数学建模-机械生产

合集下载

在机械加工过程中的误差分析及数学建模研究

在机械加工过程中的误差分析及数学建模研究

在机械加工过程中的误差分析及数学建模研究机械加工是制造过程中不可或缺的一环。

然而,在机械加工过程中,由于种种因素的影响,难免会出现误差。

误差的存在直接影响到零部件的质量和精度,因此对机械加工过程中的误差进行分析和数学建模研究具有重要的意义。

一、误差来源分析在机械加工过程中,误差可以来源于多个方面,包括:1.制造设备的误差:制造设备本身的精度会对加工零件的准确性产生影响。

例如,机床的刚性、热变形、传动系统的间隙等都会造成误差的产生。

2.切削力的变化:由于刀具的磨损或者加工条件的变化,切削力会发生变化,从而导致零件加工中出现误差。

3.工件的变形:加工过程中,工件可能会因为切削力等原因而发生变形,使得加工结果与设计要求不符。

4.加工过程中的振动:振动是机械加工中不可避免的现象,但过大的振动会引起工件位置的偏移,从而影响加工精度。

二、误差分析方法为了更好地理解机械加工过程中的误差,并对其进行建模研究,我们通常采用以下几种误差分析方法:1.测量方法:通过测量零件的几何属性,使用测量仪器和测量技术分析零件的误差情况。

常用的测量方法包括三坐标测量、投影仪测量等。

2.试验方法:通过设计一系列的试验,控制其他因素不变,仅改变某个因素,如切削速度、刀具刃磨状况等,来测量零件加工结果的误差。

通过对试验结果的分析,可以得到误差与各个因素之间的关系。

3.仿真模拟方法:利用计算机建立机械加工过程的仿真模型,通过对模型进行参数调整和试验,得到加工结果的误差。

仿真模拟方法可以节省时间和成本,并能够更好地在加工过程中控制误差。

三、数学建模研究数学建模是解决误差分析问题的重要方法之一。

在机械加工领域,数学建模可以针对不同的误差来源进行研究,建立与之相关的数学模型,从而帮助我们更加深入地理解误差的本质,并提供改善加工精度和质量的方法。

在误差分析中,常用的数学模型包括:1.误差传递模型:利用数学方法研究误差在加工过程中的传递规律,分析传递路径和影响因素,以便为误差的减小提供方向。

机械系统控制问题的数学建模及仿真分析

机械系统控制问题的数学建模及仿真分析

机械系统控制问题的数学建模及仿真分析在工程领域中,机械系统的控制问题一直是一个重要的研究方向。

为了实现机械系统的高效运行和精确控制,数学建模和仿真分析是不可或缺的工具。

本文将介绍机械系统控制问题的数学建模方法,以及通过仿真分析来评估和优化控制策略的过程。

一、机械系统的数学建模1.1 动力学模型机械系统通常由质点、刚体和弹簧等组成。

为了描述其运动状态,可以根据牛顿定律建立动力学方程。

例如,对于质点,其动力学方程可以表示为:\[m\frac{{d^2x}}{{dt^2}}=F\]式中,m表示质点的质量,\(x\)表示质点的位移,\(F\)表示作用在质点上的合外力。

