一元一次方程的定义及解法
一元一次方程组的概念与解法

一元一次方程组的概念与解法一、概念在数学中,一元一次方程是指只含有一个未知数,并且该未知数的最高次幂为1的方程。
而一元一次方程组则是由若干个一元一次方程组成的方程组。
一元一次方程组的一般形式如下:a₁x + b₁y = c₁a₂x + b₂y = c₂其中,a₁、a₂、b₁、b₂、c₁、c₂为已知系数,x和y为未知数。
二、求解方法为了求解一元一次方程组,我们可以使用以下两种方法:1. 等价变换法通过等价变换,即对方程组进行加减乘除等运算,将一元一次方程组转化为更简单的形式,从而得到解。
(例1)考虑如下一元一次方程组:2x + 3y = 74x - y = 1首先,我们可以通过倍乘第二个方程,得到其系数与第一个方程相等的结果:2x + 3y = 78x - 2y = 2然后,我们可以将第二个方程加到第一个方程上,消去y的项: 2x + 3y + 8x - 2y = 7 + 210x + y = 9接着,我们通过等式变换将y的系数变为1,然后解得x的值: y = 9 - 10x10x + (9 - 10x) = 99 = 9最后,将x的值代入一元一次方程中,求解得到y的值:2x + 3y = 72(1) + 3y = 73y = 5y = 5/3因此,该一元一次方程组的解为 x = 1,y = 5/3。
2. 代入法通过将一个方程的解代入另一个方程,逐步消去未知数,最终求得解的方法。
(例2)考虑如下一元一次方程组:x - 2y = 13x + 4y = 14首先,可以通过第一个方程解得x的值:x = 1 + 2y (式1)接着,将式1代入第二个方程,得到:3(1 + 2y) + 4y = 143 + 6y + 4y = 1410y = 11y = 11/10最后,将y的值代入一元一次方程中,求解得到x的值:x = 1 + 2(11/10)x = 32/10因此,该一元一次方程组的解为 x = 16/5,y = 11/10。
一元一次方程式的解法

一)知识要点:1.一元一次方程的概念:只含有一个未知数,并且未知数的次数是1,系数不为0的方程叫做一元一次方程.一元一次方程的标准形式是:ax+b=0 (其中x是未知数,a,b是已知数,且a≠0),它的解是x=- .我们判断一个方程是不是一元一次方程要看它化简后的最简形式是不是标准形式ax+b=0 (a≠0).例如方程3x2+5=8x+3x2,化简成8x-5=0是一元一次方程;而方程4x-7=3x-7+x 表面上看有一个未知数x,且x的次数是一次,但化简后为0x=0,不是一元一次方程.2.解一元一次方程的一般步骤:(1)方程含有分母时要先去分母,使过程简便,具体做法为:在方程的两边都乘以各分母的最小公倍数.要注意不要漏掉不含分母的项,如方程x+ =3,去分母得10x+3=3就错了,因为方程右边忘记乘以6,造成错误.(2)去括号:按照去括号法则先去小括号,再去中括号,最后去大括号.特别注意括号前是负号时,去掉负号和括号,括号里的各项都要变号.括号前有数字因数时要注意使用分配律.(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边.注意移项要变号.(4)合并项:把方程化成最简形式ax=b (a≠0).(5)把未知数的系数化成1:在方程两边都除以未知数的系数a,得到方程的解x= .解方程时上述步骤有些可能用不到,并且也不一定按照上述顺序,要根据方程的具体形式灵活安排求解步骤.(二)例题:例1.解方程(x-5)=3- (x-5)分析:按常规此方程应先去分母,去括号,但发现方程左右两边都含有x-5项,所以可以把它们看作一个整体,移项,合并,使运算简便.移项得:(x-5)+ (x-5)=3合并得:x-5=3∴ x=8.例2.解方程2x- = -因为方程含有分母,应先去分母.去分母:12x-3(x+1)=8-2(x+2)(注意每一项都要乘以6)去括号:12x-3x-3=8-2x-4(注意分配律及去括号法则)移项:12x-3x+2x=8-4+3合并:11x=7系数化成1:x= .例3.