一元一次方程的概念与解法
第08讲一元一次方程的概念与解法(8大考点)(解析版)

第08讲(4大考点7种解题方法)一、方程和一元一次方程的概念1)方程:含有未知数的等式。
如何判断一个式子是不是方程,只需看两点:一.是等式;二.是含有未知数.例:3x=5y+2;100x=200;3x 2+2y=3等2)一元一次方程:只含有一个未知数(元,隐含未知数系数不为0),未知数的次数是1(次),等号两边都是整式(整式:未知数的积,而非商)的方程。
如何判断一元一次方程:①整式方程;②只含一个未知数,且未知数的系数不为0;③未知数的次数为1. 例:3112=+x ;3112=+x ;3m-2n=5;3m=5;6x 2-12=0 二、方程的解与解方程1)方程的解:使方程两边相等的未知数的值解方程:求方程的解的过程三、等式的性质1)等式两边同加或同减一个数(或式子),等式仍然成立。
即:c b c a ±=±=,则若b a (注:此处字母可表示一个数字,也可表示一个式子)2)等式两边同乘一个数(或式子),或同除一个不为零的数(式子),等式仍然成立。
即:⎩⎨⎧≠÷=÷⨯=⨯=0c c b c a c b c a b a ,,则若(此处字母可表示数字,也可表示式子) 例:3x+7=2-2x 3x+7+2x=2-2x+2x 3x+7+2x-7=2-2x+2x-7 5x=-5 5x ÷5=-5÷5 x=-13)其他性质:①对称性:若a=b ,则b=a ;②传递性:若a=b ,b=c ,则a=c 。
四、合并同类项解一元一次方程(1)合并同类项:将同类项合并在一起的过程方法:1)合并同类项;2)系数化为1五、移项解一元一次方程(1)移项例:2x-3=4x-72x-3+3=4x-7+3(利用等式的性质) (左边的﹣3变到右边变成了+3)2x=4x-4考点考向2x-4x=4x-4-4x (利用等式的性质) (右边的4x 变到左边变成了-4x )-2x=-4 x=24−− x=2①我们发现,利用等式两边同加或同减一个数(式子),等式不变的性质,可以将方程化为同类项在同一边的情形(即未知数在一边,数值在另一边)。
一元一次方程组的概念与解法

一元一次方程组的概念与解法一、概念在数学中,一元一次方程是指只含有一个未知数,并且该未知数的最高次幂为1的方程。
而一元一次方程组则是由若干个一元一次方程组成的方程组。
一元一次方程组的一般形式如下:a₁x + b₁y = c₁a₂x + b₂y = c₂其中,a₁、a₂、b₁、b₂、c₁、c₂为已知系数,x和y为未知数。
二、求解方法为了求解一元一次方程组,我们可以使用以下两种方法:1. 等价变换法通过等价变换,即对方程组进行加减乘除等运算,将一元一次方程组转化为更简单的形式,从而得到解。
(例1)考虑如下一元一次方程组:2x + 3y = 74x - y = 1首先,我们可以通过倍乘第二个方程,得到其系数与第一个方程相等的结果:2x + 3y = 78x - 2y = 2然后,我们可以将第二个方程加到第一个方程上,消去y的项: 2x + 3y + 8x - 2y = 7 + 210x + y = 9接着,我们通过等式变换将y的系数变为1,然后解得x的值: y = 9 - 10x10x + (9 - 10x) = 99 = 9最后,将x的值代入一元一次方程中,求解得到y的值:2x + 3y = 72(1) + 3y = 73y = 5y = 5/3因此,该一元一次方程组的解为 x = 1,y = 5/3。
2. 代入法通过将一个方程的解代入另一个方程,逐步消去未知数,最终求得解的方法。
(例2)考虑如下一元一次方程组:x - 2y = 13x + 4y = 14首先,可以通过第一个方程解得x的值:x = 1 + 2y (式1)接着,将式1代入第二个方程,得到:3(1 + 2y) + 4y = 143 + 6y + 4y = 1410y = 11y = 11/10最后,将y的值代入一元一次方程中,求解得到x的值:x = 1 + 2(11/10)x = 32/10因此,该一元一次方程组的解为 x = 16/5,y = 11/10。
一元一次方程式的解法

