江苏省淮安市淮阴中学2022高一数学上学期期末考试试题(含解析)
江苏省淮安市淮阴中学2022-2023学年高一上学期期末数学试题

江苏省淮安市淮阴中学2022-2023学年高一上学期期末数学试题一、单选题1.若5sin 13α=-且a 为第三象限角,则tan α的值等于( ) A .125 B .125- C .512 D .512- 2.已知集合{}220A x x x =-=,则下列选项中说法不正确的是( ) A .A ∅⊆ B .2A -∈ C .{}0,2A ⊆ D .{}3A y y ⊆≤3.任意[]1,1x ∈-,使得不等式212x x m -+≥恒成立.则实数m 取值范围是( ) A .14m ≥ B .14m ≤ C .14⎧⎫⎨⎬⎩⎭ D .2m ≤4.在下列区间中,函数()e 43x f x x -=+-的零点所在的区间可能为( )A .1,04⎛⎫- ⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫ ⎪⎝⎭D .13,24⎛⎫ ⎪⎝⎭ 5.已知1sin cos 6αα⋅=-,ππ44α-<<,则sin cos αα+的值等于( )A B .C .D 6.将函数2sin()3y x π=+的图象向左平移()0m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A .12πB .6πC .3πD .23π 7.尽管目前人类还无法准确预报地震,但科学家通过研究发现地震释放出的能量E (单位:焦耳)与地震里氏震级M 之间的关系为lg 4.8 1.5E M =+.2011年3月11日,日本东北部海域发生里氏9.0级地震与2008年5月12日我国汶川发生里氏8.0级地震所释放出来的能量的比值为( )A . 1.510B .1.5C .lg1.5D . 1.510-8.若函数()f x 满足()()111f x f x +=+,当[]0,1x ∈时,()f x x =,若在区间(]1,1-上,方程()()3f x k x =+有两个实数解,则实数k 的取值范围为是( )A .3k <--B .3k <-+C .104k <≤D .103k -≤<二、多选题9.已知函数()2f x x =的值域为[]0,4,则函数()f x 定义域可能为( )A .[]22-,B .[]0,2C .[]2,0-D .{}1,1-10.已知实数a ,b ,c ,满足1e ln a b c ==,则下列关系式中可能成立的是( ) A .b c a => B .c a b => C .b c a >> D .c b a >>11.德国著名数学家狄利克雷在数学领域成就显著,是解析数论的创始人之一,以其命名的函数()1,0,x f x x ⎧=⎨⎩为有理数为无理数 ,称为狄利克雷函数,则关于()f x 下列说法正确的是( ) A .()f x 的值城为[]0,1B .R x ∀∈,()()1f f x =.C .()f x 为偶函数D .()f x 为周期函数12.记函数()()()cos 0,0πf x x ωϕωϕ=+><<的最小正周期为T ,若()f T =[]0,1恰有三个零点,则关于()f x 下列说法正确的是( )A .()f x 在[]0,1上有且仅有1个最大值点B .()f x 在[]0,1上有且仅有2个最小值点C .()f x 在10,4⎡⎤⎢⎥⎣⎦上单调递增D .ω的取值范围为7π10π,33⎡⎫⎪⎢⎣⎭三、填空题13.函数()20.4log 34y x x =-++的值域是________.14.若,a b 都是正数,且1ab =,则2+a b 的最小值是______.15.已知函数()24,43,x m f x x x x m ≥⎧=⎨+-<⎩,若函数g(x)=f(x)-2x 恰有三个不同的零点,则实数m 的取值范围是________.16.设I M 表示函数()242f x x x =-+在闭区间I 上的最大值.若正实数...a 满足[][]0,,22a a a M M ≥,则正实数a 的取值范围是______.四、解答题17.如图,在平面直角坐标系中,锐角α和钝角β的顶点与原点重合,始边与x 轴的正半轴重合,终边分别与单位圆交于,A B 两点,且OA OB ⊥.(1)若点A 的横坐标为35,求2sin cos αβ的值; (2)求()()πsin πcos 23πcos πsin 2αββα⎛⎫++ ⎪⎝⎭⎛⎫-+ ⎪⎝⎭的值. 18.已知某公司生产的一新款手机的年固定成本为350万元,设该公司一年内共生产这种手机x 万部并全部销售完,且每万部的销售收入为600万元,生产这种手机每年需另投入成本()R x 万元,且当040x <<.时,()()1010R x x x =+,当40x ≥时,()400006016550R x x x=+-. (1)写出年利润W (万元)关于年产量x (万部)的函数解析式(年利润=年销售收入-年成本)(2)年产量为多少万部时,该公司所获年利润最大?最大年利润是多少?19.已知函数()πsin 6f x x ω⎛⎫=+ ⎪⎝⎭,0ω>与函数()()cos 2g x x θ=+有相同的对称中心. (1)求ω,θ的值;(2)若函数()g x 在π0,6⎡⎤⎢⎥⎣⎦上单调递减,求出函数()g x 的单调区间. 20.已知函数()()()()12log 2121R x x f x a a +=---∈.(1)当1a =时,求()f x 的定义域;(2)当23log ,2x ⎛⎫∈+∞ ⎪⎝⎭时,()f x x =有两解,求实数a 的范围. 21.已知函数()122x x a h x a=+,0a >且1a ≠. (1)若2a =,令()()()221h x k g x h x +=+,若对一切实数x ,不等式()2g x <恒成立,求实数k 的取值范围; (2)若()()*44N 2n nh n n -+<∈,试确定a 的取值范围.22.对于定义域为I 的函数()y f x =,区间I D ⊆。
江苏省淮安市淮阴区淮阴中学2022年数学高一上期末联考试题含解析

故答案为: ;
16、6
【解析】本题首先可通过题意得出向量 以及向量 的坐标表示和向量 与向量 之间的关系,然后通过向量平行的相关性质即可得出结果。
【详解】因为 , ,且 ,
所以 ,解得 。
【点睛】本题考查向量的相关性质,主要考查向量平行的相关性质,若向量 , , ,则有 ,锻炼了学生对于向量公式的使用,是简单题。
三、解答题(本大题共6小题,共70分)
17、(1) ;(2) .
【解析】(1)根据倾斜角得到斜率,再由点斜式,即可得出结果;
(2)分别求出直线与坐标轴的交点坐标,进而可求出三角形面积.
【详解】(1)∵倾斜角为 ,∴斜率 ,
∴直线 的方程为: ,即 ;
(2)由(1)得 ,令 ,则 ,即与 轴交点为 ;
试题解析:(1)令 ,得 ,
故 ,此时
答:平衡价格是30元,平衡需求量是40万件
(2)①由 , ,得 ,
由题意可知:
故
当 时时,
答:市场价格是35元时,市场总销售额 取得最大值
②设政府应该对每件商品征税 元,则供应商的实际价格是每件 元,
故 ,
9、C
【解析】由已知,直线 满足到原点的距离为 ,到点 的距离为 ,满足条件的直线 即为圆 和圆 的公切线,因为这两个圆有两条外公切线和一条内公切线.故选C.
考点:相离两圆的公切线
10、B
【解析】根据斜二测画法,原来的高变成了 方向的线段,且长度是原高的一半,
原高为
而横向长度不变,且梯形 是直角梯形,
对于②④可证 三点共面,但 平面 ; 三点共面,但 平面 ,即可判断直线 与 异面.