{ [ ( +4)+6]+8}=1解法1:从外向里逐渐去括号,展开求去大括号得:[ ( +4)+6]+8=9去中括号得:( +4)+6+56=63整理得:( +4)=1去小括号得:+4=5去分母得:x+2+12=15移项,合并得:x=1.解法2:从内向外逐渐去括号,展开求去小括号得:{ [ ( + +6]+8}=1去中括号得:{ + + +8}=1去大括号得:+ + + =1去分母得:x+2+3×4+2×45+8×105=945即:x+2+12+90+840=945移项合并得:∴x=1.注意:从上面的两种解法可以看到,解一元一次方程并不一定要严格按照前面说的步骤一步一步来,可以按照具体的题目灵活运用方法.例4.解方程[ ( -1)-2]-2x=3分析:此方程含括号,因为× =1,所以先去中括号简便.去中括号:( -1)- -2x=3去小括号:-1- -2x=3去分母:5x-20-24-40x=60移项:5x-40x=60+44合并项:-35x=104系数化成1得:x=- .例5.解方程- - =0分析:本方程分子、分母中都含有小数,如果直接去分母,会使运算繁琐.但如果利用分数的性质,即分子分母同乘以不等于零的数分数的值不变的性质,使方程左边前两项分子、分母中的小数都化成整数,就能使运算简便.利用分数的性质(即左边第一项分子、分母同乘以10,第二项分子、分母同乘以100),原方程可化为:- - =0去分母:6(4x+9)-10(3-2x)-15(x-5)=0去括号:24x+54-30+20x-15x+75=0移项得:24x+20x-15x=-54+30-75合并得:29x=-99系数化成1:x=- .例6.在公式S= (a+b)h中,已知:a=5, S=44, h=8,求b的值.分析:这是梯形面积公式,四个量S,a, b, h中知道任意3个量的值,都可以求出第四个量的值.解法1:把a=5, S=44, h=8代入公式得44= (5+b)×8这是关于b的一元一次方程化简得:b+5=11移项,合并得:b=6.解法2:先把b看作未知数,把其它量都看作已知数,将公式变形,用其它三个量来表示b,然后再代入已知数的值求出b.S= (a+b)h去分母:2S=(a+b)h去括号:2S=ah+bh移项:2S-ah=bh即bh=2S-ah系数化成1:∵ h≠0,∴ b= -a (一定不要忘记条件h≠0)当a=5, S=44,h=8时,b= -5=11-5=6∴ b=6.例7.当x=2时,式子x2+bx+4的值为0,求当x=3时,x2+bx+4的值.分析:这仍是一元一次方程的应用的例子,要求x2+bx+4的值,先求出b的值,最后求当x=3时,x2+bx+4的值.∵当x=2时,x2+bx+4的值为0,∴ 4+2b+4=0 (得到关于b的一元一次方程)解这个方程得2b=-8,∴ b=-4,∴ x2+bx+4为x2-4x+4,当x=3时,x2-4x+4=32-4×3+4=9-12+4=1,∴当x=3时,这个式子值为1.例8.解绝对值方程:(1) |2x-1|=8(2) =4(3) =4(4) |3x-1|+9=5(5) |1-|x||=2说明:解绝对值方程也是一元一次方程的应用,它的解法主要是:①先把|ax+b|看作一个整体,把绝对值方程看作是以|ax+b|为未知数的一元一次方程,变形成|ax+b|=c的形式;②对|ax+b|=c进行讨论,当c>0时,正确去掉绝对值,得到ax+b=c或ax+b=-c两个一元一次方程,从而求出x的值;当c=0时,得到ax+b=0一个一元一次方程,从而求出x;当c。
一元一次方程公式大全

一元一次方程公式大全一元一次方程是初中数学学习中的重要内容,也是数学建模和解决实际问题的基础。
在学习一元一次方程时,我们需要熟练掌握一元一次方程的基本概念、解法和应用。
本文将为大家详细介绍一元一次方程的相关知识,包括一元一次方程的定义、一元一次方程的解法、一元一次方程的应用以及一元一次方程的实例分析,希望能够帮助大家更好地理解和掌握这一部分内容。
一、一元一次方程的定义。
一元一次方程是指未知数只有一个,且未知数的最高次数为一的方程。
一元一次方程的一般形式为ax+b=0,其中a和b是已知数,a≠0,x是未知数。
在解一元一次方程时,我们的目标是找到未知数x的值,使得方程成立。
二、一元一次方程的解法。
