等式基本性质及一元一次方程解法
一元一次方程 基础知识整理

一元一次方程1.定义:方程与一元一次方程含有未知数的叫方程,方程必须具备两个条件:第一是等式,第二是含有未知数。
方程中只含有一个未知数,且未知数的次数都是1的整式方程叫做一元一次方程。
2.方程的解与解方程使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!解方程就是求出使方程中左右两边均相等的未知数的值,是过程。
3.等式的性质(1):等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;(2):等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.解方程的过程就是把方程逐步化为x=a(常数)的形式,等式的性质是重要的转化依据。
4.解方程(1)合并同类项与移项:合并时牢记:同类项的系数相加,字母连同指数不变,系数为负数时要注意符号。
(2)移项(移项要变号):移项就是把等式一边的某项变号后移到另一边。
一般把方程转化为含有未知数的在方程的左边,常数在方程的右边。
注意与加法交换律不一样。
移项是把某些项从方程的一边移到另一边,移动要变号,而加法交换律只是加数之间交换位置,改变的只是顺序不改变符号。
(3)去括号与去分母:去括号法则与整式去括号法则相同:括号外的因数是整数时,去括号后原括号内各项的符号与原来的符号相同。
括号外的因数是负数时,去括号内后,原括号内各项的符号与原来的符号相反。
去分数:先把分式化成整式再计算。
应注意各项都要乘以各分母的最小公倍数,不要漏乘分母的项,如果分子是一个多项式,去分母时要将分子作为一个整体加上括号。
当分母是小数时,要先利用分母的基本性质把小数转化成整数,然后再去分母。
(4)一元一次方程解法的一般步骤:化简方程----------分数基本性质去分母----------同乘(不漏乘)最简公分母去括号----------注意符号变化移项----------变号合并同类项--------合并后注意符号系数化为1---------未知数细数是几就除以几5.列方程(1)读题分析法:…………多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: …………多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.6.列方程解决实际问题一般步骤:审设列解验答(1)配套问题等量关系:加工或者生产的总量相等或成比例。
5.2一元一次方程的解法+等式的基本性质2024-2025学年+北师大版(2024)数学七年级上册

分层设计 数学 BS 七年级 上
思考
a
b
a
b
a a
b b
3a = _____
3b
_____
a = _____
b
_____
从右到左,等式发生了怎样的变化?
等式的两边都乘同一个
等式的两边都除以同一个数,等式仍然成立.
数(或除以同一个不为0
的数),所得结果仍是
等式.
3
解:(2)方程的两边都加 2,得
- -2+2=10+2。
3
化简,得
- =12。
3
方程的两边都乘-3,得
n=-36。
检验:将n=-36代人方程的左边,得方程
−36
左边=- -2=10,右边=10,左边=右边,
3
所以n=-36是-
3
−2=10的解。
随堂检测
1. 根据等式的性质,由x=y可得( B
分层设计 数学 BS 七年级 上
新知小结
1. 等式基本性质.
(1)等式基本性质1:等式两边都加(或减)
同一个代数式
所得结果仍是等式,即如果 a = b ,那么 a ± c =
(2)等式基本性质2:等式的两边都乘
以
同一个不为0的数
那么 ac =
bc
同一个数
b ±
c
,
.