【详解】由题意,可知题图①中, ,因此直线 与 共面;
2023-2024学年江苏省淮安市高一(上)期末数学试卷【答案版】

2023-2024学年江苏省淮安市高一(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={0,1,2,3},B={﹣1,0,1,2,3},则A∪B=()A.{1,2}B.{﹣1,0,1,2,3}C.{0,1,2,3}D.{1,2,3}2.函数f(x)=ln(x−1)+1x−2的定义域为()A.(1,+∞)B.(2,+∞)C.(1,2)∪(2,+∞)D.(1,2)3.若角α的终边经过点P(m,2)(m≠0),则()A.sinα>0B.sinα<0C.cosα>0D.cosα<04.关于x的不等式x2﹣ax﹣b≤0的解集是[﹣2,4],那么log a b=()A.1B.3C.2D.1 35.设a>0且a≠1,“函数f(x)=(3﹣a)x+1在R上是减函数”是“函数g(x)=a x在R上是增函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.函数y=e2−x2的图象大致为()A.B.C.D.7.为了得到函数y=3sin(2x+2π3)的图象,只要把函数y=3sin(2x+π6)图象上所有的点()A.向左平移π2个单位长度B.向右平移π2个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度8.已知函数f(x)={−x 2+ax +1,x <0sin(ax +π3),0≤x ≤π有且仅有3个零点,则正数a 的取值范围是( ) A .[23,53)B .[53,83)C .[83,113)D .[83,113]二、选择题:本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.下列化简或者运算正确的是( ) A .lg 5+lg 2=1B .a 23⋅a 12=a 76(a >0)C .x −13=−√x 3(x >0)D .2log 23=310.用“五点法”作函数f (x )=A sin (ωx +φ)+B (A >0,ω>0,|φ|<π2)在一个周期内的图象时,列表计算了部分数据,下列有关函数y =f (x )描述正确的是( )A .函数f (x )的最小正周期是πB .函数f (x )的图象关于点(5π6,0)对称 C .函数f (x )的图象关于直线x =π3对称D .函数f (x )与g(x)=−2cos(2x +π3)+1表示同一函数11.定义在D 上的函数f (x ),如果满足:存在常数M >0,对任意x ∈D ,都有|f (x )|≤M 成立,则称f (x )是D 上的有界函数,下列函数中,是在其定义域上的有界函数的有( ) A .y =2sin(2x +π3)B .y =2xC .y =x 2+1xD .y =x ﹣[x ]([x ]表示不大于x 的最大整数)12.已知函数f (x )满足:∀x 1,x 2∈R ,都有|f (x 1)+f (x 2)|≤|sin x 1+sin x 2|成立,则下列结论正确的是( ) A .f (0)=0B .函数y =f (x )是偶函数C .函数y =f (x )是周期函数D .g (x )=f (x )﹣sin x ,x ∈(﹣1,1),若﹣1<x 1<x 2<1,则g (x 1)≥g (x 2) 三、填空题:本题共4小题,每小题5分,共20分。
江苏省淮安市淮阴中学2022-2023学年高一上学期期末数学试题

江苏省淮阴中学2022-2023学年度第一学期期末考试高一数学一、单项选择题:本题共8小题,每小题满分5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求,选对得5分,选错得0分.1.若5sin 13α=-且a 为第三象限角,则tan α的值等于()A .125B .125-C .512D .512-2.已知集合{}220A x x x =-=,则下列选项中说法不正确的是()A .A ∅⊆B .2A-∈C .{}0,2A⊆D .{}3A y y ⊆≤3.任意[]1,1x ∈-,使得不等式212x x m -+≥恒成立.则实数m 取值范围是()A .14m ≥B .14m ≤C .14⎧⎫⎨⎬⎩⎭D .2m ≤4.在下列区间中,函数()e 43xf x x -=+-的零点所在的区间可能为()A .1,04⎛⎫- ⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫ ⎪⎝⎭D .13,24⎛⎫⎪⎝⎭5.已知1sin cos 6αα⋅=-,ππ44α-<<,则sin cos αα+的值等于()A B .C .D 6.将函数2sin()3y x π=+的图象向左平移()0m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是()A .12πB .6πC .3πD .23π7.尽管目前人类还无法准确预报地震,但科学家通过研究发现地震释放出的能量E (单位:焦耳)与地震里氏震级M 之间的关系为lg 4.8 1.5E M =+.2011年3月11日,日本东北部海域发生里氏9.0级地震与2008年5月12日我国汶川发生里氏8.0级地震所释放出来的能量的比值为()A . 1.510B .1.5C .lg1.5D . 1.510-8.若函数()f x 满足()()111f x f x +=+,当[]0,1x ∈时,()f x x =,若在区间(]1,1-上,方程()()3f x k x =+有两个实数解,则实数k 的取值范围为是()A .3k <--B .3k <-+C .104k <≤D .13k -≤<二、多项选择题:本题共4小题,每小题满分5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得5分,部分选对得2分,有选错的得0分.9.已知函数()2f x x =的值域为[]0,4,则函数()f x 定义域可能为()A .[]22-,B .[]0,2C .[]2,0-D .{}1,1-10.已知实数a ,b ,c ,满足1e ln ab c==,则下列关系式中可能成立的是()A .b c a =>B .c a b =>C .b c a >>D .c b a>>11.徳国著名数学家狄利克雷在数学领域成就显著,是解析数论的创始人之一,以其命名的函数()1,0,x f x x ⎧=⎨⎩为有理数为无理数,称为狄利克雷函数,则关于()f x 下列说法正确的是()A .()f x 的值城为[]0,1B .R x ∀∈,()()1f f x =.C .()f x 为偶函数D .()f x 为周期函数12.记函数()()()cos 0,0πf x x ωϕωϕ=+><<的最小正周期为T ,若()2f T =,在区间[]0,1恰有三个零点,则关于()f x 下列说法正确的是()A .()f x 在[]0,1上有且仅有1个最大值点B .()f x 在[]0,1上有且仅有2个最小值点C .()f x 在10,4⎡⎤⎢⎥⎣⎦上单调递増D .ω的取值范围为7π10π,33⎡⎫⎪⎢⎣⎭三、填空题:本题共4小题,每小题5分,共20分.13.函数()20.4log 34y x x =-++的值域是________.14.若,a b 都是正数,且1ab =,则2+a b 的最小值是______.15.已知函数()24,43,x mf x x x x m ≥⎧=⎨+-<⎩,若函数g(x)=f(x)-2x 恰有三个不同的零点,则实数m 的取值范围是________.16.设I M 表示函数()242f x x x =-+在闭区间I 上的最大值.若正实数...a 满足[][]0,,22a a a M M ≥,则正实数a 的取值范围是______.四、本小题共6题,共70分,解答应写出文字说明、证明过程或演算步骤.17.如图,在平面直角坐标系中,锐角α和钝角β的顶点与原点重合,始边与x 轴的正半轴重合,终边分别与单位圆交于,A B 两点,且OA OB ⊥.(1)若点A 的横坐标为35,求2sin cos αβ的值;(2)求()()πsin πcos 23πcos πsin 2αββα⎛⎫++ ⎪⎝⎭⎛⎫-+ ⎪⎝⎭的值.18.已知某公司生产的一新款手机的年固定成本为350万元,设该公司一年内共生产这种手机x 万部并全部销售完,且每万部的销售收入为600万元,生产这种手机每年需另投入成本()R x 万元,且当040x <<.时,()()1010R x x x =+,当40x ≥时,()400006016550R x x x=+-.(1)写出年利润W (万元)关于年产量x (万部)的函数解析式(年利润=年销售收入-年成本)(2)年产量为多少万部时,该公司所获年利润最大?最大年利润是多少?19.已知函数()πsin 6f x x ω⎛⎫=+ ⎪⎝⎭,0ω>与函数()()cos 2g x x θ=+有相同的对称中心.(1)求ω,θ的值;(2)若函数()g x 在π0,6⎡⎤⎢⎥⎣⎦上单调递减,求出函数()g x 的单调区间.20.已知函数()()()()12log 2121R x x f x a a +=---∈.(1)当1a =时,求()f x 的定义域;(2)当23log ,2x ⎛⎫∈+∞ ⎪⎝⎭时,()f x x =有两解,求实数a 的范围.21.已知函数()122x x a h x a=+,0a >且1a ≠.(1)若2a =,令()()()221h x kg x h x +=+,若对一切实数x ,不等式()2g x <恒成立,求实数k 的取值范围;(2)若()()*44N 2n nh n n -+<∈,试确定a 的取值范围.22.对于定义域为I 的函数()y f x =,区间I D ⊆。
