采用ANSYS软件建立混凝土试件三维随机骨料模型
混凝土三维随机凸型骨料模型生成方法研究

混凝土三维随机凸型骨料模型生成方法研究
隨機凸型骨料是混凝土研究中最具有挑戰性的一種骨料形狀,普通的骨料粒子會沿著
一定方向形成凸型骨料,導致骨料孔隙率和界面摩擦系數均有一定的相關性。
本文探討了
混凝土中的三維隨機凸型骨料模型的生成方法。
首先,分析了幾何學幾何圖形的要求,其中單位球的軸向收斂率要求為90%以上。
然後,建立了三維隨機凸型單位球的模型。
此模型包括了尺寸和位置的確定,邊界碰撞的模擬,塑變收斂的模擬以及微觀球面坡度的模擬。
此外,使用模擬礦石球和混凝土界面來驗證凸型單位球模型的有效性和穩定性。
最後,模擬了三維隨機凸型骨料的碎骨料模型的排列方式,該排列滿足骨料空洞率和界面摩擦系
數的要求,為混凝土研究中的三維隨機凸型骨料模型提供了一種可行的模型。
綜上所述,本文提出了一種混凝土中三維隨機凸型骨料模型的生成方法。
該模型不僅
可以建立三維隨機凸型骨料,而且可以確保其在有限空間內充分去塑變,並且與碎骨料模
型完全符合要求。
本研究可作為今後混凝土研究中三維隨機凸型骨料的建模的準則和參考。
如何在ANSYS中模拟钢筋混凝土的计算模型

如何在ANSYS中模拟钢筋混凝土的计算模型最近做了点计算分析,结合各论坛关于这方面的讨论,就一些问题探讨如下,不当之处敬请指正。
一、关于模型钢筋混凝土有限元模型根据钢筋的处理方式主要分为三种,即分离式、分布式和组合式模型。
考虑钢筋和混凝土之间的粘结和滑移,则采用引入粘结单元的分离式模型;假定混凝土和钢筋粘结很好,不考虑二者之间的滑移,则三种模型都可以;分离式和分布式模型适用于二维和三维结构分析,后者对杆系结构分析比较适用。
裂缝的处理方式有离散裂缝模型、分布裂缝模型和断裂力学模型,后者目前尚处研究之中,主要应用的是前两种。
离散裂缝模型和分布裂缝模型各有特点,可根据不同的分析目的选择使用。
随着计算速度和网格自动划分的快速实现,离散裂缝模型又有被推广使用的趋势。
就ANSYS而言,她可以考虑分离式模型(solid65+link8,认为混凝土和钢筋粘结很好,如要考虑粘结和滑移,则可引入弹簧单元进行模拟,比较困难!),也可采用分布式模型(带筋的solid65)。
而其裂缝的处理方式则为分布裂缝模型。
二、关于本构关系混凝土的本构关系可以分为线弹性、非线性弹性、弹塑性及其它力学理论等四类,其中研究最多的是非线性弹性和弹塑性本构关系,其中不乏实用者。
混凝土破坏准则从单参数到五参数模型达数十个模型,或借用古典强度理论或基于试验结果等,各个破坏准则的表达方式和繁简程度各异,适用范围和计算精度差别也比较大,给使用带来了一定的困难。
就ANSYS而言,其问题比较复杂些。
1 ANSYS混凝土的破坏准则与屈服准则是如何定义的?采用tb,concr,matnum则定义了W-W破坏准则(failure criterion),而非屈服准则(yield criterion)。
W-W破坏准则是用于检查混凝土开裂和压碎用的,而混凝土的塑性可以另外考虑(当然是在开裂和压碎之前)。
理论上破坏准则(failure criterion)和屈服准则(yield criterion)是不同的,例如在高静水压力下会发生相当的塑性变形,表现为屈服,但没有破坏。
ANSYS 钢筋混凝土建模

ANSYS 钢筋混凝土建模一、简介钢筋混凝土有限元建模的方法与结果评价(前后处理),是对钢筋混凝土结构进行数值模拟的重要步骤,能否把握模型的可行性、合理性,如何从计算结果中寻找规律,是有限元理论应用于实际工程的关键一环。
Blackeage以自己做过的一组钢筋混凝土暗支撑剪力墙的数值模拟为例,从若干方面提出一些经验与建议。
希望大家一起讨论、批评指正(******************.cn)。
程序:ANSYS单元:SOLID65、BEAM188建模方式:分离暗支撑剪力墙结构由北京工业大学曹万林所提出,简言之就是一种在普通钢筋配筋情况下,加配斜向钢筋的剪力墙结构。
二、单元选择以前经常采用的钢筋混凝土建模方法是通过SOLID65模拟混凝土,通过SOLID65的实常数指定钢筋配筋率,后来发现这种整体式的模型并不理想,而且将钢筋周围的SOLID65单元选择出来,再换算一个等效的配筋率,工作量也并不小。
最关键的是采用整体式模型之后,得不出什么有意义的结论,弄一个荷载-位移曲线出来又和实验值差距比较大。
