晶闸管及其应用..

合集下载

什么是晶闸管(可控硅)及其分类

什么是晶闸管(可控硅)及其分类

什么是晶闸管(可控硅)及其分类
晶闸管是晶体闸流管(Thyristor)的简称,俗称可控硅,它是一种大功率开关
型半导体器件,在电路中用文字符号为V、VT表示(旧标准中用字母SCR表示)。

晶闸管具有硅整流器件的特性,能在高电压、大电流条件下工作,且其工作
过程可以控制、被广泛应用于可控整流、交流调压、无触点电子开关、逆变及
变频等电子电路中。

一、晶闸管的种类
晶闸管有多种分类方法:
1.按关断、导通及控制方式分类
晶闸管按其关断、导通及控制方式可分为普通晶闸管、双向晶闸管、逆导晶
闸管、门极关断晶闸管(GTO)、BTG晶闸管、温控晶闸管和光控晶闸管等多种。

2.按引脚和极性分类
晶闸管按其引脚和极性可分为二极晶闸管、三极晶闸管和四极晶闸管。

3.按封装形式分类
晶闸管按其封装形式可分为金属封装晶闸管、塑封晶闸管和陶瓷封装晶闸管
三种类型。

其中,金属封装晶闸管又分为螺栓形、平板形、圆壳形等多种;塑封
晶闸管又分为带散热片型和不带散热片型两种。

4.按电流容量分类
晶闸管按电流容量可分为大功率晶闸管、中功率晶闸管和小功率晶闸管三种。

通常,大功率晶闸管多采用金属壳封装,而中、小功率晶闸管则多采用塑封或
陶瓷封装。

《电子技术基础》22.§6—1 晶闸管(结构、符号、特性、参数、型号)

《电子技术基础》22.§6—1 晶闸管(结构、符号、特性、参数、型号)

广东省机械技工学校文化理论课教案首页7.5.1-10-j-01 科目电子技术基础授课日期10高汽修3班:10中汽修8班:10中制冷1班:课时2课题第六章晶闸管及其应用电路§6—1 晶闸管一、晶闸管的结构符号二、晶闸管的工作特性三、晶闸管的参数四、晶闸管的型号班级10高汽修3班10中汽修8班10中制冷1班教学目的使学生懂得1.晶闸管的结构符号;2. 晶闸管的工作特性;3. 晶闸管的参数4. 晶闸管的型号识读选用教具挂图重点1. 晶闸管的结构符号;2. 晶闸管的工作特性;难点晶闸管的结构、工作特性教学回顾稳压电路说明审阅签名:年月日【组织教】1. 起立,师生互相问好,营造良好的课堂氛围2. 坐下,清点人数,指出和纠正存在问题 【导入新课】1. 教学回顾:稳压电路2. 切入新课:前面我们学习的二极管整流,现在,我们就来学习有关的知识。

【讲授新课】第六章 晶闸管及其应用电路 §6—1 晶闸管晶闸管是硅晶体闸流管的简称,原名为可控硅整流器,也叫可控硅(S ilicon C ontrolled R ectifier )其特点是:体积小、重量轻、无噪声、寿命长、 容量大(正向平均电流达千安、正向耐压达数千伏),使半导体从弱电进入强电领域。

晶闸管主要用于整流、逆变、调压、开关四个方面。

晶闸管可分下列种类:本书介绍单向晶闸管,也就是人们常说的普通晶闸管。

一、单向晶闸管的结构、符号单向晶闸管由四层半导体材料组成的,有三个PN 结,对外有三个电极:第一层P 型半导体引出的电极叫阳极A (anode ),第三层P 型半导体引出的电极叫控制极G (gate pole ),第四层N 型半导体引出的电极叫阴极K (kathode )。