对于刚体,可以利用转动惯量和角动量原理建立动力学方程。

1.2 控制系统模型机械系统的控制往往包括输入、输出和控制器。

输入可以是力、力矩或电压等信号,输出可以是位移、角度或速度等物理量,控制器通常通过比例、积分和微分等操作来调整输出。

为了描述控制系统的动态特性,可以建立控制系统模型。

常见的控制系统模型包括传递函数、状态空间模型和时序图。

二、机械系统仿真分析在得到机械系统的数学模型之后,可以利用仿真软件进行系统行为的分析。

仿真分析可以帮助我们预测系统的响应、优化控制策略以及评估系统性能。

2.1 仿真软件目前市场上有许多专业的仿真软件可以用于机械系统的仿真分析,如MATLAB、Simulink、ADAMS等。

这些软件提供了丰富的库和工具箱,可以方便地进行系统建模和仿真操作。

2.2 系统响应分析仿真分析可以模拟机械系统在不同输入条件下的响应情况。

通过改变输入信号的幅值、频率和相位等参数,可以观察到系统的频率响应、阻尼比等特性。

这有助于我们了解系统的动态特性,并调整控制策略以满足要求。

2.3 控制策略优化仿真分析还可以通过比较不同控制策略的性能来优化系统的控制方案。

通过引入不同的控制器参数或算法,可以评估系统的稳定性、响应时间和控制精度等指标。

优化控制策略可以使机械系统更加稳定可靠,提高工作效率。

数学建模生产加工问题

数学建模生产加工问题

数学建模在生产加工问题中扮演着重要的角色,通过数学建模可以帮助优化生产加工过程、提高效率、降低成本等。

以下是在生产加工问题中应用数学建模的一般步骤:
1. 问题定义:首先需要明确定义生产加工中要解决的具体问题,例如优化生产线布局、最大化产量、最小化成本等。

2. 数据采集:收集与生产加工相关的数据,包括原材料成本、加工时间、设备利用率、人力资源等信息。

3. 建立数学模型:根据实际情况选择合适的数学模型,常用的包括线性规划、整数规划、动态规划等。

将问题转化为数学表达式,建立相应的数学模型。

4. 参数估计:确定模型中的参数数值,可以通过历史数据、实验测量等方法来估计参数值。

5. 求解模型:使用数学软件(如MATLAB、Python等)对建立的数学模型进行求解,得到最优解或者近似解。

6. 模型验证:对求解结果进行验证,与实际情况进行比较,检查模型的有效性和可靠性。

7. 方案实施:根据数学建模的结果,制定相应的生产加工方案,并进行实施。

8. 监控与调整:实施方案后需要持续监控生产加工过程,根据实际情况进行调整和优化,以确保生产效率和产品质量。

在生产加工问题中应用数学建模可以帮助企业更科学地管理生产过程,提高生产效率和产品质量,降低成本,增强竞争力。

同时,数学建模也可以为生产加工问题提供系统化的分析方法,使决策更加客观、科学。

希望以上内容能够帮助你更好地理解数学建模在生产加工问题中的应用。

机械设计制造及其自动化数学建模

机械设计制造及其自动化数学建模

机械设计制造及其自动化数学建模机械设计制造及其自动化数学建模是现代工程领域中的重要内容,通过数学建模实现对机械系统的分析、优化和控制,可以大大提高机械设备的性能和生产效率。

