何求两个平行平面间的距离?
1.直线与平面所成的角
(1)定义:如图,一条直线 PA 和一个平面 α
因为 E 是 DD1 的中点,四边形 ADD1A1 为正方形,所以 EM∥AD.
又在正方体 ABCD-A1B1C1D1 中,AD⊥平面 ABB1A1,所以 EM⊥ 平面 ABB1A1,从而 BM 为直线 BE 在平面 ABB1A1 内的射影, ∠EBM 即为直线 BE 与平面 ABB1A1 所成的角. 设正方体的棱长为 2, 则 EM=AD=2,BE= 22+22+12=3. 于是在 Rt△BEM 中,sin∠EBM=EBME =23, 即直线 BE 与平面 ABB1A1 所成的角的正弦值为23.
下列命题:
①垂直ቤተ መጻሕፍቲ ባይዱ同一条直线的两个平面互相平行;
直线与平面所成角公式

正弦值公式为:直线和平面所成的角的正弦=两个向量的乘积除两个向量模的乘积。
(也就是:两向量是法向量和直线所在的向量)。
先做平面的法向量,然后求直线和法向量所成的角的余弦=两向量的乘积除两向量模的乘积。
则直线和平面所成的角=90度-直线和法向量所成的角。
直线和平面所成的角是一个数学名词。
或曰:线面所成角,直线与平面所成角。
1、定义:当直线与平面垂直时,规定这条直线与该平面成直角。
当直线与平面平行或在平面内时,规定这条直线与该平面成0°角。
2、范围:0°≤θ≤90°(斜线与平面所成的角θ的范围是0\u003cθ\u003c90°。
)3、求法:作出斜线在平面上的射影;4、斜线与平面所成的角的特征:斜线与平面中所有直线所成角中最小的角。
直线与圆的位置关系:直线与圆的位置关系有相交、相切、相离三种。
相交,汉语词汇。
释义为两条直线互相交叉在一起、交于一点。
交朋友,做朋友。
直线与曲线交于两点,且这两点无限相近,趋于重合时,该直线就是该曲线在该点的切线。
初中数学中,若一条直线垂直于圆的半径且过圆的半径的外端,称这条直线与圆相切。
相切是平面上的圆与另一个几何形状的一种位置关系。
相离,就是互相分离的意思。
直线与平面所成的角

你注意观察过生活中 的角吗?
复习回顾
直线和平面的位置关系
思考:当直线a与平面的关系是a =A时, 如何反映出直线与平面的相对位置关系呢?
直线与平面所成的角:
一个平面的斜线和它在这个平面内的射影的夹角,
叫做斜线和平面所成的角(或斜线和平面的夹角)
直线和平面垂直,则直线和平面所成的角是直角 直线和平面平行或在平面内,则直线和平面所成的
(2)AB与面ADO所成的角。
练习: 如图:正方体ABCD-A1B1C1D1中, (1)AB1在面BB1D1D中的射影 (2)AB1在面A1B1CD中的射影 (3)AB1在面CDD1C1中的射影 D1
A1
D
A
C1 B1
C B
练习: 如图:正方体ABCD-A1B1C1D1中, (1)AB1在面BB1D1D中的射影 (2)AB1在面A1B1CD中的射影 (3)AB1在面CDD1C1中的射影 D1
A1
线段B1O
C1 B1
D
C
O
A
B
练习: 如图:正方体ABCD-A1B1C1D1中, (1)AB1在面BB1D1D中的射影 (2)AB1在面A1B1CD中的射影 (3)AB1在面CDD1C1中的射影 D1
平面的斜线和平面所成的角
cos= cos 1cos2
平面的斜线和它在平面内的射影所成的角, 是这条斜线和这个平面内任一直线所成的角中 最小的角
例1.如图,已知AB是平面的一条斜线,B为 斜足,AO,O为垂足,BC为内的一条 直线,ABC 60 , OBC 45 ,求斜线AB 和平面所成角。
角是0°
思考:
直线与平面所成的角θ 的取值范围
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与平面所成的角的定义:
①直线和平面所成的角有三种:
a.斜线和平面所成的角:一条直线与平面α相交,但不和α垂直,这条直线叫做平面α的斜线.斜线与α的交点叫做斜足,过斜线上斜足以外的点向平面引垂线,过垂足与斜足的直线叫做斜线在平面α内的射影,平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.
b.垂线与平面所成的角:一条直线垂直于平面,则它们所成的角是直角。
c.一条直线和平面平行,或在平面内,则它们所成的角为00.
②取值范围:00≤θ≤900.
求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”
最小角定理:
斜线和它在平面内的射影所成的角(即线面角),是斜线和这个平面内的所有直线所成角中最小的角。
求直线与平面所成的角的方法:
(1)找角:求直线与平面所成角的一般过程:①通过射影转化法,作出直线与平面所成的角;
②在三角形中求角的大小.
(2)向量法:设PA是平面α的斜线,,向量n为平面α的法向量,设PA与平面α所成的角为θ,则。