解一元一次方程的常用方法有,等式性质法、加减消去法、乘除消去法、代入法等。
下面我们分别来介绍这些解法的具体步骤。
1. 等式性质法,根据等式两边相等的性质,可以对方程进行等式性质变形,最终得到方程的解。
2. 加减消去法,通过加减消去,将方程中的一些项相互抵消,从而简化方程,最终求得方程的解。
3. 乘除消去法,通过乘除消去,可以将方程中的一些项进行消去,从而简化方程,最终求得方程的解。
4. 代入法,将已知的数代入方程中,求解未知数的值,从而得到方程的解。
三、一元一次方程的应用。
一元一次方程在日常生活中有着广泛的应用,例如,小明买了若干本书,每本书的价格是10元,他一共花了60元,那么小明买了几本书?这个问题可以用一元一次方程来表示和解决。
又如,某商品原价100元,现在打8折出售,打折后的价格是多少?这个问题也可以用一元一次方程来表示和解决。
四、一元一次方程的实例分析。
现在我们通过几个实例来分析一元一次方程的具体应用。
例1,某数的3倍加上5等于20,求这个数。
解,设这个数为x,根据题意可以列出方程3x+5=20,然后通过等式性质变形,得到3x=15,最终求得x=5。
所以这个数是5。
例2,某数的一半加上3等于7,求这个数。
数学中的一元一次方程知识点

数学中的一元一次方程知识点一元一次方程是数学中的基础概念,也是初等代数中的重要内容。
它在解决实际问题和建立数学模型时起到了关键的作用。
本文将介绍一元一次方程的基本定义、性质和求解方法。
1. 一元一次方程的定义一元一次方程是指一个变量的一次方程,形式通常为ax + b = 0,其中a和b是已知的常数,而x是未知数。
一元一次方程的问题通常是要求解未知数的值。
2. 一元一次方程的性质一元一次方程具有以下几个性质:- 一元一次方程只有一个未知数。
- 方程中的系数和常数可以是任意实数,但未知数通常是实数。
- 方程中的系数不能同时为零,即a ≠ 0。
- 一元一次方程的解通常是唯一的,也就是只有一个解或无解。
3. 一元一次方程的求解方法解一元一次方程的常用方法有以下几种:- 原始解法:通过移项和消元的方式,将方程变形为x = 数字的形式,得到方程的解。
- 代入法:将已知的解代入方程,验证解是否满足方程的等式关系。
- 叠减法:通过两个方程相减,消去一个未知数,得到一个一元一次方程,从而求解未知数的值。
- 等价方程法:通过变形,将原方程转化为一个等价的方程,使得求解过程更简单。
4. 一元一次方程在实际问题中的应用一元一次方程在实际问题中有广泛的应用,比如:- 财务问题:计算投资回报率、利润分配等问题时,通常可以建立一元一次方程来求解。
- 几何问题:用一元一次方程可以计算图形的面积、周长、对角线长度等。
- 物理问题:用一元一次方程可以描述速度、加速度、力等物理量之间的关系。
总结:一元一次方程是数学中的重要概念,它帮助我们解决实际问题,建立数学模型,以及理解数学中的基本性质和求解方法。
通过掌握一元一次方程的知识,我们可以更好地理解和应用数学,提高解决问题的能力。
一元一次方程的概念

一元一次方程的概念一元一次方程,也称为一次方程或一次线性方程,是数学中最基本的代数方程之一。
它的定义和性质对于学习代数学和解决实际问题都具有重要意义。
本文将介绍一元一次方程的概念、基本形式、解法以及实际应用。
一、概念一元一次方程是指只含有一个未知数的一次方程。
一元表示方程中只有一个未知数,一次表示该未知数的最高次数为1。
一元一次方程的一般形式可以表示为ax + b = 0,其中a和b是已知实数,x为未知数。
在这个方程中,未知数x只出现一次,并且没有任何其它项与x相乘或相除。
二、基本形式一元一次方程的基本形式是ax + b = 0,其中a和b为已知实数,x为未知数。
方程中的系数a表示未知数x的系数,常数b表示方程的常数项。
在解一元一次方程时,我们的目标是找到未知数x的值,使方程两边相等。
这个值被称为方程的解。
三、解法1. 移项法解一元一次方程的最基本方法是移项法。
我们的目标是将方程中的未知数项系数系数项归集到等号的一侧,将常数项归集到等号的另一侧,使方程化简为 x = 解的形式。
以方程ax + b = 0为例,首先,我们可以将常数项b移到等号的右侧,得到ax = -b。