晶闸管有螺旋型和平板型等几种。

单向晶闸管和二极管一样是一种单向导电的器件,关键是多了一个控制极G ,这就使它具有与二极管完全不同的工作特性。

晶闸管的文字符号为“V ”。

普通晶闸管外形、结构和符号见图6—1。

04第四章 晶闸管及其应用

04第四章    晶闸管及其应用

第四章晶闸管及其应用第一节晶闸管的构造、工作原理、特性和参数晶闸管—可控硅,是一种受控硅二极管。

优点:体积小、重量轻、耐压高、容量大、响应速度快、控制灵活、寿命长、使用维护方便。

缺点:大多工作与断续的非线性周期工作状态,产生大量谐波干扰电网;过载能力和抗扰能力较差、控制电路复杂。

(由于技术进步,近年有改善)1.1晶闸管的基本结构:晶闸管是具有三个PN结的四层结构,其外形、结构及符号如图。

1.2晶闸管的工作原理在极短时间内使两个三极管均饱和导通,此过程称触发导通。

晶闸管导通后,去掉EG ,依靠正反馈,仍可维持导通状态。

晶闸管导通必须同时具备两个条件:1. 晶闸管阳极电路(阳极与阴极之间)施加正向电压。

2. 晶闸管控制电路(控制极与阴极之间)加正向电压或正向脉冲(正向触发电压)。

晶闸管导通后,控制极便失去作用。

依靠正反馈,晶闸管仍可维持导通状态。

晶闸管关断的条件:1. 必须使可控硅阳极电流减小,直到正反馈效应不能维持。

2. 将阳极电源断开或者在晶闸管的阳极和阴极间加反向电压。

1.3晶闸管的伏安特性静态特性承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通;承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通;晶闸管一旦导通,门极就失去控制作用;要使晶闸管关断,只能使晶闸管的电流降到接近于零的某一数值以下。

晶闸管的阳极伏安特性是指晶闸管阳极电流和阳极电压之间的关系曲线,如图3所示。

其中:第I象限的是正向特性;第III象限的是反向特性图3 晶闸管阳极伏安特性I G2>I G1>I GI G=0时,器件两端施加正向电压,正向阻断状态,只有很小的正向漏电流流过,正向电压超过临界极限即正向转折电压U bo,则漏电流急剧增大,器件开通。

这种开通叫“硬开通”,一般不允许硬开通;随着门极电流幅值的增大,正向转折电压降低;导通后的晶闸管特性和二极管的正向特性相仿;晶闸管本身的压降很小,在1V左右;导通期间,如果门极电流为零,并且阳极电流降至接近于零的某一数值I H以下,则晶闸管又回到正向阻断状态。