一)知识要点:1.一元一次方程的概念:只含有一个未知数,并且未知数的次数是1,系数不为0的方程叫做一元一次方程.一元一次方程的标准形式是:ax+b=0 (其中x是未知数,a,b是已知数,且a≠0),它的解是x=- .我们判断一个方程是不是一元一次方程要看它化简后的最简形式是不是标准形式ax+b=0 (a≠0).例如方程3x2+5=8x+3x2,化简成8x-5=0是一元一次方程;而方程4x-7=3x-7+x 表面上看有一个未知数x,且x的次数是一次,但化简后为0x=0,不是一元一次方程.2.解一元一次方程的一般步骤:(1)方程含有分母时要先去分母,使过程简便,具体做法为:在方程的两边都乘以各分母的最小公倍数.要注意不要漏掉不含分母的项,如方程x+ =3,去分母得10x+3=3就错了,因为方程右边忘记乘以6,造成错误.(2)去括号:按照去括号法则先去小括号,再去中括号,最后去大括号.特别注意括号前是负号时,去掉负号和括号,括号里的各项都要变号.括号前有数字因数时要注意使用分配律.(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边.注意移项要变号.(4)合并项:把方程化成最简形式ax=b (a≠0).(5)把未知数的系数化成1:在方程两边都除以未知数的系数a,得到方程的解x= .解方程时上述步骤有些可能用不到,并且也不一定按照上述顺序,要根据方程的具体形式灵活安排求解步骤.(二)例题:例1.解方程(x-5)=3- (x-5)分析:按常规此方程应先去分母,去括号,但发现方程左右两边都含有x-5项,所以可以把它们看作一个整体,移项,合并,使运算简便.移项得:(x-5)+ (x-5)=3合并得:x-5=3∴ x=8.例2.解方程2x- = -因为方程含有分母,应先去分母.去分母:12x-3(x+1)=8-2(x+2)(注意每一项都要乘以6)去括号:12x-3x-3=8-2x-4(注意分配律及去括号法则)移项:12x-3x+2x=8-4+3合并:11x=7系数化成1:x= .例3.{ [ ( +4)+6]+8}=1解法1:从外向里逐渐去括号,展开求去大括号得:[ ( +4)+6]+8=9去中括号得:( +4)+6+56=63整理得:( +4)=1去小括号得:+4=5去分母得:x+2+12=15移项,合并得:x=1.解法2:从内向外逐渐去括号,展开求去小括号得:{ [ ( + +6]+8}=1去中括号得:{ + + +8}=1去大括号得:+ + + =1去分母得:x+2+3×4+2×45+8×105=945即:x+2+12+90+840=945移项合并得:∴x=1.注意:从上面的两种解法可以看到,解一元一次方程并不一定要严格按照前面说的步骤一步一步来,可以按照具体的题目灵活运用方法.例4.解方程[ ( -1)-2]-2x=3分析:此方程含括号,因为× =1,所以先去中括号简便.去中括号:( -1)- -2x=3去小括号:-1- -2x=3去分母:5x-20-24-40x=60移项:5x-40x=60+44合并项:-35x=104系数化成1得:x=- .例5.解方程- - =0分析:本方程分子、分母中都含有小数,如果直接去分母,会使运算繁琐.但如果利用分数的性质,即分子分母同乘以不等于零的数分数的值不变的性质,使方程左边前两项分子、分母中的小数都化成整数,就能使运算简便.利用分数的性质(即左边第一项分子、分母同乘以10,第二项分子、分母同乘以100),原方程可化为:- - =0去分母:6(4x+9)-10(3-2x)-15(x-5)=0去括号:24x+54-30+20x-15x+75=0移项得:24x+20x-15x=-54+30-75合并得:29x=-99系数化成1:x=- .例6.在公式S= (a+b)h中,已知:a=5, S=44, h=8,求b的值.分析:这是梯形面积公式,四个量S,a, b, h中知道任意3个量的值,都可以求出第四个量的值.解法1:把a=5, S=44, h=8代入公式得44= (5+b)×8这是关于b的一元一次方程化简得:b+5=11移项,合并得:b=6.