然后,我们除以系数a,得到x = -b/a。
这个解即为一元一次方程的解。
2. 消元法另一种解一元一次方程的方法是消元法。
当我们有多个一元一次方程时,我们可以通过消去一个未知数,将多个方程转化为一个方程的形式,再用移项法解决。
例如,考虑以下两个一元一次方程系统:方程1:a1x + b1 = 0方程2:a2x + b2 = 0首先,我们可以通过方程1的系数与方程2的系数相乘,得到新的方程:a1(a2x + b2) = a1 * 0a1a2x + a1b2 = 0接下来,我们可以通过将方程2的系数与方程1的系数相乘,得到另一个新的方程:a2(a1x + b1) = a2 * 0a1a2x + a2b1 = 0将这两个新方程相减,得到消去了未知数x的新方程:(a1b2 - a2b1) = 0解这个新方程,可以得到方程1和方程2的解。
一元一次方程的概念与解法

一元一次方程的概念与解法一元一次方程,是指含有一个未知数的一次方程。
它的一般形式可以写作ax + b = 0,其中a、b为已知常数,x为未知数。
一元一次方程的解,就是使得该方程成立的未知数的值。
解一元一次方程的方法有很多种,下面将介绍几种常用的解法,并通过实例来加深理解。
1. 直接法直接法是最常用也是最基本的求解一元一次方程的方法。
通过逐步化简方程,将方程转化为x = c的形式,从而找到x的值。
例如,求解方程2x + 3 = 7。
解:首先,将方程化简,得到的形式为2x = 4。
接着,将方程两边同时除以2,得到x = 2。
最后,解得方程的解为x = 2。
2. 平衡法平衡法是一种通过移动式子中的项,使得方程两边平衡的解法。
例如,求解方程3x + 5 = 2x + 9。
解:首先,将方程化简,得到的形式为3x - 2x = 9 - 5。
接着,合并同类项,得到x = 4。
最后,解得方程的解为x = 4。
3. 消元法消元法是一种通过将方程中的某一项系数化为0,从而消去该项的解法。
例如,求解方程2x + 3 = 5x - 1。
解:首先,将方程移项,得到的形式为2x - 5x = -1 - 3。
接着,合并同类项,得到-3x = -4。
然后,将方程两边同时除以-3,得到x = 4/3。
最后,解得方程的解为x = 4/3。
以上是三种常用的一元一次方程解法,通过这些解法可以较为简单快速地求解一元一次方程。
在实际问题中,一元一次方程经常出现,它们的解可以帮助我们得到未知数的具体值,从而解决问题。
此外,有时方程可能无解或者有无限多个解。
当方程无解时,意味着方程左右两边无法通过任何变换相等,即方程组不成立。
当方程有无限多个解时,意味着方程左右两边可以通过变形相等,即方程组恒成立。
总结起来,一元一次方程的概念与解法是数学学习中的基础知识。
通过灵活运用直接法、平衡法和消元法等解法,我们可以解决一元一次方程相关的问题,提高数学解题的能力。
一元一次方程所有知识点

一元一次方程所有知识点一、一元一次方程的概念。
1. 定义。
- 只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。
- 例如:2x + 3=5x - 1是一元一次方程,它只含有一个未知数x,x的次数是1,等号两边2x + 3和5x-1都是整式。
- 一般形式:ax + b = 0(a≠0),其中a是未知数x的系数,b是常数项。
2. 方程的解。
- 使方程左右两边相等的未知数的值叫做方程的解。
- 例如:对于方程2x+3 = 7,当x = 2时,左边=2×2 + 3=4 + 3 = 7,右边=7,所以x = 2就是方程2x+3 = 7的解。
二、一元一次方程的解法。
1. 移项。
- 把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项。
- 例如:在方程2x+3 = 5x - 1中,为了求解x,我们将5x移到左边变为-5x,3移到右边变为-3,得到2x-5x=-1 - 3。
- 移项的依据是等式的基本性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
2. 合并同类项。