江苏省南京师大附中、淮阴中学高一数学上册期末试卷

江苏省南京师大附中、淮阴中学高一数学上册期末试卷一、选择题1.已知全集{}1,2,3,4,5,6U =,集合{}1,3,5A =,集合{}2,4,5B =,则集合()U A B =( ) A .{}2,4,5,6 B .{}5C .{}1,3,5,6D .{}2,42.函数1()ln(1)f x x =+ ). A .[1,0)(0,1]-⋃B .(1,0)(0,1]-⋃C .[]1,1-D .(]1,1-3.225︒化为弧度是( ) A .34π B .54π C .43π D .76π 4.在平面直角坐标系中,角a 的顶点与原点重合,始边与x 轴的非负半轴重合,终边过点()P ,则()sin a π-=( )A .12-B .12C .D 5.若函数1()ln f x x a x=-+在区间(1,)e 上存在零点,则常数a 的取值范围为( ) A .01a <<B .11a e<<C .111a e-<<D .111a e+<<6.中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:2log 1S C W N ⎛⎫=+ ⎪⎝⎭.它表示:在受噪声干扰的信道中,最大信息传递速度C 取决于信道带宽W ,信道内信号的平均功率S ,信道内部的高斯噪声功率N 的大小,其中SN叫做信噪比.当信噪比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W ,而将信噪比SN从1000提升至2000,则C 大约增加了( )(lg 20.3010)≈ A .10%B .30%C .60%D .90%7.已知定义在R 上的函数()f x ,满足()()()3f m n f m f n +=+-,且0x >时,()3f x <,则下列说法不正确的是( ) A .()()6f x f x +-=B .()y f x =在R 上单调递减C .若()10f =,()()22190f x x f x ++--->的解集()1,0-D .若()69f =-,则123164f ⎛⎫= ⎪⎝⎭8.已知函数()()cos 33f x a x x a ππ⎛⎫⎛⎫=--∈ ⎪ ⎪⎝⎭⎝⎭R 是偶函数.若将曲线()2y f x =向左平移12π个单位长度后,再向上平移1个单位长度得到曲线()y g x =,若关于x 的方程()g x m =在70,12π⎡⎤⎢⎥⎣⎦有两个不相等实根,则实数m 的取值范围是( )A .[]0,3B .[)0,3C .[)2,3D .)1,3二、填空题9.已知函数()22,023,0x x x f x x x ⎧-<=⎨-+≥⎩,则( )A .()13f f -⎡⎤⎣=-⎦B .若()1f a =-,则2a =C .()f x 在R 上是减函数D .若关于x 的方程()f x a =有两解,则(]0,3a ∈ 10.下列说法中正确的是( ) A .函数2()ln(1)f x x x=+-只有一个零点,且该零点在区间(0,1)上 B .若()f x 是定义在R 上的奇函数,()()11f x f x -=+,且当(1,0)x ∈-时,22()log f x x =,则322f ⎛⎫= ⎪⎝⎭C .已知()f x 的定义域为R ,且(1)f x -为奇函数,(1)f x +为偶函数,则(7)f x +一定是奇函数D .实数(1,0)a ∈-是命题“2,210x R ax ax ∃∈+-”为假命题的充分不必要条件 11.若0a b >>,则( ) A .a c b c -<-B .22a b >C .ac bc >D .11a b< 12.德国著名数学家狄利克雷在数学领域成就显著,狄利克雷函数就以其名命名,其解析式为()1,0,x D x x ⎧=⎨⎩为有理数为无理数关于函数()D x 有以下四个命题,其中真命题有( )A .()D x 既不是奇函数也不是偶函数B .()(),r Q D x r D x ∀∈+=C .()(),D 1x R D x ∀∈=D .()()(),,x y R D x y D x D y ∃∈+=+三、多选题13.已知()()()23f x m x m x m =-++,()22xg x =-,若同时满足条件:①对于任意x ∈R ,()0f x <或()0g x <成立; ②存在(),4x ∈-∞-,使得()()0f x g x ⋅<成立. 则m 的取值范围是______________________.14.已知3()2f x x x a =+-在区间(1,2)内存在唯一一个零点,则实数a 的取值范围为_____________.15.已知定义在R 上的奇函数y =f (x ),当x >0时,()21x f x x =+-,则关于x 的不等式()22()f x f x -<的解集为___________.16.已知函数()(21)ln(1)f x x a x a =-+++的定义域为(1,)a --+∞, 若()f x ≥0恒成立,则a 的值是______.四、解答题17.已知函数()()()34f x x m x m =-++. (1)若1m =,求不等式()12f x >-的解集;(2)记不等式()0f x ≤的解集为A ,若4A -∉,求m 的取值范围.18.已知函数2())2cos1(0,0)2x f x x ωϕωϕωϕπ+++-><<为偶函数,且()f x 图象的相邻两个最高点的距离为π.(1)当5,66x ππ⎡⎤∈-⎢⎥⎣⎦时,求()f x 的单调递增区间;(2)将函数()f x 的图象向右平移6π个单位长度,再把各点的横坐标缩小为原来12(纵坐标不变),得到函数()y g x =的图象.求函数()g x 在区间,126ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.19.已知函数()2f x x x =-和函数()πcos 523xg x a a =+-(0a ≠). (1)判断函数()f x 在()0,∞+的单调性,并用定义法证明;(2)若对于任意[]11,2x ∈总存在[]21,3x ∈,使得()()21g x f x =成立,求a 的取值范围. 20.十九大以来,国家深入推进精准脱贫,加大资金投入,强化社会帮扶,为了更好的服务于人民,派调查组到某农村去考察和指导工作.该地区有200户农民,且都从事水果种植,据了解,平均每户的年收入为3万元.为了调整产业结构,调查组和当地政府决定动员部分农民从事水果加工,据估计,若能动员()0x x >户农民从事水果加工,则剩下的继续从事水果种植的农民平均每户的年收入有望提高4%x ,而从事水果加工的农民平均每户收入将为()33050x a a ⎛⎫-> ⎪⎝⎭万元.(1)若动员x 户农民从事水果加工后,要使从事水果种植的农民的总年收入不低于动员前从事水果种植的农民的总年收入,求x 的取值范围;(2)在(1)的条件下,要使这200户农民中从事水果加工的农民的总收入始终不高于从事水果种植的农民的总收入,求a 的最大值.21.已知函数()()sin 20,02f x A x A πϕϕ⎛⎫=+><< ⎪⎝⎭的最大值为2,其图象与y 轴交点为()0,1.(1)求()f x 的解析式;(2)求()f x 在[]0,π上的单调增区间;(3)对于任意的0,3x π⎡⎤∈⎢⎥⎣⎦,()()240f x mf x -+≥恒成立,求实数m 用的取值范围.22.已知函数()33x xf x -=+,函数()()()26g x f x mf x =-+.(1)填空:函数()f x 的增区间为___________(2)若命题“(),0x R g x ∃∈≤”为真命题,求实数m 的取值范围;(3)是否存在实数m ,使函数()()()3log m h x g x -=在[]0,1上的最大值为0?如果存在,求出实数m 所有的值.如果不存在,说明理由.【参考答案】一、选择题 1.D 【分析】进行交集和补集的运算即可. 【详解】{}1,2,3,4,5,6U =,{}13,5A =,,{}2,4,5B =,{}2,4,6∴=U A ,(){}2,4U A B ⋂=.