高中物理——初速度为0的匀加速直线运动的推论
06--初速度为零的匀变速直线运动的比例式推导和应用解析

内……第nX 内的时间是多少?第1X内、第
2X内、第3X内……第nX 内的时间之比是多
少?
v
x
x
x
xa
t1
t2
t3
t4
v0=0 v1
v2
v3
v4
推导:设X为等分位移,由公式x 1 at2得
2
通过第1个x所用时间
t1
2x a
通过第2个x所用时间
t2
2 2x a
2x a
2x ( 2 1) a
3、一质点做初速度为零的匀加速直线运 动,加速度为a,则第1秒内、第2秒内、 第3秒内……第n秒内的位移各是多少? 第1秒内、第2秒内、第3秒内……第n秒 内的位移之比是多少?
结论三:连续相等时间T内的位移比 xⅠ﹕xⅡ﹕xⅢ﹕……:xN=1﹕3﹕5﹕ ……(2n-1)
思考:做初速度为零的匀加速直线运动,连续相 等时间间隔T内的位移比是多少?
2. 解 :
A1B 3 5 C 7
1s
2s
9
11 D
3s
4.如右图所示,在水平面上固 定着三个完全相同的木块,一
粒子弹以水平速度 v 射入.若 子弹在木块中做匀减速直线运
动,当穿透第三个木块时速度恰好为零,则子弹
依次穿入每个木块时的速度之比和穿过每个木块
所用时间之比分别为( D )
A.v1∶v2∶v3=3∶2∶1 B.v1∶v2∶v3= 3∶ 2∶1 C.t1∶t2∶t3=1∶ 2∶ 3 D.t1∶t2∶t3=( 3- 2)∶( 2-1)∶1
at得v∶ 3 v5
3∶5.由x
1 2
at 2
得x∶ 3 x5 32∶52 9∶25, 根据推论xⅠ∶xⅡ∶xⅢ∶xN
(完整版)初速度为零的匀加速直线运动的四个推论

2
2
2
∴ xⅠ :xⅡ :xⅢ ‥‥x n=1:3:5:‥‥(2n-1)
例2:一小球从A点由静止开始做匀变速直线
运动,若到达B点时速度为v,到达C点时速
度为2v,则AB∶BC等于
(C)
A.1∶1
B.1∶2
C.1∶3
D.1∶4
例3:物体从静止开始做匀加速运动,第3秒 内的位移为5m,第5秒内的位移为 9 m。
2
a
2x tⅠ= t1= a
tⅡ= t2-t1=
22x a
2x a
2x ( 2 1) a
Hale Waihona Puke tⅢ=t3-t2=23x a
22x a
2x ( 3 a
2)
例5.在水平面上固定着三个完全相同的木块,一子 弹以水平速度v射入木块,若子弹在木块中作匀减 速直线运动 ,当穿透第三个木块时速度恰好为0, 则子弹依次穿过每个木块时的速度比和穿过每个 木块所用时间比分别为( BD )
例4:由静止开始做匀加速运动的物体,3s 末与5s末速度之比为 3:5 ,前3s与前5s 内位移之比为 32 :52,第3s内与第5s内位 移之比为 5:9 .