解法2:先把b看作未知数,把其它量都看作已知数,将公式变形,用其它三个量来表示b,然后再代入已知数的值求出b.S= (a+b)h去分母:2S=(a+b)h去括号:2S=ah+bh移项:2S-ah=bh即bh=2S-ah系数化成1:∵ h≠0,∴ b= -a (一定不要忘记条件h≠0)当a=5, S=44,h=8时,b= -5=11-5=6∴ b=6.例7.当x=2时,式子x2+bx+4的值为0,求当x=3时,x2+bx+4的值.分析:这仍是一元一次方程的应用的例子,要求x2+bx+4的值,先求出b的值,最后求当x=3时,x2+bx+4的值.∵当x=2时,x2+bx+4的值为0,∴ 4+2b+4=0 (得到关于b的一元一次方程)解这个方程得2b=-8,∴ b=-4,∴ x2+bx+4为x2-4x+4,当x=3时,x2-4x+4=32-4×3+4=9-12+4=1,∴当x=3时,这个式子值为1.例8.解绝对值方程:(1) |2x-1|=8(2) =4(3) =4(4) |3x-1|+9=5(5) |1-|x||=2说明:解绝对值方程也是一元一次方程的应用,它的解法主要是:①先把|ax+b|看作一个整体,把绝对值方程看作是以|ax+b|为未知数的一元一次方程,变形成|ax+b|=c的形式;②对|ax+b|=c进行讨论,当c>0时,正确去掉绝对值,得到ax+b=c或ax+b=-c两个一元一次方程,从而求出x的值;当c=0时,得到ax+b=0一个一元一次方程,从而求出x;当c。
一元一次方程的概念及解法

一、方程方程:含有未知数的等式叫方程,如,它有两层含义:①方程必须是等式;②等式中必须含有未知数 二、方程的解方程的解:使方程左右两边的值相等的未知数的值;只含有一个未知数的方程的解,也叫方程的根。
三、一元一次方程一元一次方程的概念:只含有一个未知数,并且未知数的最高次数是1,系数不等于0的方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次数.一元一次方程的形式:最简形式:方程(,,为已知数)叫一元一次方程的最简形式.标准形式:方程(其中,,是已知数)叫一元一次方程的标准形式. 注意:⑴任何一元一次方程都可以转化为最简形式或标准形式,所以判断一个方程是不是一元一次方程,可以通过变形(必须为恒等变换)为最简形式或标准形式来验证.如方程是一元一次方程.如果不变形,直接判断就出会现错误.⑵方程与方程是不同的,方程的解需要分类讨论完成 四、一元一次方程的解法(一)等式的性质等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.若,则;等式性质2:等式两边都乘以(或除以)同一个数(除数不能是0)或同一个整式,所得结果仍是等式.若,则,注意:⑴在对等式变形过程中,等式两边必须同时进行.即:同时加或同时减,同时乘以或同时除以,不能漏掉某一边⑵等式变形过程中,两边同加或同减,同乘或同除以的数或整式必须相同.⑶在等式变形中,以下两个性质也经常用到:对称性,即:如果,那么.传递性,即:如果,,那么.又称为等量代换易错点:等号左右互换的时候忘记变符号(二)解一元一次方程的步骤解一元一次方程的一般步骤:21x +=ax b =0a ≠a b 0ax b +=0a ≠a b 22216x x x ++=-ax b =()0ax b a =≠ax b =a b =a m b m ±=±a b =am bm =a b m m=(0)m ≠a b =b a =a b =b c =a c =一元一次方程的概念及解法知识讲解温馨提示:不要漏乘不含分母的项,分子是个整体,含有多项式时应加上括号. 2.去括号:一般地,先去小括号,再去中括号,最后去大括号.温馨提示:不要漏乘括号里的项,不要弄错符号.3.移项:把含有未知数的项都移到方程的一边,不含未知数的项移到方程的另一边. 温馨提示:⑴移项要变号;⑵不要丢项.4.合并同类项:把方程化成的形式.温馨提示:字母和其指数不变.5.系数化为1:在方程的两边都除以未知数的系数(),得到方程的解. 温馨提示:不要把分子、分母搞颠倒.【例1】 已知关于x 的方程4x-3m=2的解是x=m ,则m 的值是【例2】 已知关于x 的方程(a +1)x +(4a -1)=0的解为-2,则a 的值等于().A.-2B.0C.32D.23 【例3】 下列各式中,变形正确的是().A .