单向晶闸管等效电路-概述说明以及解释

单向晶闸管等效电路-概述说明以及解释

单向晶闸管等效电路-概述说明以及解释1.引言1.1 概述概述部分的内容:单向晶闸管(SCR),又称为可控硅,是一种广泛应用于电力电子领域的器件。

它具有可控性强、可靠性好、耐高压等特点,被广泛应用于电压和电流控制、能量转换以及电力传输等领域。

单向晶闸管的出现,使得电力系统的控制和调节更加灵活方便。

本文旨在深入研究和探讨单向晶闸管的等效电路模型,以了解其在电路中的作用和工作原理。

通过对单向晶闸管的原理、等效电路模型以及其特点的总结,我们可以进一步探讨其在电力电子技术领域的应用前景和发展趋势。

在接下来的正文部分,我们将首先介绍单向晶闸管的原理,包括其基本结构和工作原理。

然后,我们会重点讨论单向晶闸管的等效电路模型,以便更加清楚地描述其在电路中的行为和特性。

通过深入了解单向晶闸管的等效电路模型,我们可以更好地理解其在电力电子系统中的应用和控制方法。

最后,文章将总结单向晶闸管的特点和优势,并展望其在电力电子技术领域的应用前景。

随着科技的不断发展,单向晶闸管在能量转换、电力传输和电路控制等领域将发挥越来越重要的作用。

对于电力系统的稳定运行和能源的高效利用,单向晶闸管的进一步研究和应用具有重要的意义。

本文的目的是通过对单向晶闸管的原理和等效电路模型的介绍,帮助读者了解和掌握单向晶闸管在电力电子领域的应用。

希望读者能够通过本文的学习,对单向晶闸管有更深入的认识,并进一步探索其在电力电子技术领域中的创新应用。

文章结构部分的内容主要是介绍整篇文章的组织结构,以帮助读者理清思路和掌握文章的脉络。

下面是文章结构部分的内容:1.2 文章结构本文共分为三个部分:引言、正文和结论。

下面将对每个部分的内容进行简要介绍。

引言部分(第1节)主要对单向晶闸管等效电路的研究背景和意义进行概述。

首先介绍晶闸管在电力电子领域中的重要性,以及单向晶闸管作为一种重要的电子元器件在各个领域中的广泛应用。

然后引出本文的研究目的,并简要阐述文章的结构和各个部分的主要内容。

电力电子技术课后题答案

电力电子技术课后题答案

0-1. 什么是电力电子技术 ?电力电子技术是应用于电力技术领域中的电子技术;它是以利用大功率电子器件对能量进行变换和控制为主要内容的技术。

国际电气和电子工程师协会( IEEE)的电力电子学会对电力电子技术的定义为:“有效地使用电力半导体器件、应用电路和设计理论以及分析开发工具,实现对电能的高效能变换和控制的一门技术,它包括电压、电流、频率和波形等方面的变换。

”0-2. 电力电子技术的基础与核心分别是什么?电力电子器件是基础。

电能变换技术是核心.0-3. 请列举电力电子技术的 3 个主要应用领域。

电源装置 ; 电源电网净化设备 ; 电机调速系统 ; 电能传输和电力控制 ; 清洁能源开发和新蓄能系统 ; 照明及其它。

0-4. 电能变换电路有哪几种形式?其常用基本控制方式有哪三种类型AD-DC整流电 ;DC-AC逆变电路 ;AC-AC 交流变换电路 ;DC-DC直流变换电路。

常用基本控制方式主要有三类:相控方式、频控方式、斩控方式。

0-5. 从发展过程看,电力电子器件可分为哪几个阶段? 简述各阶段的主要标志。

可分为:集成电晶闸管及其应用;自关断器件及其应用;功率集成电路和智能功率器件及其应用三个发展阶段。

集成电晶闸管及其应用:大功率整流器。

自关断器件及其应用:各类节能的全控型器件问世。

功率集成电路和智能功率器件及其应用:功率集成电路( PIC),智能功率模块( IPM)器件发展。

0-6. 传统电力电子技术与现代电力电子技术各自特征是什么?传统电力电子技术的特征:电力电子器件以半控型晶闸管为主,变流电路一般为相控型,控制技术多采用模拟控制方式。

现代电力电子技术特征:电力电子器件以全控型器件为主,变流电路采用脉宽调制型,控制技术采用 PWM 数字控制技术。

0-7. 电力电子技术的发展方向是什么?新器件:器件性能优化,新型半导体材料。

高频化与高效率。

集成化与模块化。

数字化。

绿色化。

1-1. 按可控性分类,电力电子器件分哪几类?按可控性分类,电力电子器件分为不可控器件、半控器件和全控器件。

第1章 晶闸管

第1章 晶闸管

有效值与平均值之比称为波形系数Kf则: Kf=I/Id或I= KfId 。 例:设晶闸管承受的电压有效值为220V,流过的电流平 均为157A,波形系数为1.11,考虑安全裕量,求晶 闸管电压、电流定额。 i 解:UN=(2~3)1.414×220 IM =622 ~933V(取800V)
I K f Id I IT ( AV ) = (1.5 2) = (1.5 2) 1.57 1.57 1.11´ 157 0 (取 200 A) = (1.5 2) = 166 222 A 图1-11 1.57
学习重点:
晶闸管的工作原理、基本特性、主要参数以 及选择和使用中应注意的一些问题。
1.1
引言
晶闸管(Thyristor):晶体闸流管,可控硅整流 器(Silicon Controlled Rectifier——SCR)
1956年美国贝尔实验室发明了晶闸管。 1957年美国通用电气公司开发出第一只晶闸管产品。 1958年商业化。
第1章
1.1 引言
晶闸管
1.2 晶闸管的结构与工作原理 1.3 晶闸管的基本特性 1.4 晶闸管的主要参数 1.5 晶闸管的派生器件
1.6 电力二极管(整流二极管)
本章学习内容与重点
本章内容:
介绍晶闸管的工作原理、基本特性、主要参 数以及选择和使用中应注意的一些问题。 介绍电力二极管、晶闸管派生器件的基本特 性和使用中应注意的一些问题。
仿真实验
1.2 晶闸管的结构与工作原理
晶闸管的工作原理
⊕工作原理(从其内部四层结构来 A 分析) P1 ①定性分析 J1 N1 a. UG≤0,IG=0 G J2 P2 UAK<0时,J1,J3反偏,J2正 J 3 偏,反向阻断,晶闸管不导通, N2 解释①。 K UAK>0时,J1,J3正偏,J2反 偏,晶闸管不导通,解释⑤。图1-2 晶闸管的内部结构图