故选:D . 2.B 【分析】由对数式的真数大于0,分式的分母不等于0,根式内部的代数式大于等于联立不等式组得答案. 【详解】解:因为1()ln(1)f x x =+()21010ln 10x x x ⎧-≥⎪+>⎨⎪+≠⎩,解得11x -<≤且0x ≠,即函数的定义域为(1,0)(0,1]-⋃ 故选:B 3.B 【分析】根据角度制与弧度制的相互转化,计算即可. 【详解】 52252251804ππ︒=⨯=. 故选:B. 【点睛】本题考查了角度制化为弧度制的应用问题,属于基础题. 4.B 【分析】由任意角的三角函数的定义求出sin a ,再由诱导公式求出()sin a π-. 【详解】∵角a终边过点()P ,∴||2r OP == ∴1sin =2y a r =, 故()1sin =sin 2a a π-=.故选:B . 【点睛】(1) 三角函数值的大小与点P (x ,y )在终边上的位置无关,严格代入定义式子就可以求出对应三角函数值;(2) 当角的终边在直线上时,或终边上的点带参数必要时,要对参数进行讨论. 5.C 【分析】先利用导数判断出函数()f x 在区间()1,e 上为增函数,再解不等式(1)ln110f a =-+<,1()ln 0f e e a e=-+>,即得解.【详解】 由题得211()0f x x x '=+>在区间()1,e 上恒成立, 所以函数1()ln f x x a x=-+在区间()1,e 上为增函数, 所以(1)ln110f a =-+<,1()ln 0f e e a e=-+>,可得111a e-<<.故选:C. 【点睛】本题主要考查利用导数研究函数的单调性和零点,意在考查学生对这些知识的理解掌握水平. 6.A 【分析】依题意当信噪比较大时,公式中真数中的1可以忽略不计,()122log 11000log 1000C W W =+=;()222log 12000log 2000C W W =+=,利用换底公式可得211.1C C ≈,可得C 大约增加了10%. 【详解】1000SN=时,()122log 11000log 1000C W W =+=; 2000SN=时,()222log 12000log 2000C W W =+=, 2212log 2000lg 20003lg 2= 1.1log 1000lg10003C W C W +==≈,则C 大约增加了10%. 故选:A 7.D 【分析】构造函数()()3g x f x =-,验证函数()g x 的奇偶性可判断A 选项的正误;判断函数()g x 的单调性可判断B 选项的正误;利用函数()g x 的单调性解不等式()()22190f x x f x ++--->,可判断C 选项的正误;计算出()24g =-,求出116g ⎛⎫⎪⎝⎭的值,可求得116f ⎛⎫⎪⎝⎭的值,可判断D 选项的正误.【详解】构造函数()()3g x f x =-,由()()()3f m n f m f n +=+-可得()()()g m n g m g n +=+. 对于A 选项,取0m n ==,可得()()020g g =,()00∴=g ,取n m =-,则()()()00g g m g m =+-=,()()g m g m ∴-=-,则函数()g x 为奇函数, 所以,()()()()60g x g x f x f x +-=+--=,可得()()6f x f x +-=,A 选项正确; 对于B 选项,由已知条件可知,当0x >时,()()30g x f x =-<.任取1x 、2x R ∈且12x x >,所以,()()()()()1212120g x x g x g x g x g x -=+-=-<,()()12g x g x ∴<,所以,函数()()3g x f x =-为R 上的减函数,所以,函数()f x 为R 上的减函数,B 选项正确; 对于C 选项,()10f =,可得()()1133g f =-=-,由()()22190f x x f x ++--->,可得()()22130g x x g x ++--->,即()()()21311g x x g g +->=-=-,211x x ∴+-<-,可得20x x +<,解得10x -<<.C 选项正确;对于D 选项,()()()()()663124232g f g g g =-=-=+=,()24g ∴=-, ()()112214324216g g g g ⎛⎫⎛⎫=====- ⎪ ⎪⎝⎭⎝⎭,111316168fg ⎛⎫⎛⎫∴-==- ⎪ ⎪⎝⎭⎝⎭, 因此,123168f ⎛⎫= ⎪⎝⎭,D 选项错误.故选:D. 【点睛】方法点睛:利用定义证明函数单调性的方法:(1)取值:设1x 、2x 是所给区间上的任意两个值,且12x x <;(2)作差变形:即作差()()12f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差()()12f x f x -的符号; (4)下结论:判断,根据定义得出结论. 即取值→作差→变形→定号→下结论. 8.C 【分析】本题首先可根据函数()f x 是偶函数得出33f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,通过计算得出1a =-,然后通过转化得出()2sin 2f x x π⎛⎫=- ⎪⎝⎭,通过图像变换得出()2sin 213g x x π⎛⎫=-+ ⎪⎝⎭,最后根据正弦函数对称性得出52,636x πππ⎡⎤-∈⎢⎥⎣⎦且232x ππ-≠,通过求出此时()g x 的值域即可得出结果. 【详解】因为函数()()cos 33f x a x x a ππ⎛⎫⎛⎫=--∈ ⎪ ⎪⎝⎭⎝⎭R 是偶函数,所以33f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,即22cos 00cos 33a a ππ⎛⎫⎛⎫=-- ⎪ ⎪⎝⎭⎝⎭, 1322a a =--,解得1a =-,()cos 33f x x x ππ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭,则()1cos 2cos 33323f x x x x x ππππ⎤⎛⎫⎛⎫⎛⎫⎛⎫=---=---⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦2sin 32sin 62x x πππ⎛⎫⎛⎫--=- ⎪ ⎪⎝⎭⎝⎭=,则()22sin 22y f x x π⎛⎫==- ⎪⎝⎭,向左平移12π个单位长度后,得到2sin 23y x π⎛⎫=- ⎪⎝⎭, 向上平移1个单位长度,得到()2sin 213y g x x π⎛⎫- ⎝=+⎪⎭=,当70,12x π⎡⎤∈⎢⎥⎣⎦时,52,336x πππ⎡⎤-∈-⎢⎥⎣⎦,结合正弦函数对称性易知,()g x m =在70,12π⎡⎤⎢⎥⎣⎦有两个不相等实根,则52,636x πππ⎡⎤-∈⎢⎥⎣⎦且232x ππ-≠,此时()[)2,3g x ∈,实数m 的取值范围是[)2,3, 故选:C. 【点睛】关键点点睛:本题考查三角函数图像变换、正弦函数性质、偶函数的性质的应用以及两角差的正弦公式,能够根据偶函数的性质求出1a =-是解决本题的关键,考查计算能力,考查化归与转化思想,体现了综合性,是难题.二、填空题9.ABD 【分析】根据函数解析式,代入数据可判断A 、B 的正误,做出()f x 的图象,可判断C 、D 的正误,即可得答案. 【详解】对于A :由题意得:2(1)(1)2(1)3f -=--⨯-=, 所以()(3)23331f f f -==-⨯+=-⎡⎤⎣⎦,故A 正确;对于B :当0a <时,2()21f a a a =-=-,解得a =1,不符合题意,舍去 当0a ≥时,()231f a a =-+=-,解得2a =,符合题意,故B 正确; 对于C :做出()f x 的图象,如下图所示:所以()f x 在R 上不是减函数,故C 错误;对于D :方程()f x a =有两解,则()y f x =图象与y a =图象有两个公共点, 如下图所示所以(]0,3a ∈,故D 正确.故选:ABD 10.BCD 【分析】利用零点存在性定理可得函数2()ln(1)f x x x=+-在()0,∞+上的零点在区间(1,2)上,即可判断A ,由131222f f f⎛⎫⎛⎫⎛⎫==-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭可判断B ,由(1)f x -为奇函数,(1)f x +为偶函数可推出函数()f x 的周期为8,可判断C ,求出命题“2,210x R ax ax ∃∈+-”为假命题的充要条件可判断D. 