(或除
),所得结果仍是等式,即如果 a = b ,
解:方程两边同时减 x ,得
方程两边同时加3,得
3 x -3=9。
3 x =12。
方程两边同时除以3,得
x =4。
检验:将x=4代人方程的左边,得方程
一元一次方程的解法

一元一次方程的解法一元一次方程是一个数学常见的概念,对于初学者来说,如何解决一元一次方程可能会有些困难。
本文将介绍几种常见的解法,帮助读者轻松应对一元一次方程。
一、等式法等式法是最基本、最常用的解一元一次方程的方法。
它通过运用等式的性质将方程转化为等价方程,从而找到解。
例如,对于方程2x + 5 = 9,我们可以将它转化为等价方程2x = 9 - 5,进一步简化为2x = 4。
接下来,只需将x的系数2移至等号右边,得到x = 4 ÷ 2,最终得到x = 2。
因此,方程的解是x = 2。
二、因式分解法有些一元一次方程可以通过因式分解来解决。
通过找出方程中的公因式或将方程转化为乘积形式,可以得到方程的解。
举例来说,对于方程3(x + 2) = 12,我们可以将其进行因式分解,得到3x + 6 = 12。
接下来,只需将x的系数3移至等号右边,得到x =(12 - 6) ÷ 3,最终得到x = 2。
因此,方程的解是x = 2。
三、移项法移项法是解决一元一次方程的另一种常用方法。
通过将含有未知数的项移到等号的另一侧,可以得到方程的解。
例如,对于方程4x - 6 = 10,我们可以将-6移至等号的右边,得到4x = 10 + 6。
接下来,只需计算右边的和,得到4x = 16。
最后,将x的系数4移至等号右边,得到x = 16 ÷ 4,最终得到x = 4。
因此,方程的解是x = 4。
四、消元法消元法适用于有两个同系数未知数的一元一次方程组。
通过将方程组中的一个方程乘以适当的数值,使得其中一个未知数的系数相等,再将两个方程相减,可以消去一个未知数,从而求解另一个未知数。
举例来说,考虑方程组2x + 3y = 10和3x - 2y = 4。
我们可以通过将第一个方程的系数分别乘以2和3,第二个方程的系数分别乘以3和2,得到4x + 6y = 20和6x - 4y = 8。
接下来,将这两个方程相减,得到2x + 10y = 12。
一元一次方程的解法

(2) 调配问题。 从调配后的数量关系中找等量关系, 常见是“和、 差、 倍、 分”关系, 要注意调配对象流动的方向和数量。
例 1 . 学校组织植树活动,已知在甲处植树的有 27 人,在乙处植树的有 18 人.如果要使在甲处植树的人 数是乙处植树人数的 2 倍,需要从乙队调多少人到甲队?
例 2 . 学校组织植树活动,已知在甲处植树的有 23 人,在乙处植树的有 17 人.现调 20 人去支援,使在甲 处植树的人数是乙处植树人数的 2 倍多 3 人,应调往甲、乙两处各多少人?
5
表或画图来帮助理解题意。
例 1 .一项工程,甲、单独做需 20 天完成,乙单独做需 30 天完成,如果先由甲单独做 8 天,再由乙单独 做 3 天,剩下的由甲,乙两人合作还需要几天完成?
例 2. .一项工程,甲独做需12天完成,乙独做24天完成,丙独做需6天完成,现在甲与丙合作2天, 丙因事离去,由甲乙合作,甲乙还需几天才能完成这项工程?
一元一次方程的解法 知识点和方法概述 1、等式 等式:用“=”表示相等关系的式子。 等式的性质: 1) 等式两边都加上 (或减去) 同一个数或同一个整式, 所得结果仍是等式。 即: 若 A=B, 则 A±C=B±C。 2) 等式两边都乘以 (或除以) 同一个数 (除数不为 0) , 所得结果仍是等式。 即: 若 A=B, A B C ≠ 0 ,则 A⋅C=B⋅C, = 。 C C 3)等式的对称性:若 A=B,则 B=A。 4)等式的传递性:若 A=B,B=C,则 A=C。 等式的类型: 1)恒等式:当不论用任何数值代替等式中的字母,其左右两边的值总相等时,这样 的等式叫做恒等式。如 0 ⋅ x = 0 。 2)矛盾等式:如 2=0, 2 x = 2 x + 1 3)条件等式:字母取某特定值时才成立的等式,如 3 x − 4 = 3 2、方程 方程:含有未知数的等式叫做方程。 方程的解:使方程左右两边的值相等的未知数的值叫做方程的解。 方程的根:只含有一个未知数的方程的解,也叫方程的根。 解方程:求方程的解的过程叫做解方程。 同解方程:如果两个方程的解相同,那么这两个方程叫做同解方程。 (注:用等式的 两条性质所得的方程与原方程是同解方程。 ) 方程的同解原理: 1)方程两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式; 2)方程两边都乘以(或除以)同一个数(除数不为 0) ,所得结果仍是等式。 不难看出,方程的同解原理是由等式的性质演变出来的,其实质是一样的。 检验方程的解:检验一个数是不是某个方程的解,其方法是将数分别代入方程的左边和 右边,如果左边=右边,则该数就是原方程的解,否则就不是。 含绝对值符号的方程:绝对值符号内含有未知数的方程,叫含绝对值符号的方程,有时 也简称绝对值方程。 解含绝对值符号的方程的基本思想就是去掉绝对值符号,转化为一般方程。具体操作方 式有两种:其一是对含绝对值符号的各个式子分别讨论其正负,利用绝对值的定义去掉绝对
7、3一元一次方程的解法

移项的依据是什么?移项时,应注意什么?