4.通过连续相等的位移所用时间之比tⅠ: tⅡ: tⅢ :‥‥‥t n
1: 2 1: 3 =2 :
: ‥n‥‥ n 1
证明:∵ x= 1 at2 ∴ t = 2x
A.v1:v2:v3=3:2:1
B. v1:v2:v3= 3 : 2 :1 C.t1:t2:t3= 1: 2 : 3 D. t1:t2:t3= ( 3 2) : ( 2 1) :1
初速度为零的匀加速直线运动的 四个推论
初速度为零的匀加速直线运动的 四个推论
设t=0开始计时,以T为时间单位,则
高中物理讲义:初速度为零的匀变速直线运动的规律

初速度为零的匀变速直线运动的规律【学习目标】1、匀变速直线运动的基本规律2、初速度为零的匀变速直线运动的规律与推论※匀变速直线运动规律当v0=0时:匀变速直线运动的等分时间关系和等分位移关系例1.如图所示,一小球从A点由静止开始沿斜面向下做匀变速直线运动,若到达B点时速度为v,到达C点时速度为2v,则x AB:x BC等于()A.1:1B.1:2C.2:3D.1:3【答案】D【解析】根据匀变速直线运动的速度位移公式v2﹣v02=2ax知,x AB=,,所以AB:AC=1:4,则AB:BC=1:3.故D正确,A、B、C错误。
例2.汽车以某一初速度开始做匀加速直线运动,第1s内行驶了1m,第2s内行驶了2m,则汽车第3s内的平均速度为()A.2m/sB.3m/sC.4m/sD.5m/s【答案】B【解析】汽车做匀加速运动,根据相邻相等时间内位移之差等于常数可得x2﹣x1=x3﹣x2,解得x3=3m,故第3s内的平均速度,故B正确例3.汽车以20m/s的速度在平直公路上行驶,急刹车时的加速度大小为5m/s2,则自驾驶员急踩刹车开始,2s与5s时汽车的位移之比为()A.5:4B.4:5C.3:4D.4:3【答案】C【解析】汽车刹车到停止所需的时间:t===4s2s时位移:x1=at2=20×2﹣×5×22m=30m5s时的位移就是4s是的位移,此时车已停:=m=40m故2s与5s时汽车的位移之比为:3:41.一物体以一定的初速度在水平地面上匀减速滑动,若已知物体在第1秒内位移为8.0m,在第3秒内位移为0.5m.则下列说法正确的是()A.物体的加速度大小为4.0m/s2B.物体的加速度大小可能为3.75m/s2C.物体在第0.5秒末速度一定为4.0m/sD.物体在第2.5秒末速度一定为0.5m/s2.一石块从楼房阳台边缘向下做自由落体运动,到达地面,把它在空中运动的时间分为相等的三段,如果它在第一段时间内的位移是1.5m,那么它在第三段时间内的位移是()A.1.5mB.7.5mC.4.5mD.13.5m3.2009年3月29日,中国女子冰壶队首次夺得世界冠军,如图所示,一冰壶以速度v垂直进入三个矩形区域做匀减速运动,且刚要离开第三个矩形区域时速度恰好为零,则冰壶依次进入每个矩形区域时的速度之比和穿过每个矩形区域所用的时间之比分别是()A.v1:v2:v3=::1B.v1:v2:v3=6:3:2C.t1:t2:t3=1::D.t1:t2:t3=::14.一滑块以某一速度从斜面底端滑到顶端时,其速度恰好减为零,若设斜面全长为L,滑块通过最初L所需时间为t,则滑块从斜面底端到斜面顶端全过程的平均速度为()A. B. C. D.2t5.具有完全自主知识产权的中国标准动车组“复兴号”,于2017年6月26日在京沪高铁双向首发。
匀变速直线运动的六大推论

初速度为0
马鞍山中加双语学校 高一物理组
千万不要忘了 :
• 末速度为零的匀减速直线运动也可以认为是反向的 初速度为零的匀加速直线运动
2015/12/8
马鞍山中加双语学校 高一物理组
例1.汽车刹车后做匀减速直线运动,经3 s后停止运动,那么,在 这连续的3个1 s内汽车通过的位移之比为( A.1∶3∶5 B.5∶3∶1 C.1∶2∶3 ) D.3∶2∶1