【详解】函数2()ln(1)f x x x=+-在()0,∞+上单调递增,又(1)ln220,(2)ln310f f =-<=->, 所以该零点在区间(1,2)上,故A 错误;由()()11f x f x -=+得,1113112222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=+⇒= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,又()f x 是定义在R 上的奇函数,所以1122f f⎛⎫⎛⎫=-- ⎪ ⎪⎝⎭⎝⎭, 当(1,0)x ∈-时,22()log f x x =,所以211log 224f ⎛⎫-==- ⎪⎝⎭,故11222f f⎛⎫⎛⎫=--= ⎪ ⎪⎝⎭⎝⎭,所以322f ⎛⎫= ⎪⎝⎭,故B 正确; 由(1)f x -为奇函数,得(1)(1)()(2)f x f x f x f x -=---⇒=---, 由(1)f x +为偶函数,得(1)(1)()(2)f x f x f x f x +=-+⇒=-+, 所以(2)(2)()(4)f x f x f x f x ---=-+⇒-=+()(8)f x f x ⇒=+,所以函数()f x 的周期为8,故(1)(7)f x f x -=+,所以(7)f x +一定是奇函数,故C 正确; 命题“2,210x ax ax ∃∈+-R ”为假命题,则“2,210x ax ax ∀∈+-<R ”为真命题, 当0a =时,“,10x ∀∈-<R ”为真命题, 当0a <时,由2(2)40a a ∆=+<可得10a -<<所以命题“2,210x ax ax ∃∈+-R ”为假命题的充要条件是10a -<≤故实数(1,0)a ∈-是命题“2,210x ax ax ∃∈+-R ”为假命题的充分不必要条件,故D 正确. 故选:BCD 【点睛】结论点睛:若()f x 关于,x a x b ==对称,则2T a b =-;若()f x 关于()(),0,,0a b 对称,则2T a b =-;若()f x 关于(),,0x a b =对称,则4T a b =-.11.BD 【分析】A. 取2,1,1a b c ===判断;B. 利用不等式的乘方性质判断;C. 取0c 判断;D.利用 不等式的取倒数性质判断. 【详解】A. 当2,1,1a b c ===时,a c b c ->-,故错误;B. 由不等式的乘方性质得22a b >,故正确;C. 当0c 时,ac bc =,故错误;D. 由不等式的取倒数性质得11a b<,故正确; 故选:BD 12.BCD 【分析】根据自变量x 是有理数和无理数进行讨论,可判定A 、B 、C ,举特例根据x x =判断D 即可得到答案. 【详解】对于A ,当x 为有理数时,则x -为有理数,则()()1D x D x -==. 当x 为无理数时,则x -为无理数,则()()0D x D x -==. 故当x ∈R 时,()()D x D x -=,∴函数为偶函数,若自变量x 是有理数,则x -也是有理数,可得()()112D x D x +-=+=, 所以()D x 不是奇函数,所以A 不是真命题;对于B ,r Q ∀∈,当x 是有理数时, x r +是有理数,()()1D x r D x +==, 当x 是无理数时, x r +是无理数,()()0D x r D x +==,所以B 是真命题; 对于C ,若自变量x 是有理数,则[]()(1)1D D x D ==,若自变量x 是无理数,则[]()(0)1D D x D ==,所以C 是真命题;对于D , 当x =y =x y += 则()0,()()000D x y D x D y +=+=+=,满足()()()D x y D x D y +=+,所以D 是真命题. 故选:BCD. 【点睛】本题考查了特殊函数的性质及求函数的值,关键点是理解函数的定义和性质去做判断,考查了逻辑推理,数学运算.三、多选题 13.()4,2--【分析】由()0g x <求得1x <,由①成立可得出当1≥x 时,()()()230f x m x m x m =-++<恒成立,可得出关于实数m 的不等式组,解出m 的取值范围;由②知,存在(),4x ∈-∞-使得()0f x >,可得出关于实数m 的不等式,解出m 的取值范围.综合①②可得出结果.【详解】由()220xg x =-<,可得1x <.对于①,对于任意x ∈R ,()0f x <或()0g x <成立,则当1≥x 时,()()()230f x m x m x m =-++<恒成立,故0m <,且2131m m <⎧⎨--<⎩,解得40m -<<;对于②,存在(),4x ∈-∞-,使得()()0f x g x ⋅<成立,由于()0g x <对任意的(),4x ∈-∞-恒成立,所以,存在(),4x ∈-∞-使得()0f x >. 所以,24m <-或34m --<-,且23m m ≠--,解得2m <-或1m . 综上所述,实数m 的取值范围是()4,2--. 故答案为:()4,2--. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.14.(3,12)【分析】首先根据函数的单调性知:()f x 在区间(1,2)上单调递增,再根据()f x 在区间(1,2)上存在唯一的零点,解不等式组即可. 【详解】根据函数的单调性知:()f x 在区间(1,2)上单调递增. 因为()f x 在区间(1,2)上存在唯一的零点,所以(1)120(2)840f a f a =+-<⎧⎨=+->⎩,解得:312a <<.故答案为:(3,12) 【点睛】本题主要考查函数的零点问题,熟练找到函数的单调性为解题的关键,属于中档题.15.(,2)(1,)-∞-+∞【分析】确定函数的单调性,然后解不等式. 【详解】2x y =和y x =都是增函数,所以()21x f x x =+-在(0,)+∞上增函数,而02010-+=,即()f x 在[0,)+∞上是增函数,又()f x 是奇函数,所以()f x 在(,0]-∞是递增,也即在(,)-∞+∞上是增函数,因此由()22()f x f x -<得22x x -<,解得2x <-或1x >. 故答案为:(,2)(1,)-∞-+∞. 【点睛】关键点点睛:本题考查函数的奇偶性与单调性,由单调性解函数不等式.解题关键是确定单调性.解题时要注意由奇函数()f x 在(0,)+∞上递增,得()f x 在(,0)-∞上递增,并不能得出()f x 在R 或在(,0)(0,)-∞+∞上递增,但由奇函数()f x 在[0,)+∞上递增,可得其在R 上是增函数.16.13a =【详解】试题分析:当011x a <++≤ 时,1a x a --<≤- 时,有()ln 10x a ++≤,∵()0f x ≥,∴12102a x a x --+≤≤,,欲使()0x f x ∀≥,恒成立,则12a a -≥-,∴13a ≥;当11x a ++> 时,x a >- 时,有()ln 10x a ++>,∵()0f x ≥ ,∴12102a x a x --+>>,欲使()0x f x ∀≥, 恒成立,则12a a -≤-,∴13a ≤;故13a =. 考点:1.恒成立问题;2.转化思想.【思路点睛】对对数函数分类讨论:当011x a <++≤时,有()ln 10x a ++≤,欲使()0x f x ∀≥,恒成立,则12a a -≥-;当时,x a >- 时,欲使()0x f x ∀≥, 恒成立,则12a a -≤-,得出答案. 四、解答题17.(1){1x x >或}3x <-;(2)403m m ⎧⎫-<<⎨⎬⎩⎭.【分析】(1)当1m =时,代入整理得2230x x +->,解之可得解集.(2)由题意得() 40f ->,解之可求得m 的取值范围. 【详解】解:(1)当1m =时,()12f x >-,即(()()35120x x -++>,整理得2230x x +->,解得 >1x 或3x <-,所以()12f x >-的解集为{} 13x x x ><-或.(2)因为4A -∉,所以() 40f ->,即()430m m -->.所以()340 m m +<,解得403m -<<.即m 的取值范围为403m m ⎧⎫-<<⎨⎬⎩⎭.18.(1)单调递增区间为,06π⎡⎤-⎢⎥⎣⎦和5,26ππ⎡⎤⎢⎥⎣⎦;(2)最大值为2,最小值1-.【分析】(1)首先利用二倍角公式和辅助角公式对()f x 化简,再利用偶函数求出ϕ的值,再利用T π=求出ω的值,即可得()f x 的解析式,再利用余弦函数的单调递增区间即可求解;(2)利用三角函数图象变换的规律求出()g x 的解析式,再利用余弦函数的性质即可求值域. 【详解】(1)由题意函数2())2cos12x f x x ωϕωϕ+=++-)cos()2sin 6x x x πωϕωϕωϕ⎛⎫=+++=++ ⎪⎝⎭,因为函数()f x 图象的相邻两个最高点的距离为π, 所以T π=,可得2ω=.