移项的依据是等式的基本性质1 移项应注意:移项要变号
下列方程的变形正确吗?如果不正确,怎样改正? (1)由方程z+3=1,移项得z=1+3
不正确 正确
(2)由方程3x=4x-9,移项得3x-4x=-9
(3) 由方程3x+4=-5x+6,移项得3x+5x=6-4 正确
课堂小结
1. :一般地,把方程中的某些项 改变符号后,从方程的一边移到另一边 ,这种变形叫做移项。 2.解一元一次方程需要移项时我们把含 未知数的项移到方程的一边(通常移到 左边),常数项移到方程的另一边(通 常移到右边).
2、 什么叫一元一次方程?
方程两边都是整式,只含有一个未 知数,并且未知数的次数都是1, 这样的方程叫做一元一次方程。
3 方程x-2=5是一元一次方程吗? 怎样求它的解?
课本p159
将方程中的一项由 等式的一边移到另 一边时,它的符号 发生了改变。
把方程中的某一项改变符号后,从方程的 一边移到另一边,这种变形叫做移项。
7.3一元一次方 程的解法
1、 等式的基本性质是什么?
性质1:等式两边都加上(或减去)同一 个数或同一个整式,等式的两边仍然相等。
若a=b那么a+c=b+c,a-c=b-c
性质2:等式两边都乘(或除以)同一个 数(除数不能为零),等式的两边仍然相 等。
若a=b那么ac=bc 若a=b那么a/c=b/c(c≠0)
例2 解方程ห้องสมุดไป่ตู้ x 6
5 3 解:方程两边都乘以 3(或都除以 )得, 5
3 5 5 x ( ) 6 ( ), 5 3 3
一元一次方程概念及解法

一元一次方程的概念及解法4、等式的基本性质:(1)、等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。
(2)、等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。
5、解一元一次方程的基本步骤:【例题解析】那么a=bA . 2x 3yB . 7x 5 6x1C . 2、下列运用等式的性质对等式进行的变形中,正确的是【练习】:1、下列方程中是 元-次方程的是【知识点】: 1、一元一次方程的定义:只含有 未知数,并且未知数的次数都,这样的方程叫一元一次方程。
2、方程的解:使方程左右两边 的未知数的值叫方程的解。
3、解方程:求的过程叫做解方程。
(1):去分母;(2):去括号;(3):移项;(4):合并同类项;(5):系数化成 1。
例1、判断下列各式是不是一元 次方程,是的打“ V”,不是的打“X⑴ x+3y=4 2⑵ x -2x=6⑶-6x=0(4) 2m +n =0(5) 2x-y=8(6) 1 —+8=5yy例2、下列变形中, 正确的是A 、若 ac=bc ,那么 a=b 。
B 、a=b C 、b ,那么a=bD 、若 a 2 =b 2x 23、若x(n-2)+2n=0是关于x的方程一元一次方程,则n=—,此时方程的解是x= 。
其中变形正确的是((1) x + 2x +4x=140【练习】:1、下列叙述正确的是则a=b则a=b则a=b4、某数x 的43%比它的一半少 7,则列岀求x 的方程应是(A : 43%x 1B : 43%(x !) 7 C2 2 :43%X 7 43%x例3、给岀下面四个方程及其变形: ①4x 8 0变形为x 3x 变形为4x2 ③—x 3变形为2x515;4x2变形为x2; 3、解方程:(1)丄 y-3-5y= 1 ;、x X(2) =5;2 31(3 )0.6x- —x-3=032 4 例5、解方程:(利用去括号、移项等步骤解方程)(1) 2x 1 4 ;2(2)2( X — 2) - (4 X —1)=3(1—x )____________ ,根据是例6、解方程:(利用去分母、去括号、移项、合并同类项及系数化成1解方程)A .①③④B •①②④C.②③④D .