在机械设计制造中,数学建模可以帮助工程师们理解和预测机械系统的运动、应力、热力等特性,从而指导设计和制造过程。

通过建立数学模型,可以对机械系统进行仿真和优化,在减小重量、提高强度和减小成本等方面发挥重要作用。

数学模型还可以用于预测机械设备的寿命和故障率,对系统进行可靠性分析,为设备的维护和保养提供科学依据。

而在机械自动化方面,数学建模则是实现自动控制和智能化生产的基础。

自动化生产线、机器人和智能工厂等都离不开对机械系统的数学建模和控制。

通过数学模型,可以设计出有效的控制算法和策略,实现对各种机械运动和工艺过程的自动化调节和优化,提高生产效率和产品质量。

总之,机械设计制造及其自动化数学建模在现代工程领域中具有重要意义,它不仅可以指导工程实践,提高机械设备的性能和可靠性,还可以推动工业生产的智能化和自动化发展。

因此,对数学建模技术的研究和应用具有重要的理论和实践意义。

机械设计制造及其自动化数学建模需要涉及多个领域的知识,包括力学、动力学、材料力学、控制理论等。

在机械设计中,需要对机械系统进行动力学分析,建立运动学和动力学方程,以描述机械系统在不同工况下的运动和力学特性。

通过数学建模,可以进行机械结构的强度和刚度分析,优化零部件的设计,提高机械系统的可靠性和使用寿命。

在机械自动化方面,数学建模涉及到控制理论和算法设计。

通过建立机械系统的数学模型,可以设计出有效的闭环控制系统,实现对机械设备的精准控制和自动化运行。

在智能制造和工业4.0时代,数学建模和控制技术将发挥越来越重要的作用,实现机械设备的智能化监控、自适应调节和协同作业,提高生产线的柔性化和智能化水平。

而在机械制造方面,数学建模还可以用于工艺规划和优化。

例如,通过建立数学模型,可以对数控加工中的刀具路径进行优化,提高加工效率和表面质量。

数学建模之生产问题

数学建模之生产问题

数学建模之生产问题介绍本文档将讨论生产问题和如何使用数学建模来解决这些问题。

生产问题是指在生产过程中遇到的各种挑战和难题,例如资源管理、生产效率、质量控制等。

通过数学建模,我们可以分析这些问题,找到最优解决方案,并提高生产效益。

数学建模的步骤数学建模通常包括以下步骤:1. 问题定义:明确生产问题,确定需要解决的具体目标。

2. 数据收集:收集与生产问题相关的数据,包括生产过程中的各种参数、指标等。

3. 建立数学模型:根据收集到的数据,建立数学模型来描述生产过程和相关因素之间的关系。

4. 模型求解:使用数学方法,对模型进行求解,得到最优解或优化方案。

5. 模型验证:通过与实际情况进行对比,验证建立的数学模型和求解结果的准确性和可行性。

6. 结果分析和应用:分析求解结果,并将其应用于实际生产中,提高生产效率和质量。

常用数学方法在生产问题的数学建模过程中,常用的数学方法包括:- 线性规划:用于优化资源分配和生产调度问题。

- 随机过程:用于分析生产过程中的随机性和风险。

- 排队论:用于优化生产线的设计和调度。

- 最优化算法:用于求解复杂的优化问题。

- 统计分析:用于分析生产过程中的数据和参数关系。

案例研究为了更好地理解数学建模在生产问题中的应用,我们将介绍一个案例研究。

假设某公司的生产线上有多个工作站,每个工作站负责一个特定的生产环节。

生产过程中,需要根据不同的订单要求来调度工作站的工作顺序以及产品的流动路径。

我们可以使用数学建模来优化调度方案,以最大程度地提高生产效率和降低生产成本。

首先,我们可以收集不同订单的要求和限制条件,如生产时间、资源消耗等。

然后,建立一个数学模型,其中包括工作站之间的依赖关系、工作站的资源消耗和产出等信息。

接下来,我们使用线性规划方法对模型进行求解,以找到最优的工作站调度方案。

这样,就能够确保各个工作站在时间和资源上得到合理的分配,以最大化生产效率和满足订单要求。

最后,我们通过与实际生产情况的对比来验证模型和求解结果的准确性和可行性。

数学建模 机械生产

数学建模 机械生产

机械加工生产计划问题摘要文章所给的信息经过分析可以发现是线性规划问题,并且是最优方案的问题。

并且是求最大利润的问题。

对于问题一,首先由题目中的假设和表格对数据分析,以六个月的总利润作为目标函数,并以生产、销售、库存等件数的限制作为约束条件,从而建立整体的最优化模型。

用L IN G O计算得到生产-库存-销售的最优计划(表2-表4)。

并且得到的最大利润为3066033.00元。

在最优生产-库存-销售的计划前提下,与最大的销售量对比,得到表格5。

在促销的费用方面,我们考虑到促销的费用不能超过促销给公司带来的利润的增加,最终得到促销费用不能超过68725.00元。

问题二是建立在问题一的基础之上的,对销售上限和最优的生产量,最优销售量做对比分,对数据进一步处理。

得到表格6,库存费用的变化可能导致最优生产-库存-销售计划的变化。

问题三还是以最大利润为目标函数,对检修设备的方案改进,我们第一问的最优方案为基础,我们引入设备每个月创造利润最大化的原则即在某个月如果创造利润大于其他月,则不进行检修。

得到表7。

问题四我们建立最优模型的基础上,通过矩阵的求解,优化求解的过程,打破开始的检修确定方案改为检修未知,得到表8的最佳检修方案。

利润增加了13112.00元。

关键词:线性规划;L IN G O;整数规划;最优化方法;灵敏度分析1、问题重述机械加工厂生产五种产品。

并且工厂的设备有以下类别和台数:十台车床、四台台立钻、五台台水平钻、四台台镗床和两台台刨床。

表2给出了每种产品的利润(元/件,利润定义为销售价格与原料成本之差)以及生产单位产品需要的各种设备的加工时间情况;表3给出了从一月到六月的各种产品的市场销量上限;表4给出了六个月中五种设备要求的检修台数。