又由函数()f x 为偶函数可得(0)2sin 26f πϕ⎛⎫=+=± ⎪⎝⎭,所以62k ππϕπ+=+,k ∈Z ,则3k πϕπ=+,k ∈Z .因为0ϕπ<<,所以3πϕ=,所以函数()2cos2f x x =,令222k x k πππ-≤≤,k ∈Z ,解得2k x k πππ-≤≤,k ∈Z ,当0k =时,02x ;当1k =时,2x ππ≤≤,又5,66x ππ⎡⎤∈-⎢⎥⎣⎦, 可得函数()f x 的单调递增区间为,06π⎡⎤-⎢⎥⎣⎦和5,26ππ⎡⎤⎢⎥⎣⎦.(2)将函数()f x 的图象向右平移6π个单位长度可得2cos 23y x π⎛⎫=- ⎪⎝⎭的图象,再把各点的横坐标缩小为原来的12,得到函数()2cos 43g x x π⎛⎫=- ⎪⎝⎭的图象,当,126x ππ⎡⎤∈-⎢⎥⎣⎦时,24,333x πππ⎡⎤-∈-⎢⎥⎣⎦.当2433x ππ-=-,即12x π=-时, 函数()g x 取得最小值,最小值为1-; 当403x π-=,即12x π=时,函数()g x 取得最大值,最大值为2.所以函数()g x 在区间,126ππ⎡⎤-⎢⎥⎣⎦上的最大值是2,最小值是1-.【点睛】方法点睛:已知三角函数的解析式求单调区间先将解析式化为()()sin 0y A x A ωϕω=+>>0,或()()cos 0,0y A x A ωϕω=+>>的形式,然后将x ωϕ+看成一个整体,根据sin y x =与cos y x =的单调区间列不等式求解. 19.(1)单调递增,证明见解析;(2)82,3⎡⎤⎢⎥⎣⎦.【分析】(1)首先判断()f x 的单调性,通过证明()()120f x f x -<证得结论成立. (2)先求得()1f x 的取值范围,对a 进行分类讨论,由此求得a 的取值范围. 【详解】(1)单调递增,证明如下: 任取1x ,()20,x ∈+∞,且12x x <,则()()()12121212122221f x f x x x x x x x x x ⎛⎫⎛⎫⎛⎫-=---=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, ∵120x x <<, ∴120x x -<,12210x x +>,∴()()120f x f x -<,即()()12f x f x <, ∴()f x 在()0,∞+单调递增. (2)由(1)可得,()111f x -≤≤, 又[]21,3x ∈,则π1cos1,32x ⎡⎤∈-⎢⎥⎣⎦,当0a >时,()235352a a g x -≤≤-, 由题可知,()()12f x g x ⊆,∴531a -≤-且3512a -≥得823a ≤≤, 当0a <时,()235532ag x a -≤≤-,易知不满足要求. 综上所述,a 的取值范围为82,3⎡⎤⎢⎥⎣⎦.20.(1)0175x <≤;(2)11 【分析】(1)求得从事水果种植的农民的总年收入,由此列不等式,解不等式求得x 的取值范围. (2)从事水果加工的农民的总收入始终不高于从事水果种植的农民的总收入列不等式,根据分离常数法求得a 的取值范围,由此求得a 的最大值. 【详解】(1)动员x 户农民从事水果加工后,要使从事水果种植的农民的总年收入不低于动员前从事水果种植的农民的总年收入,则()()200310.042003x x -⨯⨯+≥⨯⎡⎤⎣⎦,解得0175x <≤. (2)由于从事水果加工的农民的总收入始终不高于从事水果种植的农民的总收入,则()()33200310.0450x a x x x ⎛⎫-⋅≤-⨯⨯+⎡⎤ ⎪⎣⎦⎝⎭,(0175x <≤), 化简得2000.027a x x≤++,(0a >).由于2000.027711x x ++≥=,当且仅当2000.02100x x x =⇒=时等号成立,所以011a <≤,所以a 的最大值为11. 【点睛】本小题主要考查一元二次不等式的解法,考查基本不等式,考查数学在实际生活中的应用,属于中档题.21.(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭;(2)06,π⎡⎤⎢⎥⎣⎦和2π,π3;(3)4m ≤. 【分析】(1)先由最值,求出2A =,再由函数过点()0,1,求出6π=ϕ,即可得出函数解析式; (2)根据正弦函数的单调性,即可求出函数在区间[]0,π上的增区间;(3)先由0,3x π⎡⎤∈⎢⎥⎣⎦,得到()[]1,2f x ∈,令()t f x =,将问题化为240t mt -+≥在[]1,2t ∈时恒成立,进而可求出结果. 【详解】(1)因为最大值为2,所以2A =.因为()f x 过点()0,1,所以2sin 1=ϕ,又因为02πϕ<<,所以6π=ϕ. 所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭.(2)因为222,262k x k k Z πππππ-≤+≤+∈,所以,36k x k k Z ππππ-≤≤+∈.当0k =时,36x ππ-≤≤;当1k =时,2736x ππ≤≤. 又因为[]0,x π∈,所以()f x 在[]0,π上的单调增区间是06,π⎡⎤⎢⎥⎣⎦和2π,π3. (3)因为0,3x π⎡⎤∈⎢⎥⎣⎦,所以52,666x πππ⎡⎤+∈⎢⎥⎣⎦,所以()[]1,2f x ∈.令()t f x =,则240t mt -+≥在[]1,2t ∈时恒成立, 即4m t t≤+在[]1,2t ∈时恒成立, 令()4g t t t=+,[]1,2t ∈,任取1212t t ≤<≤,则120t t -<,124t t <,所以()()()121212121244410g t g t t t t t t t t t ⎛⎫-=+--=--> ⎪⎝⎭,即()()12g t g t >, 所以()4g t t t=+在[]1,2t ∈上单调递减,则()()min 42242g t g ==+=,所以只需4m ≤,即实数m 用的取值范围是4m ≤. 【点睛】 思路点睛:求解含三角函数的二次型不等式恒成立的问题时,一般需要先根据三角函数的性质,确定所含三角函数的值域,再由换元法,将问题转化为一元二次不等式的形式,进行求解. 22.(1)[0,)+∞(写出开区间亦可);(2)4m ≥;(3)72m =. 【分析】(1)根据单调性的定义结合奇偶性可得解;(2)令332xxt -=+≥=,问题转化为“242,t t m t+∃≥≥”为真命题,根据基本不等式找函数的最小值即可;(3)当[0,1]x ∈时,1033[2,]3x xt -=+∈,记2()4t t mt ϕ=-+,若函数()()()3log m h x g x -=在[]0,1上的最大值为0,分031m <-<和31m ->,结合对数函数的单调性列式求解即可. 【详解】(1)函数()f x 的增区间为[0,)+∞(写出开区间亦可); 理由:()()f x f x =-,()f x 为偶函数,任取210x x >>,()22112112211()()(1()33333)330x x x x x xx x f x f x --+-=+--+=->,所以()f x 的增区间为[0,)+∞.(2)()22233(33)6(33)(33)4x x x x x x x xg x m m ----=+-++=+-++,令332x x t -=+≥=,当且仅当0x =时取“=”,“(),0x R g x ∃∈≤”为真命题可转化为“242,t t m t+∃≥≥”为真命题,因为2444t t t t +=+≥,当且仅当2t =时取“=”, 所以2min 4()4t t+=, 所以4m ≥;(3)由(1)可知,当[0,1]x ∈时,1033[2,]3x xt -=+∈,记2()4t t mt ϕ=-+, 若函数()()()3log m h x g x -=在[]0,1上的最大值为0,则 1)当031m <-<,即34m <<时,()t ϕ在10[2,]3上最小值为1, 因为()t ϕ图象的对称轴为3(,2)22m t =∈,所以min ()(2)821t m ϕϕ==-=, 解得7(3,4)2m =∈,符合题意;2)当31m ->,即4m >时,()t ϕ在10[2,]3上最大值为1,且()0t ϕ>恒成立, 因为()t ϕ图象是开口向上的抛物线,在10[2,]3的最大值可能是(2)ϕ或10()3ϕ,若(2)1ϕ=,则742m =<,不符合题意, 若10()13ϕ=,则127430m =>, 此时对称轴127310[,]6023t =∈,由2min ()()4024m m t ϕϕ==-<,不合题意0. 综上所述,只有72m =符合条件.【点睛】本题主要考查了对数型、指数型的复合函数的单调性及最值问题。
江苏省淮安市高中教学协作体2022-2023学年高一上数学期末含解析

【解析】用分离参数法转化为求函数的最大值得参数范围
【详解】 满足 的一切 值,都有 恒成立,
,对满足 的一切 值恒成立,
, , 时等号成立,所以实数 的取值范围为 ,
故选:D.