晶闸管模块的应用

晶闸管模块的应用

晶闸管智能模块发展史及后来的应用摘要:富安时介绍晶闸管thyristor可控硅模块的接图,晶闸管功率控制器主要技术参数及其应用范围。

电焊设备、激光电源、励磁电源、电镀电解电源、调功、调光、工业炉温控、固态动力开关、牵引、直流拖动、大吊车驱动、搅拌电源、电机软起动列出这种模块的控制方法及其电连接图。

晶闸管调整器体积小,功能齐全,联线简单,控制方便,性能稳定可靠是这种模块的特点,而增大容量,扩大功能,降低成本,系列化晶闸管功率控制器模块今后发展趋势。

1概况目前,富安时晶闸管的制造工艺和设计应用技术已相当成熟,正沿着大功率化和模块化二个方向前进:一是为高压真流输电(HVDC),静止无功补偿(SVC),超大功率高压变频调速以及几十万安培的直流电源领域用的125mm,8000V以上晶闸管的稳定生产而开展研发工作;二是向着体积更小,重量更轻,结构更紧凑,可靠性更高,使用更方便,内部接线电路各异和功能不同的模块化开展技术改进工作。

晶闸管功率控制器模块和整流二极管模块自20世纪70年代初问世以来获得了蓬勃发展,目前已能大批量生产各种类型的电力半导体模块,并广泛应用于国民经济各部门,为工业发展,技术进步,节能、节电、节材发挥了极大作用。

但是由于晶闸管是电流控制的电力半导体器件,所以需要较大的脉冲触发功率才能驱动晶闸管,而且它的触发系统电路复杂,体积大,安装调试较难,抗干扰和可靠性较差,制造成本也高,又因其触发系统易产生电磁干扰,难与微机接口,不易实现微机控制。

多年来,世界各国围绕如何更加方便、可靠、高效地使用晶闸管取得二方面的进展:一是把分立器件芯片按一定电路联成后封装成一般模块,给用户带来一定的使用方便;二是将门极触发系统的部分分立元器件制成专用集成触发电路,简化了触发系统。

但是所有这些并未摆脱将晶闸管主电路与门极触发系统分立制作的传统方式,也没有出现过把复杂庞大的触发系统、检测保护系统和大功率晶闸管主电路集成为一体,做成一个体积小,功能完整,并通过一个端口便能实现对三相电力进行调控的晶闸管智能模块(FUANSHI)。

第9章 晶闸管电路及其应用..

第9章 晶闸管电路及其应用..