表5给出了一个一到六月份的检修计划表,设备如果在某个月被安排检修,则该设备全月不能用于生产。

每种产品的库存量均为50件,每件产品每月的库存费为5元,在一月初,所有产品都有50件库存,并且在六月底要求每种产品仍然还有50件库存,最大库存量为100件。

数学建模论文报告_发动机生产问题

数学建模论文报告_发动机生产问题

第1页 共 23 页摘 要运用线性规划知识和计算机软件,采用线性规划模型的方法来解决企业生产与存储的问题,达到生产、需求与库存之间的平衡,以及得到在资源限制条件下的最优生产方案,使生产费用最小化或利润最大化是我们追求的目的。

本题是在不同因素变化的情况下作出最优生产计划。

问题1-5 分别从不同的角度(即考虑不同因素的变化)进行讨论,求解最优生产方案。

总的来说,该问题是一个最优化问题。

问题一:在不考虑油价波动的情况下完成合同任务,这是一个产大于销的线性规划问题。

油价取2011年全国0号柴油的平均值7.6元/升。

求出实际成本1c ij 建立数学模型,利用lingo 求出最优解,得出min z = 877.95万元。

问题二:在考虑油价波动的实际情况下,收集北京市2011年0号柴油变化情况,求出每个季度的平均油价,重新计算实际成本2ij c ,用2ij c 替换问题一数学模型中的实际成本1ij c ,利用lingo 求出最优解,得出min z =878.39万元。

问题三:根据以往经验,各季度需求服从正态分布。

采用满足95.45%市场需求的σ2原则并结合可以容忍2.5%缺货情况,预测2012市场需求。

用新的市场需求替换问题一数学模型中的市场需求,利用lingo 求出最优解,作出生产计划,得出min z =1216.86万元(本题的实际成本为3ij c 和问题一的实际成本1ij c 相等,因为本题只是改变了市场需求)。

问题四:收集近几年的0号柴油价格波动数据,不考虑汽油价格对其他成本的影响,运用时间序列预测模型中的移动平均值法对2012年柴油价格作出预测,重新计算实际成本4ij c ,用4ij c 替换问题三数学模型中的实际成本3ij c ,求出最优解,作出生产计划,得出min z =1218.91万元。

问题五:考虑到汽油价格对其他成本的影响,收集汽油价格与物流价格的数据,用matlab 拟合建立汽油价格与物流价格之间的数学模型,考虑到其他成本中有25%是物流成本,再一次计算实际成本。

数学建模测试地的题目-线性规划部分

数学建模测试地的题目-线性规划部分

313数学教育1、2班,510数学教育1、2、3班数学建模上机测试题,需要把运行结果写出来。

模型包括目标函数、约束条件,编写的程序和程序运行结果四部分内容。

写在作业本上。

按学号顺序做,如35号同学做习题35习题1:某厂计划生产甲、乙、丙三种零件,有机器、人工工时和原材料的限制,有关数据1、2、若原材料为2元/公斤,试建立获得最大利润生产计划的线性规划模型。

习题2:一塑料厂利用四种化工原料合成一种塑料产品。

这四种原料含A、B、C的成分见下表,这种塑料产品要求含A为25%,含B、C都不得少于30%。

问各种原料投放比例为多少能习题3:建立以下线性规划模型1)某家具厂生产桌椅,每张桌子耗用木材0.28立方米、2小时人工,售价288元;每把椅子耗用木材0.13立方米、0.8小时人工,售价147元。

且1张桌子必须配4把椅子。

已知木材本月供应量不得超过52立方米,且每立方米成本价为500元。

本月人工工时上限为288小时,且每小时成本为20元。

(1)写出最大月收益线性规划模型;(2)写出月收益不低于8000元而动用木材最省的线性规划模型(其余条件不变)。

习题4 某工厂要用三种原料1、2、3混合调配出三种不同规格的产品甲、乙、丙,数据如右表。

问:该厂应如何安排生产,使利润收入为最大?习题5、某部门现有资金200万元,今后五年内考虑给以下的项目投资。

已知:项目A :从第一年到第五年每年年初都可投资,当年末能收回本利110%;项目B :从第一年到第四年每年年初都可投资,次年末能收回本利125%,但规定每年最大投资额不超过30万元;项目C :需在第三年年初投资,第五年末能收回本利140%,但规定最大投资额不能超过80万元;项目D :需在第二年年初投资,第五年末能收回本利155%,但规定最大投资额不能超过100万元;问:a.应如何确定这些项目的每年投资额,使得第五年年末拥有资金的本利金额为最大? b.应如何确定这些项目的每年投资额,使得第五年年末拥有资金的本利在330万元的基础上使得其投资总的风险系数为最小?习题6 某公司计划在三年的计划期内,有四个建设项目可以投资:项目Ⅰ从第一年到第三年年初都可以投资。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械产品生产计划的优化设计当今世界,瞬息万变。