6、C
【解析】解方程 即得解.
【详解】解:由题得圆的圆心坐标为 半径为1,
所以 或 .
故选:C
7、C
【解析】 , ,即 ①,同理可得 ②,①+②得 ,故选C
二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)
13、①. ②.
【解析】由题设知: 是 的根,应用根与系数关系即可求参数值.
【详解】由题设, 是 的根,
∴ ,即 , .
故答案为: , .
14、
【解析】根据 ,利用诱导公式转化为 可求得结果.
【详解】因为 ,
所以 .
故答案为: .
由于函数 的图象关于 轴对称,可得 ,
解得 ,
,所以, 的可能取值为 、 .
若 ,则 , ,不合乎题意;
若 ,则 , ,合乎题意.
所以, ;
(2)由(1)可知 ,
所以, ,
当 时, , ,所以, ,
所以, ,
,
, ,则 ,
由 可得 ,
所以, ,
由基本不等式可得 ,
当且仅当 时,等号成立,所以, .
【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:
A.1 B.1.5
C.1.8 D.2.2
10.若 , , ,则a,b,c的大小关系为()
A. B.
C. D.
11.已知函数 , ,若存在 ,使得 ,则实数 的取值范围是()
江苏省淮安中学高一数学上学期期末考试试题

江苏省淮安中学高一上学期期末考试数学试题一、填空题(本大题共14小题,每小题5分,共70分。
请把答案填在答题卡相应位置上。
) 1.已知集合{}02A x x =<≤,则集合A 的元素中有 个整数。
2.已知向量(2,1),(3,4),a b ==-则a b += 。
3.已知向量(cos ,sin )a x x =,则||a = 。
4.sin3π的值是 。
5.已知函数()sin cos f x x x =,则(1)(1)f f -+= 。
6.在平面直角坐标系中,若角α的终边落在射线(0)y x x =≥上,则tan α= 。
7.函数()tan f x x =的定义域为 。
8.函数2()(1)mf x m m x =--是幂函数,则实数m 的值为 。
9.函数()2cos (0)2f x x x π=≤≤的值域是 。
10.若1sin()23πθ-=,则sin()2πθ+= 。
11.已知函数()21xf x =+,且2()(1)f a f <,则实数a 的取值范围为 。
12.函数2()ln f x x =的单调递增区间为 。
13.如图,在ABC ∆中,2AB =,3AC =,D 是边BC 的中点,则AD BC ⋅=____________。
14.给出下列命题:(1)函数()tan f x x =有无数个零点;(2)若关于x 的方程||1()02x m -=有解,则实数m 的取值范围是(0,1]; (3)把函数()2sin 2f x x =的图象沿x 轴方向向左平移6π个单位后,得到的函数解析式可以表示成()2sin 2()6f x x π=+;(4)函数11()sin sin 22f x x x =+的值域是[1,1]-; (5)已知函数()2cos f x x =,若存在实数12,x x ,使得对任意的实数x 都有()()()12f x f x f x ≤≤成立,则12x x -的最小值为2π。
江苏省淮安、宿迁等2022-2023学年高一上数学期末综合测试试题含解析

(2)令 ,计算可得原式 .
试题解析:
(1)
;
(2)设 则 ,
所以 .
21、(1) ;(2) ;(3)
【解析】(1)(2)根据分数指数幂的定义,及指数的运算性质,代入计算可得答案;
(3)由 ,可得 ,即 ,将所求平方,代入即可得答案
9、C
【解析】根据对数运算和指数运算可得, ,再由 以及基本不等式可得.
【详解】因为 ,
所以 ,所以 ,
所以 ,
所以 ,
当且仅当 即 时,等号成立.
故选:C.
【点睛】本题考查了指数和对数运算,基本不等式求最值,属于中档题.
10、B
【解析】由分段函数的定义计算
【详解】 , ,
所以
故选:B
11、A
【解析】先判断函数为偶函数排除 ;再根据当 时, ,排除 得到答案.
15.在 中, , , ,若将 绕直线 旋转一周,则所形成的几何体的体积是__________
16.已知函数 是定义在 的奇函数,则实数b的值为_________;若函数 ,如果对于 , ,使得 ,则实数a的取值范围是__________
三、解答题(本大题共6小题,共70分)
17.如果一个函数的值域与其定义域相同,则称该函数为“同域函数”.已知函数 的定义域为 且 .
【详解】 ,偶函数,排除 ;
当 时, ,排除
故选
【点睛】本题考查了函数图像的识别,通过函数的奇偶性和特殊函数点可以排除选项快速得到答案.
12、C
【解析】根据二倍角公式可得到 ,又因为cosα<0,故得到 进而得到角所在象限.
【详解】已知sin2α>0, ,又因为cosα<0,故得到 ,进而得到角是第三象限角.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. B.
C. D.
【答案】D
【解析】
【分析】
判断函数的奇偶性排除选项,利用特殊点的位置排除选项即可.
【详解】函数 是奇函数,排除选项A,C;
当 时, ,对应点在x轴下方,排除B;
故选D.
【点睛】本题考查函数的图象的判断,函数的奇偶性以及特殊点的位置是判断函数的图象的常用方法.
【详解】画出函数 的图像如下图所示,由图可知 ,由于 , 关于 对称,即 .所以 .
【点睛】本小题主要考查分段函数的图像与性质,考查指数函数和三角函数图像的画法,考查三角函数的对称性,属于中档题.
四、解答题:本大题共6题,第17题10分,第18~22题每题12分,共70分,解答应写出文字说明、证明过程或演算步骤.
9.已知函数 ,不等式 的解集是
A B.
C. D.
【答案】C
【解析】
【分析】
分类讨论x的符号,根据函数的解析式可得函数的单调性和奇偶性,列出不等式,求得x的范围.
【详解】由题意,函数 满足 ,故 为偶函数.
当 时, 单调递增,
当 时, 单调递减,
故由不等式 ,故有 ,
即 ,求得 ,
故选:C.
【点睛】本题主要考查对数函数的性质,函数的单调性和奇偶性的应用,其中解答中熟练应用函数的奇偶性和初等函数的单调性,合理转化是解答的关键,着重考查了转化思想,以及推理与运算能力,属于中档题.
∴ ,
∴ ,即 ,
∴10是函数 的一个周期,B对;
又∵ 是偶函数,且 ,
∴ ,
∴函数 是奇函数,A错;
∵ ,
,
又 ,
∴ ,故C对;
∵ 是偶函数,且 ,
∴ ,
,
∴ ,
又 ,
∴ ,
∴函数 的图象关于直线 对称,D对;
故选:BCD.