1s
sI 5
1s
sII 3
马鞍山中加双语学校 高一物理组
1s sIII 1
例2:如图,在水平面上固定着三个完全相同的木块,一子 弹以水平初速度v0射入木块,若子弹在木块中做匀减速 直线运动,当穿透第三个木块时速度恰好为0,则子弹依 次射入每个木块时的速度比和穿过每个木块所用的时间 比分别为( CD )
马鞍山中加双语学校 高一物理组
• 4.一个从静止开始作匀加速直线运动的物体 ,从开始运动起,连续通过三段位移的时间 分别是1s、2s、3s,这三段位移之比利通过 这三段位移的平均速度之比分别是( B ) • A.1∶22∶32;1∶2∶3;
• B、1∶23∶33;1∶22∶32
• C、1∶2∶3;1∶1∶1;
D.1∶16∶81
1 2 1 2 解析 :由x at 得 : xⅠ x1 at , xⅡ x 2 x1 2 2 1 1 2 1 1 2 2 2 2 a 3t at 4at , x Ⅲ x 3 x 2 a 6t a 3t 2 2 2 2 27 2 at , 则xⅠ ∶xⅡ ∶x Ⅲ 1 ∶ 8 ∶ 27. 2
以时间等分 T v =0 T
0
T s4
T
T
s1 s 2 s3
初速度为零的匀变速直线运动的比例式及推论习题

01
V0
03
B
02
A
04
C
例1、一个做匀加速直线运动的质点,在连续相等的两个时间间隔内,通过的位移分别是24m,64m,每一个时间间隔为4s,求质点的初速度和加速度。
是 10m
例2:一小球从A点由静止开始做匀变速直线运动,若到达B点时速度为v,到达C点时速度为2v,则AB∶BC等于 ( C ) A.1∶1 B.1∶2 C.1∶3 D.1∶4
例3:物体从静止开始做匀加速运动,第3秒内的位移为5m,第5秒内的位移为 9 m。
匀变速直线运动 的常用公式:
速度公式:
位移公式:
位移-速度公式:
平均速度公式:
位移的另一计算公式:
(3)做匀变速直线运动的物体在某段位移内中点位置的瞬时速度
(1)匀变速直线运动中,在连续相等的时间间隔T内位移之差都相等, D:/%E7%89%A9%E7%90%86/%E9%AB%98%E4%B8%80%E7%89%A9%E7%90%86/%E7%9B%B4%E7%BA%BF%E8%BF%90%E5%8A%A8/%E4%B8%83%E3%80%81%E5%8C%80%E5%8F%98%E9%80%9F%E7%9B%B4%E7%BA%BF%E8%BF%90%E5%8A%A8%E8%A7%84%E5%BE%8B%E7%9A%84%E5%BA%94%E7%94%A8.ppt%23256,-1,12.%20PowerPoint%20%E6%BC%94%E7%A4%BA%E6%96%87%E7%A8%BFⅡ-xⅠ=xⅢ-xⅡ=xⅣ-xⅢ……=aT2
高一物理必修第一册第二章匀变速直线运动的研究—初速度为零的匀加速直线运动的特殊规律

解:假设经过t时间追上
人经过的位移为 x1 v t
25m
车 则经 有过v的t位120移at2为该式2x52无解12 ,at 212t2 6t250
所以人无法追上车
不能追上:求最小距离
例1、车从静止开始以1m/s2的加速度前进,车后相距
25m处,某人同时开始以6m/s的速度匀速追车,能否追
上?如追不上,求人、车间的最小距离。
1at2② 2
根据① ②解出x=3m
临界问题
例4(课时作业p104 18)特快列车甲以速度v1行驶, 司机突然发现在正前方距甲车x处有列车乙正以速度v2 (v2<v1)向同一方向运动,为使甲、乙两车不相撞,司 机立即使甲车以大小为a的加速度做匀减速运动,而乙
车仍做原来的匀速运动,求a的大小应满足的条件。
例4:如图,在水平面上固定着三个完全相同的木块, 一子弹以水平初速度v射入木块,若子弹在木块中做匀 减速直线运动,当穿透第三个木块时速度恰好为0,则 子弹依次射入每个木块时的速度比和穿过每个木块所