- 将方程中含有相同字母且相同字母的指数也相同的项合并在一起。
- 例如:在2x-5x=-1 - 3中,2x-5x=-3x,-1-3 = -4,方程变为-3x=-4。
3. 系数化为1。
- 在方程ax = b(a≠0)的形式下,将方程两边同时除以a,得到x=(b)/(a)。
- 例如:对于方程-3x=-4,两边同时除以-3,得到x=(4)/(3)。
三、一元一次方程的应用。
1. 行程问题。
- 基本公式:路程=速度×时间。
- 相遇问题:两者路程之和等于总路程。
例如:甲、乙两人分别从A、B两地同时出发相向而行,甲的速度是v_1,乙的速度是v_2,经过t小时相遇,AB两地间的距离s=(v_1 + v_2)t。
- 追及问题:两者路程之差等于初始距离。
例如:甲、乙两人同向而行,甲的速度是v_1,乙的速度是v_2(v_1>v_2),开始时甲、乙相距s_0,经过t小时甲追上乙,则s_0=(v_1 - v_2)t。
一元一次方程的定义及解法

一元一次方程的定义及解法文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)一元一次方程的定义及解法方程定义:只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程,通常形式是ax+b=0(a,b为常数,且a≠0)。
方程简介一元一次方程(linearequationinone)通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。
通常形式是ax+b=0(a,b为常数,且a ≠0)。
一元一次方程属于整式方程,即方程两边都是整式。
一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。
我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。
这里a是未知数的系数,b 是常数,x的次数必须是1。
即一元一次方程必须同时满足4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数最高次项为1;(4)含未知数的项的系数不为0。
“方程”一词来源于我国古算术书《九章算术》。
在这本着作中,已经会列一元一次方程。
法国数学家笛卡尔把未知数和常数通过代数运算所组成的方程称为代数方程。
在19世纪以前,方程一直是代数的核心内容。
详细内容合并同类项1.依据:乘法分配律2.把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项3.合并时次数不变,只是系数相加减。
移项1.含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。
2.依据:等式的性质3.把方程一边某项移到另一边时,一定要变号。
性质性质等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。
等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。
等式的性质三:等式两边同时乘方(或开方),等式仍然成立。
解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立解法步骤使方程左右两边相等的未知数的值叫做方程的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《第4章 一元一次方程》4.1—4.2期末复习学案(1)
一、基础训练
1、 y 比它的4
3小7,列出方程为______________________;若代数式6x 2-的值与0.5互为倒数,则列出方程为________ .
2、判断下列哪些是一元一次方程。
(1)
4365=x ( ) (2)7x -5 ( ) (3)x x 367
1=-( ) (4)3x 2-7x+1=0( )(5)2x -y=1( ) (6)312=-x ( ) 3、 已知4x ax 2=-是关于x 的一元一次方程,则a=________.