【点睛】本题主要考查函数的奇偶性、对称性、周期性的判断,属于中档题.
三、填空题:(本题共4小题,每小题5分,共20分。不需写出解题过程,请把答案直接填写在答题卡相应位置上.)
先求出 ,再用两角差的正弦公式求出 .
【详解】解:∵ ,∴ ,
又 ,∴ ,
∴
,
故答案为: .
【点睛】本题主要考查两角差的正弦公式,考查同角的三角函数关系,注意角的范围,考查整体思想,属于基础题.
15.已知函数 ,则 的对称中心是______.
【答案】
【解析】
【分析】
由 即可求出 的对称中心.
【详解】解:由 得 ,
17.已知集合A={x|x2-7x+6<0},B={x|4-t<x<t},R为实数集.
(1)当t=4时,求A∪B及A∩∁RB;
(2)若A B=A,求实数t的取值范围.
【答案】(1) , ;(2) .
【解析】
【分析】
(1)先求出集合 ,再由 求出集合 ,求出 ,再根据交集、补集的定义求出 , ;
(2)由 得 ,根据子集 定义求出参数的范围.
(2)方程 ;在 上有且只有一个解,求实数n的取值范围;
(3)是否存在实数m满足对任意x1∈[-1,1],都存在x2∈R,使得 + +m( - )+1>f(x2)成立.若存在,求m的取值范围;若不存在,说明理由.
【答案】(1) , (2) 或 (3)存在,且m取值范围为
【解析】
【分析】
(1)函数 , 的最小正周期为 .可得 ,即可求解 的单调增区间.
(1)若矩形 是正方形,求 的值;
(2)为方便市民观赏绿地景观,从 点处向 修建两条观赏通道 和 (宽度不计),使 , ,其中 依 而建,为让市民有更多时间观赏,希望 最长,试问:此时点 应在何处?说明你的理由.
【答案】(1)矩形 是正方形时, (2)当 是 的中点时, 最大
【解析】
试题分析:(1)因为四边形 是扇形的内接正方形,所以 ,注意到 ,代入前者就可以求出 .(2)由题设可由 , ,利用两角差的正弦和辅助角公式把 化成 的形式,从而求出 的最大值.
【分析】
(1)将 两边平方,化简后可求得 的值.(2)利用(1)的结论,求得 以及 的值,代入夹角公式求得 与 夹角的余弦值.
【详解】(1)因为 ,
所以
即 ;
(2)因为 ,
所以 .
.
【点睛】本小题考查向量的运算,考查向量模的运算中常用的方法,即平方的方法,还考查了两个向量的夹角公式,属于中档题.
19.
11.若关于x的一元二次方程 有实数根 ,且 ,则下列结论中正确的说法是( )
A.当 时, B.
C.当 时, D.当 时,
【答案】ABD
【解析】
【分析】
取 解一元二次方程可判断A,由根的判别式可判断B,由函数的图象可判断C、D.
【详解】解:当 时, ,∴ ,故A对;
方程 化为 ,
由方程有两个不等实根得 ,∴ ,故B对;
7.函数 的零点所在区间
A. B. C. D.
【答案】B
【解析】
分析】
通过计算 的函数,并判断符号,由零点存在性定理,即可得到答案.
【详解】由题意,可得函数在定义域上为增函数, , ,
所以 ,根据零点存在性定理, 的零点所在区间为
故选B.
【点睛】本题考查了函数零点的判定定理的应用,其中解答中准确计算 的值,合理利用零点的存在定理是解答本题的关键,着重考查了推理与计算能力,属于基础题.
13.已知向量 , ,则 与 的夹角为______.
【答案】
【解析】
【分析】
利用向量的夹角公式直接求值.
【详解】解:∵ , ,
∴ , ,
∴ ,
∴ 与 的夹角为 ,
故答案为: .
【点睛】本题主要考查利用向量的数量积求向量的夹角,属于基础题.
14.已知 ,且 ,则 =______.
【答案】
【解析】
【分析】
已知 .
(Ⅰ)求 的值; (Ⅱ)求 的值.
【答案】(Ⅰ) cos (Ⅱ)
【解析】
【分析】
(Ⅰ)由二倍角公式求解即可;(Ⅱ)先求sin ,cos( ),再配凑角sin =sin( )展开求解即可
【详解】(Ⅰ)∵cos
= ,又∵
∴ cos
(Ⅱ)由(Ⅰ)知:sin =
由 、 得 ( )
cos( )=-
sin =sin( )=sin( )cos -cos( )sin
2. 的值为( )
A. B. C. D.
【答案】C
【解析】
【分析】
由诱导公式以及特殊角所对应的三角函数值计算即可.
【详解】
【点睛】本题主要考查诱导公式,以及特殊角所对应的三角函数值,只需熟记公式即可解题,属于基础题型.
3.已知幂函数 过点 ,则 ( )
A. B. C. D.
【答案】B
【解析】
设幂函数 ,∵ 过点 ,∴ ,
∴ ,故选B.
4.已知角 的终边经过点 ,则 的值等于( )
A. B. C. D.
【答案】A
【解析】
【分析】
直接由三角函数的定义求值.
【详解】解:∵角 的终边经过点 ,
∴ ,
,
∴ ,
故选:A.
【点睛】本题主要考查三角函数的定义,属于基础题.
5.下列函数中,即不是奇函数也不是偶函数的是
A. B.
C. D.
6.将函数 的图象向右平移 个单位长度得到 图象,则函数的解析式是( )
A. B.
C. D.
【答案】C
【解析】
【分析】
由题意利用三角函数的图象变换原则,即可得出结论.
【详解】由题意,将函数 的图象向右平移 个单位长度,
可得 .
故选C.
【点睛】本题主要考查三角函数的图像变换,熟记图像变换原则即可,属于常考题型.
综上可得,存在m,可知m的取值范围是( , ).
∴ ,
此时 ,
故答案为: .
【点睛】本题主要考查三角函数的对称性,牢记正弦、余弦、正切曲线是解题的关键,属于基础题.
16.函数 ,若方程 恰有三个不同的解,记为 , , ,则 的取值范围是______.
【答案】
【解析】
【分析】
画出函数 的图像,根据图像与 有三个不同的交点,判断出 的位置,由此求得 的取值范围.
【答案】B
【解析】
【分析】
对四个选项逐一分析,从而得出正确选项.
【详解】对于A选项, ,故函数为偶函数.对于C选项, ,故为奇函数.对于D选项,正切函数是奇函数,排除A,C,D三个选项,则B选项符合题意.对于B选项由 ,解得 ,定义域不关于原点对称,即不是奇函数也不是偶函数.故选B.
【点睛】本小题主要考查函数的奇偶性的定义以及函数奇偶性的判断,属于基础题.
∵x1∈[﹣1,1],
∴t∈[ , ],
可得t2+mt+5>0在t∈[ , ]上成立.
令g(t)=t2+mt+5>0,
其对称轴t
∵t∈[ , ]上,
∴①当 时,即m≥3时,g(t)min=g( ) ,=g( ) 0,解得﹣3<m<3;
③当 ,即m≤﹣3时,g(t)min=g( ) 0,解得 m≤﹣3;
B. 10是函数 的一个周期
C. 对任意的 ,都有
D. 函数 的图象关于直线 对称
【答案】BCD
【解析】
【分析】
采用排除法,先根据已知推出函数 为奇函数,可判断A;根据 是偶函数及 推出 ,可判断B;再根据已知条件求出 、 ,可判断C;求出 ,说明 的图象关于直线 对称,可判断D.
【详解】解:∵函数 是偶函数,且 ,
解析:(1)在 中, , ,在 中, , 所以 ,因为矩形 是正方形, ,所以 ,所以 ,所以 .