只有计算的开裂荷载与实验还算是比较接近,但这个手算也算得出来的东西费劲去装模作样的建个模型又有什么意义?所以,这次我尝试采用分离式的模型,钢筋与混凝土单元分别建模,采用节点共享的方式。
建模时发现,只要充分、灵活地运用APDL的技巧,处理好钢筋与混凝土单元节点的位置,效率还是很高的。
暗支撑剪力墙数值模型看过很多的资料,分离式模型是用LINK8与SOLID65的组合方式,这样做到是非常直观,因为LINK8是spar类型的单元,每个节点有3个自由度,这与SOLID65单元单节点自由度数量是一致的。
但是问题也就由此产生,当周围的混凝土开裂或是压碎时,SOLID65将不能对LINK8的节点提供足够地约束(如下图箭头方向),从而导致总刚矩阵小主元地出现影响计算精度,或者干脆形成瞬变体系导致计算提前发散。
LINK8+SOLID65的问题如果采用梁单元模拟暗钢筋,就算包裹钢筋的混凝土破坏了,钢筋单元本身仍可对连接点提供一定的侧向刚度(其实钢筋本身就是有一定抗弯刚度的),保证计算进行下去。
ANSYS分析钢筋混凝土结构技巧及实例详解

0 前言利用ANSYS分析钢筋混凝土结构时,其有限元模型主要有分离式和整体式两种模型。
这里结合钢筋混凝土材料的工作特性,从模型建立到非线性计算再到结果分析的全过程讲述了利用ANSYS进行钢筋混凝土结构分析的方法与技巧,并以钢筋混凝土简支梁为例,采用分离式有限元模型,说明其具体应用。
1 单元选取与材料性质1. 1 混凝土单元ANSYS中提供了上百种计算单元类型,其中Solid65单元是专门用于模拟混凝土材料的三维实体单元。
该单元是八节点六面体单元,每个节点具有三个方向的自由度( UX , UY , UZ) 。
在普通八节点线弹性单元Solid45 的基础上,该单元增加了针对于混凝土的材性参数和组合式钢筋模型,可以综合考虑包括塑性和徐变引起的材料非线性、大位移引起的几何非线性、混凝土开裂和压碎引起的非线性等多种混凝土的材料特性。
使用Solid65 单元时,一般需要为其提供如下数据:1)、实常数(Real Constants) :定义弥散在混凝土中的最多三种钢筋的材料属性,配筋率和配筋角度。
对于墙板等配筋较密集且均匀的构件,一般使用这种整体式钢筋混凝土模型。
如果采用分离式配筋,那么此处则不需要填写钢筋实常数。
2)、材料模型(Material Model) :在输入钢筋和混凝土的非线性材料属性之前,首先必须定义钢筋和混凝土材料在线弹性阶段分析所需的基本材料信息,如:弹性模量,泊松比和密度。
3)、数据表(Data Table) :利用数据表进一步定义钢筋和混凝土的本构关系。
对于钢筋材料,一般只需要给定一个应力应变关系的数据表就可以了,譬如双折线等强硬化(bilinear isotropic hardening)或随动硬化模型( kinematic hardening plasticity)等。
而对于混凝土模型,除需要定义混凝土的本构关系外,还需要定义混凝土材料的破坏准则。
在ANSYS中,常用于定义混凝土本构关系的模型有:1)多线性等效强化模型(Multilinear isotropic hardening plas2ticity ,MISO模型),MISO模型可包括20条不同温度曲线,每条曲线可以有最多100个不同的应力-应变点;2)多线性随动强化模型(Multilinear kinematic hardening plas2ticity ,MKIN 模型),MKIN 模型最多允许5个应力-应变数据点;3)Drucker2Prager plasticity(DP)模型。
采用ANSYS仿真模拟软件建立三维混凝土试件实体裂纹扩展的模拟

MSHKEY,0
!*
CM,_Y,VOLU
VSEL, , , , 3
CM,_Y1,VOLU
CHKMSH,'VOLU'
CMSEL,S,_Y
!*
VMESH,_Y1
!*
CMDELE,_Y
CMDELE,_Y1
CMDELE,_Y2
!*
!施加下端约束
FLST,2,1,5,ORDE,1
FITEM,2,18
!通水管道施压
FLST,2,2,5,ORDE,2
FITEM,2,12
FITEM,2,-13
/GO
!*
SFA,P51X,1,PRES,-2000000
!裂纹面施压
FLST,2,4,5,ORDE,2
FITEM,2,14