其中2、3两题用到的知识点是:一元一次方程的定义:含有 未知数,未知数的次数是 的方程叫一元一次方程。
(其中表示未知数的式子还必须是整式。
)
4、 写出一个满足下列条件的一元一次方程:①某个未知数的系数是1;②方程的解是3;这样的方程是 。
5、 若x=3是方程x 68a 4x 2+=-的解,则=a ________ 。
知识点:什么叫方程的解? 。
6. 若-9+x =63则x =______;若-2(x+1)=13,则x =______ ; 2
1323 x 的解为 ;若30%x =5则x =__ ;。
解方程的基本步骤是 、 、 、 、 :
去分母时应该注意 ;去括号时应注意 ;移项时应该注意 ;将系数化为1时应注意 。
7. 若1x 2y 1
x y 21+=-=,,且0y 3y 21=-,则x=________,=+21y y ________. 8.若41m 2y x 3-与3n 23y x 2--是同类项,且0)n b 5.0(|m 2a |2=-+-,则b a n m +++的值为________。
二、例题推荐
例1:解方程。
(1)、163x 242x =--+ (2)、173)1(214181=⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡++x
(3)、
18.03.0x 2.06.07.0x 3.0=--+ (4)、2|x-3|+5=13
例2:小李在解方程5a -x=13(x 为未知数)时,误将-x 看作+x ,得方程的解为x=-2,则原方程的解为( )
A .x=-3
B .x=0
C .x=2
D .x=1 例3:方程
432-=+x m x 与方程6)16(2
1-=-x 的解相同,求m 的值。
例4: k 取什么整数时,方程2kx-4=(k+2)·x 的解是正整数?
例5:若|x -2y+3|+|x -1|=0,求代数式3(x -y )+2的值。
三、针对性训练
1. 下面的方程变形中:①263x +=-变形为236x =-+,②31132
x x +++=变形为26336x x +-+=③221533x x -=变形为6105x x -=,④32(1)15
x x =-+变形为310(1)
x x =-+.正确的是_______ ____(填代号) 2.已知方程①3x -1=2x +1 ②x x =-123 ③x x x )31(3231-=+④4
13743127+-=++x x 中,解为x=2的是方程 ( ) A.①、②和③; B.①、③和④ C.②、③和④; D.①、②和④ 3. 当x=2时,代数式ax -2的值为4,那麽当x=-2时这个代数式的值为 。
4. 设p=2x -1,q= 4-3x , 则5p -6q=7时,x 的值应为( )
A . -97
B .97
C .-79
D .7
9 四、课外作业
1. 下列变形正确的是( )
A .若3x ―1=2x+1 , 则3x+2x=―1+1
B .若1―2
13-x =x , 则2―3x ―1=2x C .若3(x+1)―5(1―x)=2,则3x+3―5―5x=2
D .若2.01+x ―03.01.0x =0.1,则21010+x ―3
10x =0.1 2、3个连续偶数的和为36,则它们的积为 ( )
A .998
B .1200
C .1680
D .1868
3、若222+n y
x 和12--n y x 是同类项,则n 的值为( ) A .23 B .6 C .3
2 D .2 4、王大爷存入银行2500元,定期一年到期后扣除20%的利息税后得到本息和为2650元,若这种储蓄的年利率为x ,那么可得方程 ( )
A 、2500(1+x)=2650
B 、2500(1+x%)=2650
C 、2500(1+x ⋅80%)=2650
D 、2500(1+x ⋅20%)=2650
5、方程0|6x 2|=-的解是 ( )
A. 3
B. -3
C. ±3
D. 3
1
6、已知公式S=2
1(a+b )h,若S=30,a=6 , b= 4 , 则h=______________ 7、如果方程5x+3|a|= -3的解是x=-6,那么a=_________________;
8、如果(a ﹣b )x=︱a ﹣b ︱的解是x=﹣1,那么 ( )
A .a=b B.a>b C.a<b D.a ≠b
9、 规定新运算符号*的运算过程为b a b a 4131*-=
,则 (1) 求5*(-5);
(2) 解方程2*(2*x )=1*x
10、解方程。
⑴
132-=x x ⑵23[x ―21(x ―1)]=2 (x ―1)
⑶32221+-=--
x x x ⑷5.0102.02.01.0+--x x =3
11、 已知有理数 x 、y 、z 满足关系式(x -4)2 +
41| x + y - z|=0,则(5x+3y -3z )2003 的末位数字是多少?
12. 已知方程21)20031(541=-+x ,求代数式3+20(x -2003
1)的值。
13、已知a 是整数,且a 比0大,比10小.请你设法找出a 的一些数值,使关于x 的方程 1―
21ax=―5的解是偶数,看看你能找出几个.。