用的时间比分别为(BD)
A、v1:v2:v33:2:1 B、v1:v2:v3 3: 2:1 C、t1:t2:t31: 2: 3
解法一:找临界条件
解法二:二次函数极值法
解图像:要的使顶两点车的不纵相1 2坐a撞2标t,必则v2须有为v1正tv2值tx, x0则v41t1212aax2tv20v12 0
可解得 a v2 v12
4 1a 2
2x
临界问题
例4(课时作业p104 18)特快列车甲以速度v1行驶, 司机突然发现在正前方距甲车x处有列车乙正以速度v2 (v2<v1)向同一方向运动,为使甲、乙两车不相撞,司 机立即使甲车以大小为a的加速度做匀减速运动,而乙
初速度为零的匀加速直线运动推论

初速度为零的匀加速直线运动推论推论一、初速度为零的匀变速直线运动的速度与所用时间成正比,即t秒末、2t秒末、3t秒末……nt秒末物体的位移之比:v1:v2:v3:…:vn=1:2:3…:n推导:已知初速度00=v ,设加速度为a ,根据位移的公式v=v0+at 在t 秒末、2t 秒末、3t 秒末……n t 秒末物体的位移分别为: v 1=at、v 2=a2t、v 3=a3t ……v n =antv1:v2:v3:…vn=1:2:3:……n推论二、初速度为零的匀变速直线运动的位移与所用时间的平方成正比,即t秒内、2t秒内、3t秒内……nt秒内物体的位移之比: 1S:2S:3S:...:nS=1:4:9(2)推导:已知初速度00=v,设加速度为a,根据位移的公式221at S =在t 秒内、2t 秒内、3t 秒内......n t 秒内物体的位移分别为:2121at S =、22)2(21t a S =、23)3(21t a S = ......2)(21nt a S n = 则代入得 1S :2S :3S :... :n S =1 :4 :9 (2)。
推论三、初速度为零的匀变速直线运动,从开始运动算起,在连续相等的时间间隔内的位移之比:是从1开始的连续奇数比,即1S:2S:3S:…:nS=1:3:5……:(2n-1)推导:连续相同的时间间隔是指运动开始后第1个t、第2个t、第3个t……第n个t,设对应的位移分别为、、、321SSS……nS,则根据位移公式得第1个t的位移为2121at S =第2个t 的位移为22222321)2(21at at t a S =-=第3个t 的位移为222325)2(21)3(21at t a t a S =-=……第n个t的位移为222212])1[(21)(21at n t n a nt a S n -=--= 代入可得: )12(:5:3:1::::321-=n S S S S n推论四、初速度为零的匀变速直线运动,从开始运动算起,物体经过连续相等的位移所用的时间之比为:1t:2t:3t……:nt=1:(12-):(23-)……:(1--nn)推导:通过连续相同的位移是指运动开始后,第一个位移S、第二个S、第三个S……第n个S,设对应所有的时间分别为321ttt、、nt,根据公式22。
初速度为零的匀加速直线运动的四个推论

2
a
tⅠ= t1=
2x a
tⅡ= t2-t1=
22x 2x 2x( 21) a aa
tⅢ=t3-t2=
23x 22x 2x( 3 2)
a
aa
例5.在水平面上固定着三个完全相同的木块,一子 弹以水平速度v射入木块,若子弹在木块中作匀减 速直线运动 ,当穿透第三个木块时速度恰好为0, 则子弹依次穿过每个木块时的速度比和穿过每个 木块所用时间比分别为( BD )
例4:由静止开始做匀加速运动的物体,3s 末与5s末速度之比为 3:5 ,前3s与前5s 内位移之比为 32 :52,第3s内与第5s内位 移之比为 5:9 .