FITEM,2,-17
/GO
!*
SFA,P51X,1,PRES,2000000
Fini !退出前处理器
wpro,,90.000000, !旋转工作平面
CSWPLA,100,1,1,1, !在工作平面位置建立局部坐标100,类型为柱坐标
FLST,3,1,6,ORDE,1
FITEM,3,1
VGEN, ,P51X, , , ,45, , , ,1 !旋转长方体
wpro,,-90.000000, !旋转回原工作平面
!(4)定义材料参数
MP,EX,1,1.668E10 !弹性模量
MP,PRXY,1,0.3 !泊松比
!(5)建立剖面几何模型
BLOCK,-0.015,0.015,-0.025,0.025,-0.0005,0.0005, !建立一个长方体
WPSTYLE,,,,,,,,1
ansys 钢筋混凝土建模

ansys 钢筋混凝土建模Ansys 钢筋混凝土建模在现代工程领域中,钢筋混凝土结构的应用极为广泛,从高楼大厦到桥梁隧道,从水利设施到工业厂房,无一不见其身影。
为了确保这些结构的安全性、可靠性和经济性,对其进行准确的力学分析至关重要。
Ansys 作为一款功能强大的有限元分析软件,为钢筋混凝土建模提供了高效且精确的解决方案。
钢筋混凝土是一种由钢筋和混凝土两种材料共同作用的复合材料。
混凝土具有较高的抗压强度,但抗拉强度较低;而钢筋则具有良好的抗拉性能。
在实际结构中,两者协同工作,共同承受外力。
因此,在Ansys 中进行钢筋混凝土建模时,需要准确地模拟这两种材料的特性以及它们之间的相互作用。
首先,我们来谈谈混凝土的建模。
在 Ansys 中,混凝土通常可以采用实体单元进行模拟。
对于混凝土的本构关系,我们可以选择合适的模型,如经典的混凝土损伤塑性模型(Concrete Damaged Plasticity Model)。
这个模型能够较好地考虑混凝土在受压和受拉时的非线性行为,包括混凝土的开裂、压碎等现象。
在定义混凝土的材料参数时,需要输入诸如弹性模量、泊松比、抗压强度、抗拉强度等参数。
这些参数的准确取值对于模型的准确性至关重要。
一般来说,可以通过实验测试或者参考相关的规范和标准来获取这些参数。
接下来是钢筋的建模。
钢筋在 Ansys 中有多种建模方法,常见的有两种:一种是使用杆单元(Link Element)来模拟钢筋,另一种是将钢筋嵌入到混凝土实体单元中(Embedded Element)。
使用杆单元模拟钢筋时,需要定义钢筋的截面积、弹性模量、屈服强度等参数。
这种方法计算效率较高,但对于钢筋与混凝土之间的粘结滑移行为模拟不够精确。
将钢筋嵌入到混凝土实体单元中的方法能够更准确地考虑钢筋与混凝土之间的相互作用,但计算量相对较大。
在这种方法中,需要确保钢筋单元与混凝土单元之间的节点协调。
在钢筋混凝土建模中,还需要考虑钢筋与混凝土之间的粘结滑移。
ANSYS整体式钢筋混凝土模型算例

ANSYS整体式钢筋混凝土模型算例在土木工程结构中,最为常用的一种结构形式就是钢筋混凝土结构,在各类房屋、水坝、桥梁、道路中都有广泛应用。
ANSYS软件提供了专门的钢筋混凝土单元和材料模型。
本算例将介绍ANSYS软件分析混凝土一些基本应用。
(1) 首先建立有限元模型,这里我们选用ANSYS软件自带的专门针对混凝土的单元类型Solid 65,进入ANSYS主菜单Preprocessor->Element Type->Add/Edit/Delete,选择添加Solid 65号混凝土单元。
(2) 点击Element types窗口中的Options,设定Stress relax after cracking为Include,即考虑混凝土开裂后的应力软化行为,这样在很多时候都可以提高计算的收敛效率。
(3) 下面我们要通过实参数来设置Solid 65单元中的配筋情况。
进入ANSYS主菜单Preprocessor-> Real Constants->Add/Edit/Delete,添加实参数类型1与Solid 65单元相关,输入钢筋的材料属性为2号材料,但不输入钢筋面积,即这类实参数是素混凝土的配筋情况。
(4) 再添加第二个实参数,输入X方向配筋为0.05,即X方向的体积配筋率为5%。
(5) 下面输入混凝土的材料属性。
混凝土的材料属性比较复杂,其力学属性部分一般由以下3部分组成:基本属性,包括弹性模量和泊松比;本构关系,定义等效应力应变行为;破坏准则,定义开裂强度和压碎强度。