若,则B .若,则C .若,则D .若,则【例4】 根据等式性质5=3x -2可变形为().A.-3x =2-5B.-3x =-2+5C.5-2=3xD.5+2=3x 【变式练习】下列变形中,不正确的是()A .若,则B .若则C .若,则D .若,则 【例5】 下列各式中:⑴;⑵;⑶;⑷;⑸;⑹;⑺;⑻.哪些是一元一次方程?【例6】 关于x 的方程(k +2)x 2+4kx -5k =0是一元一次方程,则k =________.【例7】 已知等式0352=++m x 是关于x 的一元一次方程,则m =____________. ax b =a 0a ≠b x a =a b =a c b c +=+(1)2a x -=21x a =-2a b =4a b =1a b =+221a b =+25x x =5x =77,x -=1x =-10.2x x -=1012x x -=x y a a =ax ay =3x +2534+=+44x x +=+12x =213x x ++=44x x -=-23x =2(2)3x x x x +=++同步练习【例8】 若是一元一次方程,那么【变式练习】若关于的方程是一元一次方程,则【变式练习】若关于的方程是一元一次方程,则,方程的解是【变式练习】已知关于的方程是一元一次方程,则、需要满足的条件为【例9】 下列等式中变形正确的是()A.若,则 B. 若,则 C.若,则 D. 若,则 【例10】将3(x -1)-2(x -3)=5(1-x )去括号得()A.3x -1-2x -3=5-xB.3x -1-2x +3=5-xC.3x -3-2x -6=5-5xD.3x -3-2x +6=5-5x 【例11】在解方程21-x −1332=+x 时,去分母正确的是() A.()()132213=+--x x B.()()632213=+--x xC.13413=+--x xD. 63413=+--x x【例12】方程2-342-x =-67-x 去分母得() A.2-2 (2x -4)= -(x -7) B .12-2 (2x -4)= -x -7C.12-2 (2x -4)= -(x -7) D .12-(2x -4)= -(x -7)【变式练习】解方程:⑴⑵【例13】解方程:(1)5y -9=7y -13;(2)3(x -1)-2(2x +1)=12 ;131m x -=m =x 1(2)50k k x k --+=k =x 2223x x ax a x a -=-+a =x (21)50n m x --=m n 31422x x -+=3144x x -=-31422x x -+=3182x x -+=31422x x -+=3180x -+=31422x x -+=3184x x -+=6(1)5(2)2(23)x x x ---=+12225y y y -+-=-(3)757875x x -=-;(4).逐层去括号 含有多重括号时,去括号的顺序可以从内向外,也可以从外向内。
第08讲一元一次方程的概念与解法(8大考点)(原卷版)

第08讲一元一次方程的概念与解法(8大考点)一、方程和一元一次方程的概念 1)方程:含有未知数的等式。
如何判断一个式子是不是方程,只需看两点:一.是等式;二.是含有未知数.例:3x=5y+2;100x=200;3x 2+2y=3等2)一元一次方程:只含有一个未知数(元,隐含未知数系数不为0),未知数的次数是1(次),等号两边都是整式(整式:未知数的积,而非商)的方程。
如何判断一元一次方程:①整式方程;②只含一个未知数,且未知数的系数不为0;③未知数的次数为1. 例:3112=+x ;3112=+x ;3m-2n=5;3m=5;6x 2-12=0 二、方程的解与解方程1)方程的解:使方程两边相等的未知数的值 解方程:求方程的解的过程 三、等式的性质1)等式两边同加或同减一个数(或式子),等式仍然成立。
即:c b c a ±=±=,则若b a (注:此处字母可表示一个数字,也可表示一个式子)2)等式两边同乘一个数(或式子),或同除一个不为零的数(式子),等式仍然成立。