①②③例4、解方程:(利用移项、合并同类项及系数化成1来解方程)(2) 3x + 20=4x-25①若a=b ,则 a+c=b+ c②若 a=b ,贝U a-c=b- c ③若a+c=b+ c ,则 a=b ④若,a-c=b- c ,⑤若a=b ,则 ac=bc ⑥若 ac=bc ,贝U a=b⑦若a=b ,则-ca b ⑧若—_,c c⑨若a=b ,则⑩若b ,则 a=b(11)若 a=b ,贝U a 2=b 2 (12)若 a 2=b 2,(13)若 a=b ,则 a 3=b 3(14)若 a 3=b 3,贝U a=b2、方程2y-6=y+7变形为 2y-y=7+6 ,这种变形叫解:去分母,得 _____________________________________ 依据 ________________去括号,得 ______________________________________ 依据 ____________________移项,得 ________________________________________ 依据 ____________________合并同类项,得 __________________________________ 依据 ___________________系数化为1,得x 6例7、数学小诊所:小马虎的解法对吗如果不对,应怎么改正解方程专=1-专 解:去分母 2 ( 2x-1)=1-4x-1 去括号4x-仁1-4x-1移项 4x+4x=1-1+1系数化为1x=8【练习】:解方程:归纳:解一元一次方程的步骤:依据合并8x=12x —1x+2 (1)=T +13x 1 4x 2 15(3) 4-3(2-x)=5x例7、已知关于x 的方程13x 2的解互为倒数,求m 的值.3 31、解方程2(x3)5(1x) 3(x1),去括号正确的是().(A) 2x 6 55x3x3(B) 2x 35x3x 3 (C) 2x 6 55x3x3(D) 2x 35x3x 13x 7 2、解方程3x 721x31的步骤中,去分母一项正确的是().(A)3(3x 7)22x6(B)3x 7(1x)1 (C)3(3x 7)2(1x)1(D)3(3x7)2(1x) 6 3x 1 2x 23、若的值比的值小1,则X的值为()23/ 1313_5/ 5(A)(B)- (C) (D)-—5513134、解方程4(x 1)x2(x1)步骤下:①去括号,得4x 4 x2x 1 ②移项,得4x x 2x 1 4③合并同类项,得3x 55④系数化为1,得x -检验知:x —不是原方程的根,说明解题的四个步骤有错,其中做错的一步是35、当x= _____ 时,2x 8的值等于一-的倒数.46、已知3x 6 (y 3) 0,则3x 2y 的值是 _____________7、当x = _____ 时,式子1(1 2x)与式子2(3x 1)的值相等8、解方程:9、已知 A=2x-5,B=3x+3,求A 比B 大7时的x 值.x 4x 210、如果方程8的解与方程4x (3a 1) 6x 2a 1的解相同,求式子321a 的值.a111、已知x 1是关于x 的方程1」(m3m(y 3) 2 m(2y 5).12,已知方程 4x 2m 3x 1与方程3x 2m 6x 1的解相同.3(A )①(B )② (C )③ (D )④1)、2x 3(2x 1) 16 (x 1)2x 3 4x 1.3)、142 51x [2 -(x 4)]2x 3、2x 110x 1 2x 1 ,)、 1 36 4x) 2x 的解,解关于y 的方程:(1)求m的值; (2)求代数式(m 3)2010 (2m 2)2011的值.。
等式的性质及一元一次方程的解法的讲学稿

3.1.2等式的性质学习目标:1.利用天平,通过观察、分析得出等式的两条性质。
2.会利用等式的两条性质解一元一次方程。
3.培养观察能力、思考能力、归纳能力和创新能力。
自学过程:1.复习回顾 ⑴.下列方程中属于一元一次方程的是( )A .x -y =3B .-x =1C .11x x+=D .2210x x -+=⑵.检验x =5是否为方程2122-=-x 的解。
2.探求新知⑴.2333152315m n n m x x x x y +=++=⨯+=⨯+=, , , 这样的式子叫 。
等式具有什么样的性质呢?我们不妨做一个实验,请同学们认真观察,然后用“>、<、=”填空: 5=5 5+6 5+6 ; -7=-7 -7-5 -7-5; a =b a +5 b+5a =b a -2 b-2 ; x =y x +m y +m a =b a +(m+n ) b+(m+n ) 你觉得等式的这个性质可以怎样描述:⑵.我们再看一个实验,请同学们认真观察后然后用“>、<、=”填空: 6=6 6×5 6×5;-3=-3 -3×(-2) -3×(-2); a =b 6a 6b 8=8 8÷2 8÷2;-10=-10 -10÷(-5) -10÷(-5); m 18n你觉得等式的这个性质可以怎样描述:讨论:1=m n m n = 运用了等式的哪一条性质?能否由m n = 得到1=mn?⑶.有了等式的性质,下面我们开始探究怎样用它解方程,你只需完成下面的两个问题你就可以轻松地用它解方程了。