下面分别介绍如下。
(6) 首先进入ANSYS主菜单Preprocessor-> Material Props-> Material Models,在Define Material Model Behavior 窗口中选择Structural-> Linear -> Elastic-> Isotropic,输入弹性模量和泊松比分别为30e9和0.2(7) 下面输入混凝土的等效应力应变关系,这里我们选择von Mises屈服面,该屈服面对于二维受力的混凝土而言精度还是可以接受的。
用ANSYS建立钢筋混凝土梁模型

用ANSYS1立钢筋混凝土梁模型问题描述:钢筋混凝土梁在受到中间位移荷载的条件下的变形以及个组成部分的应力情况。
P=5mm位移L=2000mm图1钢筋混凝土结构尺寸图一、用合并节点的方法模拟钢筋混凝土梁1 .用solid65号单元以及beam188单元时材料特性钢材的应力应变关系混凝土的弹性模量采用线弹性TEMP建立钢筋线对钢筋线划分网格后形成钢筋单元建立混凝土单元合并单元节点后施加约束以及位移载荷进入求解器进行求解钢筋单元的受力云图.4Q2F-0375.269 150,536 225.806 301 . 075 混凝土的应力云图混凝土开裂2使用单元solid45号单元与beam188钢筋的应力应变关系不变,而混凝土应力应变关系为:混凝土单元WK.355713 5.067 11.37S3,11119.644EPS3钢筋单元 力与位移曲线 .13257E弓・51611-0^^9uOS31^-652Q B 2L7 25-7S4~H ・ 793・0190363E a 9Q715&•号E 】 233.34311.113194 ・453272 ・227350p(kn)g105uy、用约束方程法模拟钢筋混凝土梁1 .用solid65号单元以及beam188单元时混凝土以及钢筋采用线弹性关系: 建立钢筋线对钢筋线划分网格后形成钢筋单元建立混凝土单元对钢筋线节点以及混凝土节点之间建立约束方程WFOR.NMQMBFOR后施加约束以及位移载荷进入求解器进行求解;钢筋单元的受力云图MN011905 77.787 155.562 233.337 311.11238.899 116.675 194.45 272,225 350 混凝土的应力云图,1472166,969 13,79 20.612 27.43310.379 17 ・201 24 ・ DEE30.844混凝土开裂*11111112使用单元solid45号单元与beam188使用混凝土的本构关系曲线1255 7 9钢材的本构关系曲线钢筋的von mises应力.116491 77+86830.992155,62116.744 1.94,496233+372 311+124272-246 350混凝土的应力.1287895,695 11,662 17.429 23.195 3-012 B.779 14.545 20*312 26.079用在solid45号单元下,用合并节点法、约束方程法建立模中钢筋与混凝土之间的关系 的时候的一个力与位移全程曲线的比较。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ANSYS模拟仿真软件apdl语言命令流-
——混凝土试件的三维随机骨料建模
FINISH
/clear,nostart
!-----------三维混凝土150试件,单轴拉伸模拟
!-------映射剖分,以最小骨料半径剖分网格,判断属性,不细分
!=================================================
xmin=1$xmax=149$ymin=1$ymax=149$zmin=1$zmax=149 !定义坐标范围
anum=120$bnum=230$cnum=510 !定义三种组分骨料个数
num=anum+bnum+cnum
rmin=8$rmax=10$brmin=5$brmax=8$crmin=2.5$crmax=5 !定义骨料半径范围
*dim,agv,array,num,4 !存放骨料位置及半径的数组
cum=0
icum=0
*do,i,1,20000
*if,cum,eq,num,then
*exit
*endif
*if,icum,eq,anum,then