即:⎩⎨⎧≠÷=÷⨯=⨯=0c c b c a cb c a b a ,,则若(此处字母可表示数字,也可表示式子)例:3x+7=2-2x 3x+7+2x=2-2x+2x 3x+7+2x-7=2-2x+2x-7 5x=-5 5x ÷5=-5÷5 x=-13)其他性质:①对称性:若a=b ,则b=a ;②传递性:若a=b ,b=c ,则a=c 。
四、合并同类项解一元一次方程(1)合并同类项:将同类项合并在一起的过程 方法:1)合并同类项;2)系数化为1 五、移项解一元一次方程 (1)移项 例:2x-3=4x-72x-3+3=4x-7+3(利用等式的性质) (左边的﹣3变到右边变成了+3) 2x=4x-4考点考向2x-4x=4x-4-4x (利用等式的性质) (右边的4x 变到左边变成了-4x ) -2x=-4 x=24−− x=2①我们发现,利用等式两边同加或同减一个数(式子),等式不变的性质,可以将方程化为同类项在同一边的情形(即未知数在一边,数值在另一边)。
一元一次方程的概念

一元一次方程的概念一元一次方程,也称为一次方程或一次线性方程,是数学中最基本的代数方程之一。
它的定义和性质对于学习代数学和解决实际问题都具有重要意义。
本文将介绍一元一次方程的概念、基本形式、解法以及实际应用。
一、概念一元一次方程是指只含有一个未知数的一次方程。
一元表示方程中只有一个未知数,一次表示该未知数的最高次数为1。
一元一次方程的一般形式可以表示为ax + b = 0,其中a和b是已知实数,x为未知数。
在这个方程中,未知数x只出现一次,并且没有任何其它项与x相乘或相除。
二、基本形式一元一次方程的基本形式是ax + b = 0,其中a和b为已知实数,x为未知数。
方程中的系数a表示未知数x的系数,常数b表示方程的常数项。
在解一元一次方程时,我们的目标是找到未知数x的值,使方程两边相等。
这个值被称为方程的解。
三、解法1. 移项法解一元一次方程的最基本方法是移项法。
我们的目标是将方程中的未知数项系数系数项归集到等号的一侧,将常数项归集到等号的另一侧,使方程化简为 x = 解的形式。
以方程ax + b = 0为例,首先,我们可以将常数项b移到等号的右侧,得到ax = -b。
然后,我们除以系数a,得到x = -b/a。
这个解即为一元一次方程的解。
2. 消元法另一种解一元一次方程的方法是消元法。
当我们有多个一元一次方程时,我们可以通过消去一个未知数,将多个方程转化为一个方程的形式,再用移项法解决。
例如,考虑以下两个一元一次方程系统:方程1:a1x + b1 = 0方程2:a2x + b2 = 0首先,我们可以通过方程1的系数与方程2的系数相乘,得到新的方程:a1(a2x + b2) = a1 * 0a1a2x + a1b2 = 0接下来,我们可以通过将方程2的系数与方程1的系数相乘,得到另一个新的方程:a2(a1x + b1) = a2 * 0a1a2x + a2b1 = 0将这两个新方程相减,得到消去了未知数x的新方程:(a1b2 - a2b1) = 0解这个新方程,可以得到方程1和方程2的解。
一元一次方程的概念与解法

一元一次方程的概念与解法一元一次方程,是指含有一个未知数的一次方程。
它的一般形式可以写作ax + b = 0,其中a、b为已知常数,x为未知数。
一元一次方程的解,就是使得该方程成立的未知数的值。
解一元一次方程的方法有很多种,下面将介绍几种常用的解法,并通过实例来加深理解。
1. 直接法直接法是最常用也是最基本的求解一元一次方程的方法。
通过逐步化简方程,将方程转化为x = c的形式,从而找到x的值。
例如,求解方程2x + 3 = 7。
解:首先,将方程化简,得到的形式为2x = 4。
接着,将方程两边同时除以2,得到x = 2。
最后,解得方程的解为x = 2。
2. 平衡法平衡法是一种通过移动式子中的项,使得方程两边平衡的解法。
例如,求解方程3x + 5 = 2x + 9。
解:首先,将方程化简,得到的形式为3x - 2x = 9 - 5。
接着,合并同类项,得到x = 4。
最后,解得方程的解为x = 4。
3. 消元法消元法是一种通过将方程中的某一项系数化为0,从而消去该项的解法。
例如,求解方程2x + 3 = 5x - 1。