① 方程的解在等式的结构上有什么特点?如x =5,解得左边是 ,右边是 。
② 2122-=-x 和它的解x =5在结构上有什么区别?左边多了一项: ,x 的系数是 而不是1,要想使2122-=-x 左边是x ,要经历两步,一是:去掉-12,二是使系数由2变成1,怎样由等式的性质完成这两步呢?2122-=-x解: 2x -12+12= -2+12 ( ) 2x =10 ( ) x =5 ( )⑷.我们得到的x =5是否正确?怎样检验我们的答案? 试一试:用等式的性质解方程。
一元一次方程知识点总结

一元一次方程知识点总结一、等式与方程1.等式:(1)定义:含有等号的式子叫做等式.(2)性质:①等式两边同时加上(或减去)同一个整式,等式的值不变.若a b=那么a c b c+=+②等式两边同时乘以一个数或除以同一个不为0的整式,等式的值不变.若a b=那么有ac bcc≠)÷=÷(0=或a c b c③对称性:若a b=,则b a=.④传递性:若a b=,b c=则a c=.(3)拓展:①等式两边取相反数,结果仍相等.如果a b=,那么a b-=-②等式两边不等于0时,两边取倒数,结果仍相等.如果0=≠,那么11a b=a b③等式的性质是解方程的基础,很多解方程的方法都要运用到等式的性质.如移项,运用了等式的性质①;去分母,运用了等式的性质②.④运用等式的性质,涉及除法运算时,要注意转换后除数不能为0,否则无意义.2.方程:(1)定义:含有未知数的等式叫做方程.(2)说明:①方程中一定有含一个或一个以上未知数,且方程是等式,两者缺一不可.②未知数:通常设x、y、z为未知数,也可以设别的字母,全部小写字母都可以.未知数称为元,有几个未知数就叫几元方程.一道题中设两个方程时,它们的未知数不能一样!③“次”:方程中次的概念和整式的“次”的概念相似.指的是含有未知数的项中,未知数次数最高的项对应的次数,也就是方程的次数.未知数次数最高是几就叫几次方程.④方程有整式方程和分式方程.整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程.分式方程:分母中含有未知数的方程叫做分式方程.二、一元一次方程1.一元一次方程的概念:(1)定义:只含有一个未知数(元)且未知数的指数是1(次)的整式方程叫做一元一次方程.(2)一般形式:0+=(a,b为常数,x为未知数,且0a≠).ax b(3)注意:①该方程为整式方程.②该方程有且只含有一个未知数.③该方程中未知数的最高次数是1.④化简后未知数的系数不为0.如:212x x-=,它不是一元一次方程.⑤未知数在分母中时,它的次数不能看成是1次.如13x+=,它不是一x元一次方程.2.一元一次方程的解法:(1)方程的解:能使方程左右两边相等的未知数的值叫做方程的解,一般写作:“?x=”的形式.(2)解方程:求出方程的解的过程,也可以说是求方程中未知数的值的过程,叫解方程.(3)移项:①定义:从方程等号的一边移到等号另一边,这样的变形叫做移项.②说明:Ⅰ移项的标准:看是否跨过等号,跨过“=”号才称为移项;移项一定改变符号,不移项的不变.Ⅱ移项的依据:移项实际上就是对方程两边进行同时加减,根据是等式的性质①.Ⅲ移项的原则:移项时一般把含未知数的项向左移,常数项往右移,使左边对含未知数的项合并,右边对常数项合并,方便求解.(4)解一元一次方程的一般步骤及根据:①去分母——等式的性质②②去括号——分配律③移项——等式的性质①④合并——合并同类项法则⑤系数化为1——等式的性质②⑥检验——把方程的解分别代入方程的左右边看求得的值是否相等(在草纸上)(5)一般方法:①去分母,程两边同时乘各分母的最小公倍数.②去括号,一般先去小括号,再去中括号,最后去大括号.但顺序有时可依据情况而定使计算简便,本质就是根据乘法分配律.③移项,方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号.