rmin=brmin$rmax=brmax
*elseif,icum,eq,(anum+bnum),then
rmin=crmin$rmax=crmax
*endif
x=rand(xmin,xmax)$y=rand(ymin,ymax)$z=rand(zmin,zmax)$r=rand(rmin,rmax)
*if,x-r,gt,xmin,and,x+r,lt,xmax,then
*if,y-r,gt,ymin,and,y+r,lt,ymax,then
*if,z-r,gt,zmin,and,z+r,lt,zmax,then
*if,cum,eq,0,then
cum=cum+1
icum=icum+1
agv(cum,1)=x$agv(cum,2)=y$agv(cum,3)=z$agv(cum,4)=r
*else
sum=0
*do,j,1,cum
dist=sqrt((agv(j,1)-x)**2+(agv(j,2)-y)**2+(agv(j,3)-z)**2)!1.05为骨料影响范围系数
*if,dist,lt,1.1*(agv(j,4)+r),then
*exit
*else
sum=sum+1
*endif
*enddo
*if,sum,eq,cum,then
cum=cum+1
icum=icum+1
agv(cum,1)=x$agv(cum,2)=y$agv(cum,3)=z$agv(cum,4)=r
*endif
*endif
*endif
*endif
*endif
*enddo
!/TRLCY,volu,1,221
!/TRLCY,area,1,221
!=====================先划分网格,然后每个单元分给一个材料号==================== !=====================按weibull概率分布赋予属性==================== /prep7
ET,1,SOLID45
BLOCK,0,150,0,150,0,150 !生成投放区域
LSEL,ALL
LESIZE,ALL,,,100
VSEL,ALL
mshape,0,3d$mshkey,1 !自由网格,划分砂浆
vmesh,all
EMODIF,ALL,MAT,2,
GULIAO=0
JIEDIANX=0$JIEDIANY=0$JIEDIANZ=0 !判断骨料砂浆属性
!和所有的骨料比较
*DO,i,1,NUM
ALLSEL,ALL
NSEL,S,LOC,X,agv(i,1)-agv(i,4),agv(i,1)+agv(i,4)
NSEL,R,LOC,Y,agv(i,2)-agv(i,4),agv(i,2)+agv(i,4)
NSEL,R,LOC,Z,agv(i,3)-agv(i,4),agv(i,3)+agv(i,4)
ESLN,S
!选择集
*GET,ENUM,ELEM,0,COUNT
*GET,EMIN1,ELEM,0,NUM,MIN
*DIM,ELEM,ARRAY,ENUM
ES=EMIN1-1
*DO,J,1,ENUM
ES=ELNEXT(ES)
ELEM(J)=ES !单元的编号
*ENDDO
!遍历单元
*DO,K,1,ENUM
GULIAO=0
*IF,ELMIQR(ELEM(K),-1),EQ,2,THEN !
!循环比较8个节点
*DO,L,1,6
JIEDIANX=NX(NELEM(ELEM(K),L))
JIEDIANY=NY(NELEM(ELEM(K),L))
JIEDIANZ=NZ(NELEM(ELEM(K),L))
distA=sqrt((agv(i,1)-JIEDIANX)**2+(agv(i,2)-JIEDIANY)**2+(agv(i,3)-JIEDIANZ)**2)
*IF,distA,LT,AGV(i,4),THEN
GULIAO=GULIAO+1
*ENDIF
*ENDDO
*IF,GULIAO,EQ,6,THEN
EMODIF,ELEM(K),MAT,1
*ELSEIF,GULIAO,LT,6,AND,GULIAO,GT,0,THEN
EMODIF,ELEM(K),MAT,3
*ENDIF
*ENDIF
*ENDDO
*SET,ELEM(1),
*ENDDO
!==========================建模完成====================。