解:首先,将方程移项,得到的形式为2x - 5x = -1 - 3。
接着,合并同类项,得到-3x = -4。
然后,将方程两边同时除以-3,得到x = 4/3。
最后,解得方程的解为x = 4/3。
以上是三种常用的一元一次方程解法,通过这些解法可以较为简单快速地求解一元一次方程。
在实际问题中,一元一次方程经常出现,它们的解可以帮助我们得到未知数的具体值,从而解决问题。
此外,有时方程可能无解或者有无限多个解。
当方程无解时,意味着方程左右两边无法通过任何变换相等,即方程组不成立。
当方程有无限多个解时,意味着方程左右两边可以通过变形相等,即方程组恒成立。
总结起来,一元一次方程的概念与解法是数学学习中的基础知识。
通过灵活运用直接法、平衡法和消元法等解法,我们可以解决一元一次方程相关的问题,提高数学解题的能力。
一元一次方程的解法总结

一元一次方程的解法总结一元一次方程是高中数学中最常见的一类方程,解决一元一次方程问题是学习代数的起点。
本文将总结一元一次方程的解法,帮助读者更好地理解和应用这一知识点。
一、一元一次方程的定义一元一次方程是指只含有一个未知数,并且这个未知数的最高次数为1的代数方程。
一元一次方程的一般形式是ax + b = 0,其中a和b 是已知的实数常数,x是未知数。
二、一元一次方程的解法解一元一次方程的基本思路是通过移项及合并同类项的方法,将方程化简为x = b/a的形式,从而得到方程的解。
1. 移项法移项法是解一元一次方程最常用的方法。
通过移动方程中的项,让包含未知数的项单独在一侧,常数项单独在另一侧,从而得到解。
示例1:2x + 4 = 10首先,将常数项4移动到等号的右侧变为负数,得到:2x = 10 - 4接下来,进行加减运算,简化方程:2x = 6最后,将系数2移到等号右侧,得到:x = 6/2解得:x = 32. 合并同类项合并同类项是简化方程的一种方法,通过合并方程中的同类项,可以简化方程并得到解。
示例2:3(x - 2) + 5 = 8首先,使用分配律展开括号,得到:3x - 6 + 5 = 8接下来,合并同类项,得到:3x - 1 = 8最后,将常数项1移动到等号右侧变为负数,得到:3x = 8 + 1解得:x = 9/3简化后结果为:x = 33. 一元一次方程的特殊情况在解一元一次方程时,可能会遇到以下几种特殊情况:a) 无解方程当方程化简后,得到一个矛盾的等式时,即0 = 1等,该一元一次方程没有解。
示例3:2x + 3 = 2x + 4通过移项化简得到:3 = 4显然,3不等于4,此方程无解。
b) 无穷多解方程当方程化简后,得到一个恒成立的等式时,即0 = 0等,该一元一次方程有无穷多个解。
示例4:2x + 4 = 2(x + 2)通过分配律展开括号后化简得到:2x + 4 = 2x + 4两边的式子完全相等,此方程有无穷多个解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程的概念与解法
【知识要点】
1.一元一次方程的有关概念
(1)一元一次方程:只含有一个未知数,并且未知数的次数是1,系数不等于0,这样的方程叫做一元一次方程.
(2)一元一次方程的标准形式是:
2.等式的基本性质
(1)等式的两边都加上或减去或,所得的结果仍是等式.
(2)等式的两边都乘以或都除以,所得的结果仍是等式. 3.解一元一次方程的基本步骤:
【典型例题】
例1.下列方程是一元一次方程的有哪些? x+2y=9 x 2
-3x=1 11=x x x 312
1
=-
2x=1 3x –5 3+7=10 x 2
+x=1
例2. 用适当的数或整式填空,使得结果仍是等式,并说明是根据等式的哪条性质,通过怎样变形得到的.
(1)如果________;-8x 3,853==+那么x
(2)如果-1_x _________3,123=--=那么x x ;
(3)如果;__________x ,52
1
==那么x
(4)如果________.3x ,3
2==那么y
x
例3.解下列简易方程
1.5223-=+x x 2.4.7-3x=11
3.x x +-=-32.0 4.)3(4)12(3-=+x x
例4.解方程 1.