(一般都是把未知数移到一起)④合并同类项,合并的是系数,将原方程化为ax b=(0a≠)的形式.⑤系数化1,两边都乘以未知数的系数的倒数.⑥检验,用代入法,在草稿纸上算.(6)注意:(对于一元一次方程的一般步骤要熟练掌握,更要观察所求方程的形式、特点,灵活变化解题步骤)①分母是小数时,根据分数的基本性质,把分母转化为整数,局部变形;②去分母时,方程两边各项都乘各分母的最小公倍数,Ⅰ此时不含分母的项切勿漏乘,即每一项都要乘Ⅱ分数线相当于括号,去分母后分子各项应加括号(整体思想);③去括号时,不要漏乘括号内的项,不要弄错符号;④移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;⑤系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号(打草稿认真计算);⑥不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法;⑦分数、小数运算时不能嫌麻烦,不要跳步,一步步仔细算.(7)补充:分数的基本性质:与等式基本性质②不同.分数的分子分母两个整体同时乘以同一个不为0的数或除以同一个不为0的数,分数的值不变.3.一元一次方程的应用:(1)解决实际应用题的策略:①审题:就是多读题,读懂题,读的时候一定沉下心去,不能慌不要急躁,要细,一个字一个字的精读,要慢,边读边思考.找到已知条件,未知条件,找到数量关系和等量关系,可以用笔在题目中标注下来重要信息和数量关系,审题往往伴随下个步骤.②设出适当未知数,往往问什么设什么,有时也间接设未知数,然后用未知数通过关系表示出其他相关的量.③找出等量关系,用符号语言表示就是列出方程.(2)分析问题方法:①文字关系分析法,找关键字词句分析实际问题中的数量关系②表格分析法,借助表格分析分析实际问题中的数量关系③示意图分析法,通过画图帮助分析实际问题中的数量关系(3)设未知量方法:一个应用题,往往涉及到几个未知量,为了利用一元一次方程来解应用题,我们总是设其中一个未知量为x,并用这个未知数的代数式去表示其他的未知量,然后列出方程.①设未知量的原则就是设出的量要便于分析问题,与其它量关系多,好表示其它量,好表示等量关系;②有直接设未知量和间接设未知量,还有不常见的辅助设未知量.(4)找等量关系的方法:“等量关系”特指数量间的相等关系,是数量关系中的一种.数学题目中常含有多种等量关系,如果要求用方程解答时,就需找出题中的等量关系.①标关键词语,抓住关键句子确定等量关系.(比如多,少,倍,分,共)解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定等量关系.②紧扣基本公式,利用基本关系确定等量关系就是根据常见的数量关系确定等量关系.(比如体积公式,单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工效×时间=工作总量等.这些常见的基本数量关系,就是等量关系)③通过问题中不变的量,相等的量确定等量关系.就是用不同的方法表示同一个量,从而建立等量关系.④借助线段图确定等量关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等式的基本性质及一元一次方程的解法
一、 方程及一元一次方程的概念
1. 含有___________的等式叫做方程
2. 方程必须具备的两个基本的条件是:(1)必须是____________;(2)必须含有
_____________ 例1.下列各式中,是方程的是________________(只填序号)
①3x+5=7;②2+6=8;③6x+y ;④2x-9y=4;⑤x 2+2x-3=0;⑥z+3≠0;⑦
3
62
x =+ 3. 一元一次方程必须具备的三个基本的条件是:(1)只含______个未知数;(2)所含未
知数的次数都是______;(3)方程的两边都是____________; 例2.判断下列各式是否为一元一次方程:
①2
322x x -=-; ②37y x -=; ③1
32x x
-=+; ④325m m +=-
练一练1:
1.下列各式中是方程的是( ) A 2+3=5 B
174y - C 1
322
m m += D 4×1-3 2.下列方程中式一元一次方程的是( )