人们的生活节奏也越来越快,各种新产品层出不穷,已经进入了机械化时代。

机械产品生产计划问题已经成为各大厂家关注的焦点。

产品生产的原料配置以及销售计划急需优化。

本文对一机械产品生产计划的利润进行了求解,并优化了产品生产方案,增大了产品的利润。

在合理的假设前提下,对机械产品生产计划进行分析,利用生产量、库存量、销售量之间的关系建立线性整数规划模型。

运用lingo进行求解,得出最优的生产、库存、销售方案。

在原计划不变的条件下,即不改变机器设备定月检修的方案,对数据进行灵敏度分析,得出部分产品的销售价格可以上调;再固定各产品的销售价格,从设备的角度分析增加利润的,建立模型并求解,得出优化的机器设备检修方案。

把部分产品上调后的价格作为产品的价格销售方案,把调整后的设备检修表作为优化后的检修方案,建立优化线性整数规划模型。

用lingo求得优化后的最大利润。

对机械产品生产逐步进行分析,从销售的价格、设备的检修等多角度寻求增加最大利润的方法。

最终得出最优的生产计划方案。

关键字:机械产品生产生产量、库存量、销售量lingo求解线性整数规划模型设备检修1.问题提出机械加工厂生产7种产品(产品1到产品7)。

该厂有以下设备:四台磨床、两台立式钻床、三台水平钻床、一台镗床和一台刨床。

每种产品的利润(元/件,在这里,利润定义为销售价格与原料成本之差)以及生产单位产品需要的各种设备的工时(小时)如下表。

表中的短划表示这种产品不需要相应的设备加工。

从一月份至六月份,每个月中需要检修的设备是(在检修的月份,被检修的设备全月不能用于生产):每个月各种产品的市场销售量的上限是:每种产品的最大库存量为100件,库存费用为每件每月0.5元,在一月初,所有产品都没有库存;而要求在六月底,每种产品都有50件库存。

工厂每天开两班,每班8小时,为简单起见,假定每月都工作24天。

生产过程中,各种工序没有先后次序的要求。

问题1:制定六个月的生产、库存、销售计划,使六个月的总利润最大。

问题2:在不改变以上计划的前提下,哪几个月中哪些产品的售价可以提高以达到增加利润的目的。

价格提高的幅度是多大?问题3:哪些设备的能力应该增加?请列出购置新设备的优先顺序。

问题4:是否可以通过调整现有设备的检修计划来提高利润?提出一个新的设备检修计划,使原来计划检修的设备在这半年中都得到检修而使利润尽可能增加。

最优设备检修计划问题对案例3中的生产计划问题。

构造一个最优设备检修计划模型,使在这半年中各设备的检修台数满足案例3中的要求而使利润为最大。

2.模型假设与说明(1).假设工厂工人每月工作24天;(2).在进行部分产品价格上调时,机器设备的检修方案不变;(3)在优化检修设备方案时,产品的价格是上涨后的价格。

3.符号说明i: 表示产品;j: 表示月份;m: 表示机器设备;Aij: 表示第i中产品在第j个月的产量;Bij: 表示第i中产品在第j个月的库存量;Cij: 表示第i中产品在第j个月的销售量;Dmi: 生产i中产品需要的m种设备时间;Emj: m中设备在第j月的使用时间;Fij:第i中产品在第j月的销售上限;Pi: 第i中产品每件的利润;4.问题分析和模型建立4.1 模型分析4.1.1本题要求制定出六个月的生产、库存、销售计划并求出总利润,为了增加利润,将产品的售价提高,求出提高的价格幅度,增加设备的能力,并购置新设备,调整设备的检修方案以增加利润。

利润=售价-成本价-产品的库存费用。

此题目中没有给出产品的成本价,因此,我们在求最大利润是直接用产品的销售总价减去产品的库存费用。

由于工厂每天开两班,每班8小时,假定每月工作24天,结合检修计划表,由此可以算出每种机器设备每月的使用时间(矩阵Emj ,求解如下),建立一个机器生产设备使用的约束条件,每种产品每个月的库存量小于等于100,并要求在第六个月底,每种产品都有50件库存,可以建立两个库存约束条件。