32243332=+--x x 2.142
3(1)(64)5(3)25
x x x --++=+ 3.21101211364x x x -++-=- 4.223
14615+=+---x x x x 5.003.002.003.0255.09.03.0=+---+x x x 6.8316
1.20.20.55
x x x +-+-=-
(1)22
1131+=-x x (2)1-323x x -=+ (3)1122142=--+x x (4)x-3(3
1
4615+-
-x x )=2(x+2)
例5.解方程 1. ⎥⎦⎤⎢⎣⎡+-=--)13(2131)2(322x x x x 2.1111(3)3302222y ⎧⎫⎡⎤---=⎨⎬⎢⎥⎣⎦⎩⎭
例6.x 取何值时,代数式 63x + 与 832
x
- 的值相等.
例7.已知方程104x x =-的解与方程522x m +=的解相同,求m 的值.
例8. 已知1x =-是关于x 的方程 327350x x kx -++= 的解,求221195k k --的值.
例9.当.383
2
2倍的的值是为何值时,代数式x x x x ++-
【初试锋芒】
1.若ax +b=0为一元一次方程,则__________.
2.当=m 时,关于字母x 的方程011
2=--m x 是一元一次方程.
3.若9a x b 7 与 – 7a
3x –4
b 7
是同类项,则x= .
4.如果()01122
=+++-y x x ,则
2
1x
y -的值是 . 5.当=x ___时,代数式24+x 与93-x 的值互为相反数.
6.已知08)1()1(2
2
=++--x m x m 是关于x 的一元一次方程,则m= . 7.(2003北京)已知2-=x 是方程042=-+m x 的根,则m 的值是( ) A. 8
B. -8
C. 0
D. 2
8.如果a 、b 互为相反数,(a ≠0),则ax +b =0的根为( )
A .1
B .-1
C .-1或1
D .任意数
9.下列方程变形中,正确的是( )
(A )方程1223+=-x x ,移项,得;2123+-=-x x (B )方程()1523--=-x x ,去括号,得;1523--=-x x (C )方程
23
32=t ,未知数系数化为1,得;1=x (D )方程
15
.02.01=--x
x 化成.63=x 10.方程
6
2123x
x +=-去分母后可得( ) A 3x -3 =1+2x , B 3x -9 =1+2x , C 3x -3 =2+2x , D 3x -12=2+4x ; 11.如果关于x 的方程0123
1
=+m x
是一元一次方程,则m 的值为( )
A .
3
1
B 、 3
C 、 -3
D 、不存在 12.若32,24,A x B x =-=+使A -B=8,x 的值是( ) A .6 B .2 C .14
D .18
【大展身手】
1.下列各方程中变形属于移项的是( ) A .由24,2x x ==得
B .由735,735x x x x -=++=+得
C .由,58-=-x x 得85--=--x x
D .由139-=+x x ,得913+=-x x 2.下列方程中( )是一元一次方程. A .3x-
06
5
= B.2x+y=4 C.x(x+2)=8 D.
11
=+x x
3.下列方程的解法中,正确的是( ) A .214x =,移项得142,12x x =-∴= B .155
x
=,两边都除以5,得3=x C .
2
3,32==x x 得 D .0.017x =,两边都乘以100,得x =700
4. 一个一元一次方程的解为2,请写出这个方程:_______________
5.解方程: (1)22
1131+=-x x (2)1-323x x -=+ (3)1122142=--+x x (4)x-3(3
1
4615+-
-x x )=2(x+2)
(5)y-52221+-
=-y y (6)168)251(413121=⎭
⎬⎫
⎩⎨⎧+⎥⎦⎤⎢⎣⎡--x
(7)1-43
)
1(21
1=-+x (8)
3)12(214)12(3+=-+x x (9))1(2)141(23x x x -=+- (10)3
2
221+-=--t t t
6.在有理数范围内定义运算“*”,其规则为:a*b =2
a
-b ,试求(x*3)*2=1的解.
7. 阅读短文:利用列方程可将循环小数化为分数,如求=?方法是:设x =0.5,即x =0.555……,将方程两边同乘以10,得10x =5.55……,即10x =5+0.555……, 而x =0.55……,∴x =
9
5. 试根据上述方法:(1)比较0.91的大小;(2)将0.25化为分数.
(注:可编辑下载,若有不当之处,请指正,谢谢!)。