A 2
843x y -+= B 2
2
5(1)15x x -=-
C 1
345
y y --
=
D 2(32)22(22)x x x -=-- 二、等式的基本性质
1.等式的基本性质1:等式的两边________加上(或减去)
_____________________________________________,所得结果仍是等式。
即:如果a=b ,那么__________________
2.等式的基本性质2:等式的两边________乘以(或除以)
_____________________________________________,所得结果仍是等式。
即:如果a=b ,那么__________________,______________________ 3.如果a=b ,那么__________________(对称性)
4.如果a=b ,b=c ,那么_____________________(传递性)
例3.请用适当的数或整式填空,完成方程的变形,并说明是根据等式的哪一个基本变形以
及是怎样变形的?
(1)如果2x+1=9,那么2x=9-______( ) (2)如果3y=7.5,那么6y=_______( ) (3)如果-3a=3,那么a=_______( ) (4)如果11
22
x y -=-,那么x=_____( )
(5)如果-a=b ,则b=______( )
(6)如果∠1=45°,∠2=45°,那么________( ) 练一练2:
(1)将方程21)3(5)x x -=--(变形为2235x x -=-+的依据是_____________________ (2)将
101130.232
x y x y
-=-=变形为的依据是____________________ 三、方程的解的双重功能
1.检验一个数是不是方程的解
例4.以x =-3为解的方程的个数是( ) ①53x x +=;②
1(53)62x +=;③3(2)2(3)5x x x ---=;④115(1)(32)462
x x -=-- A 1 B 2 C 3 D 4
2.用于求值计算
例5.已知2x =是方程2(-3)+1=的一个解,则的解为x x +
m m ( )
A -1
B -2
C -3
D -4 练一练3:
关于x 的方程3(1)60x a +-=的解为x=-2,则a 的值为( ) A 2 B -2 C
12 D -12
四、三法巧解一元一次方程
1.化小数为整数 2.互为倒数式的巧用
例6.解方程:0.1254x = 例7.解方程:4513()1085435x ⎡⎤
--=-⎢⎥⎣⎦
3.整体代换法
例8.解方程:111141(1)23(1)3433x x x ⎡⎤
-+
--=-⎢⎥⎣⎦
五、解一元一次方程常见的错误
1.移项时出现的错误
例9.解方程:12252
x x +=-
2.去括号时出现的错误
(1)去括号时,括号内的项未变号 (2)去括号时,漏乘括号中的某项 例9.解方程:3(1)2(21)5x x ---= 例10.解方程:2(2)12x --=
3.去分母时出现的错误
(1)漏乘不含分母的项 (2)忽略了分数线的“括号”作用
例11.解方程:
223226x x +--= 例12.解方程:51312
423
x x x -+--=
(3)误以为“0”乘以一个数等于该数 例13.解方程:
2132023
x x
+--=
二、 系数化为1时出现的错误
(1)系数化为1时忘记变“倒数” (2)系数化为1时颠倒分子、分母 例14.
23
32
x =- 例15.2159x x -=-
家庭作业:
1. 若关于x 的一元一次方程
23132
x k x k
---=的解是x =-1,则k 的值是_____________ 2. 已知关于x 的方程1
32232
x m m x x x -+=+=-与方程的解相同,则m=___________
3. 已知x=1是方程(1)32m x x m -=+的解,求代数式2
421m m --的值 解下列方程: (1)52(1)21253x x ⎡⎤
--=+⎢⎥⎣⎦
(2)3272425335x x -++=-
(3)124816x x x x x =++++ (4)233 2.4 3.80.50.20.1
x x x
----=。