产品在销售时,每月的产品销售量为当月的产量加上上月的库存量要小于销售上限。

由于第一月无上月的库存量,故直接是产品生产产量小于销售上限。

建立销售的约束条件。

利用lingo 建立一个整形规划的数学模型。

4.1.2提高部分产品的销售价来提高总利润。

利用(1)中的建立的模型球的的解,进行灵敏度分析来解答。

将“General Solver ”选项卡中的“Dual Computation ”下拉项修改为“Prices & Ranges ”。

然后,我们点“Solve ”运行程序,运行完之后,回到模型界面,点击“lingo ”菜单下的“range ”选项可以进行灵敏度分析。

4.1.3增加设备的能力来提高利润,通过看影子价格来求出答案。

4.1.4由于设备要定时的检修,在检修时设备无法使用,我们可以优化设备检修计划来增加利润。

4.1.5 利用(2)求出的增加部分产品的价格和(4)优化的机器设备的检修方案。

重新建立模型。

进行求解。

4.2 模型建立在求解总利润时,建立目标函数76761111z (*)0.5*ij i iji j i j C p B=====-∑∑∑∑把i p =10 6 3 4 1 9 3带入目标函数中得6666max (B )*10B )*6B )*3B )*1162263364461111z A A A A j j j j j j j j =-+-+-+-∑∑∑∑====666764B )*1B )*9B )*30.5*B 55666677611111A A A j j j ij j j j i j +-+-+--∑∑∑∑∑=====设备时间约束为*m i i jm j D A E <= (1)库存约束为100ij B <= (2)650Bi >= (3)销售约束为111i i i A B F -<= (4)1C ij ij ij ij A B F -+-<= (j>=1) (5)A 和B 均是整数矩阵 将约束条件用矩阵表示为0.50 0.70 0.00 0.00 0.30 0.20 0.500.10 2.00 0.00 0.30 0.00 0.60 0.000.20 6.00 0.80 0.00 0.00 0.00 0.600.05 0.03 0.00 0.07 0.10 0.00 0.08 0.00 0.00 0.01 0.00 0.05 0.00 0.05;⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦* 11121314 151621222324 252631323334 3536414243 44454651525354 555661626364 656671727374 7576a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦<11121314 151621222324252631323334 3536414243 44454651525354 555661626364 6566e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ (1)111213141516212213141516313233343536414243444546515253131356616263646566717273747576 b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦<=100 100 100100 100 100100 100 100100 100 100100 100 100100 100 100100 100 100100 100 100100 100 100100 100 100100 100 100100 100 100100 100 100100 100 100⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ (2)[]16263646566676 b b b b b b b >=[]50505050505050 (3)1111212131314141515161617171a 500a 1000a 300a 300800a 200a 100a b b b b b b b ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-<=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦(4) 121314 1516222324 2526323334 35364243 444546525354 5556626364 6566727374 7576a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦+-1112131415212213141531323334354142434445515253131361626364657172737475 b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦-121314 1516222324 2526323334 35364243 444546525354 5556626364 6566727374 7576c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦<=121314 1516222324 2526323334 35364243 444546525354 5556626364 6566727374 7576f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(5)运用lingo 求解5.模型求解5.1 模型求解5.1 运行后部分数据截取如下(具体数据见附件):Objective value: 32468.00 Total solver iterations: 37A( 1, 1) 600.0000 0.000000A( 1, 2) 0.000000 0.000000 A( 1, 3) 0.000000 0.000000 A( 1, 4) 200.0000 0.000000 A( 1, 5) 0.000000 0.000000 A( 1, 6) 550.0000 0.000000 …………Aij 第i 中产品在第j 个月的生产量6000020005501220010710210930020004006000A 300005001003508005000200110003000450025055010025001001000⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦Bij 第i 种产品在第j 个月中的库存量ij-11000000500000250000010050B 00000500100001005010005050050⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦Cij 第i 种产品在第j 个月的销售量 Ci1=Ai1-Bi1 Cij=Aij+Bi,j-1-Bijij 5000020005001220010710061300200040050050C =30000500030080040010020010005030005500150600100150100100050⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦5.2 进行灵敏度截取相关数据Ranges in which the basis is unchanged:。

相关文档
最新文档