4.通过连续相等的位移所用时间之比tⅠ: tⅡ: tⅢ :‥‥‥t n
1: 21: 3=2:
: ‥n‥‥ n1
证明:∵ x = 1 a t 2 ∴ t = 2 x
2
2
2
∴ xⅠ :xⅡ :xⅢ ‥‥x n=1:3:5:‥‥(2n-1)
例2:一小球从A点由静止开始做匀变速直线
运动,若到达B点时速度为v,到达C点时速
度为2v,则AB∶BC等于
(C)
A.1∶1
B.1∶2
C.1∶3
D.1∶4
例3:物体从静止开始做匀加速运动,第3秒 内的位移为5m,第5秒内的位移为 9 m。
∴ x1:x2:x3:‥‥=1:22:32:‥‥
3. 第一个T内,第二个T末,第三个T
内‥‥‥位移之比为xⅠ :xⅡ :xⅢ :‥‥x
n=1:3:5:‥‥(2n-1)证明:来自xⅠ=x1= 1 a T 2 2
xⅡ=x2-x1= xⅢ=x3-x2=
1a(2T)21aT2 3aT2
2
22
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
o o T1
t1
t2 T2
t3
T3
t4
T4
t5
T5
t6
T6
x
2x
3x
4x
5x
6x
从运动起点划分为连续相等位移x,则:
3、位移x、2x、3x……nx内的时间之比为:
t1 : t2 : t3 : …… :tn= 1 : 2 : 3 : …… : n
4、第1段位移x、第2段位移x、第3段位移x内的时间之比为:
解 题 技 巧
末速度为零的匀减速直线运动可看成 初速度为零,加速度大小相等的匀加速直 线运动的逆过程。
A
v0后10s停下来, 且汽车在匀减速直线运动时 的加速度大小为1m/s2。 (1)求汽车从刹车直到停 止时的位移。(50m)
B
0
a
v0
A
(2)求汽车停止前最后1s 内的位移。(0.5m)
第二章
匀变速直线运动的研究
专题一 初速度为0的匀变速直线运动 的推论
知识回顾
初速度为0的匀加速直线运动(自由落体运动)中 1、时间t、2t、3t……nt内的位移之比为: x1 : x2 : x3 : …… :xn=1 : 4 : 9 : …… : n2 2、第1个t内,第2个t内,第3个t内……的位移之比为: S1 : s2 : s3 : …… :sn=1 : 3 : 5 : …… : (2n-1)
3.2m
0,2s
例与练
• 2、广州至北京的T16次火车于16:48正从 广州站发出,做匀加速直线运动,小敏站 在第一节车厢前端的站台上,观测到第一 节车厢通过他历时4s,全车共有25节车厢, 车厢之间的间隙忽略不计,求: • 1)全部车厢通过他历时多少? • 2)第9节车厢通过他需时多少?
20s, 0.69s
T1 : T2 : T3 : …… = 1 : ( 2 1) : ( 3 2) :
……
例与练
• 新学案P39 • 1、屋檐每隔一定时间滴下一滴水,当第5滴正欲 滴下时,第1滴刚好落到地面,而第3滴与第2滴 分别位于高1m的窗子的上下沿,如图所示,问: (g=10m/s2) • 1)此屋檐离地面多高? • 2)滴水的时间间隔是多少?
课后思考: 小天将一小球以某速度竖直向上抛出,经0.4s落 回其手中,不计空气阻力,求:小球抛出的初速度大 小。(g=10m/s2) (v0=2m/s)
布置作业
• 1、总结规律 • 2、《新学案》P37-p39
3、一小球以某一初速度沿光滑斜面匀减速上 滑,到达顶端时速度为0,历时3s,位移9m, 求其第1秒内的位移。(5m) • (用两种方法解)
解法一:基本公式求加速度a 解法二:能不能用推论呢? v0 0 a 5m 1s
初速度为0的 匀加速直线运 动 用推论,OK!
0 3m 2s 1m 3s
从左往右运动,是匀减速至0的运动,逆过来看呢?