二、晶闸管的主要参数
1. 晶闸管的电压参数
(1)正向转折电压UBO(Forward break over voltage)
在额定结温(100A以上为115℃,50A以下为100℃)和门 极开路的条件下,阳极和阴极间加正弦半波正向电压使器件由 阻断状态发生正向转折变成导通状态所对应的电压峰值。
(2)断态重复峰值电压UDRM(Blocking recurrence peak voltage) 指门极开路,晶闸管结温为额定值,允许重复施加在晶 闸管上的正向峰值电压。重复频率为每秒50次,每次持续时 间不大于10ms,其值为 UDRM = UBO—100V
(3)反向转折电压UBR 就是反向击穿电压。 (4)反向重复峰值电压URRM 指门极开路,晶闸管结温为额定值,允许重复施加在晶 闸管上的反向峰值电压。
U M和URRM中较小者,再取相应于标准电压等级 中偏小的电压值作为晶闸管的标称额定电压。在1000V以下, 每100V一个等级;在1000~3000V,则是每200V一个等级。为 了防止工作中的晶闸管遭受瞬态过电压的损害,通常取电压安 全系数为2~3,例如器件在工作电路中可能承受到的最大瞬时 值电压为UTM,则取额定电压UT=(2~3)UTM。 (6)通态正向平均电压UF
流),在不同的门极触发电流IG作用下经不同的转折电压UBO
和负阻区(电流增加,电压减小),到达正向导通状态(低 电压,大电流)。
正向导通特性和一般二要管的正向导通特性一样,门极
触发电流IG越大,转折电压UBO越低。
当IG=0时,晶闸管正向电压UAK增大到转折电压UBO前,器 件处于正向阻断状态,其正向漏电流随UAK电压增高而逐渐增 大,当UAK达到UBO时管子将突然从阻断状态转为导通状态, 导通后器件的特性与整流二极管正向伏安特性相似。 当通入门极电流IG且足够大时,正向转折电压降至极小, 使晶闸管像整流二极管一样,一加上正向阳极电压就导通,这
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9.3 晶闸管的触发电路
9.3.1 9.3.2 可控整流对触发电路的要求 单结晶体管触发电路
晶闸管的触发电路
晶闸管由阻断转化为导通,除了在阳极与阴极之间加正向 电压之外,还必须在控制极加正向触发电压。提供正向触发电
压的电路称为触发电路。
9.3.1
可控整流对触发电路的要求
晶闸管可以看成由一只 NPN 三极管与一只 PNP 三极管组 成,仅在阳极 a 和阴极 c 之间加上正向电压以后,V1V2 两只 三极管因为没有基极电流,所以均不导通。 若在 V1 的基极 g (即晶闸管的控制极上)加上正向电压, 使 V1 产生基极电流 IG,此电流经 V1 放大以后,在 V1 集电极 上就产生 1IG 的电流,经过 V2 再次放大,V2 的集电极电流 达到 12 IG,而此电流又重新反馈到 V1 作为 V1 基极电流又 一次被 V1 放大,使两只三极管迅速饱和导通。
体管触发电路的组成及工作原理。
4. 了解晶闸管常用的保护措施及防失控措施。
9.1 晶闸管简介
9.1.1 晶闸管的结构和符号
9.1.2 晶闸管的工作原理
9.1.3 晶闸管的主要参数
9.1.4 晶闸管的型号及简易检测
晶体闸流管(简称晶闸管,旧称可控硅) 广泛应用于无触点 开关电路及可控整流设备中。
9.1.1
即晶闸管阳极 a 与阴极 c 之间完全导通。由于 V1 基极上自 动维持有正反馈电流,所以即使去掉 V1 基极 g 上的正向电压, V1 和 V2 仍能继续保持饱和状态。 晶闸管导通时,V1、V2 饱和导通总压降约 1 V 左右,如果 阳、阴极之间正向电压太低,使渡过阳极的电流难以维持导通 值,V1、V2 就会截止,晶闸管即关断。 晶闸管的控制极电压、电流比较低,电压只有几伏,电流 只有几十到几百毫安,但被控制的器件则可以承担很大的电压 和通过很大的电流。
通态平均电压级别(小于100 A 的不标)① D
级为 0.7 V
额定电压级别 ② [ 为 1000 V ] 额定正向平均电流 [ 200 A ] 普通型 晶闸管
① 通态平均电压分 9 级,用 A ~ I 字母表示,由 0.4 ~ 12 V,每隔 0.1 V 为一级。 ② 额定电压在 1 000 V 以下的每 100 V 为一级,1 000 V 到 3 000 V 的每 200 V 为一级。用百位数或千位及百位数组合 表示级数。
动画 单相桥式整流电路
应用实例
晶闸管除了用于可控整流电路 外,还可作为无触点可控开关。
防盗报警器(断线报警器) 如图当开关 S 闭合后,电路处于值班状态。 晶闸管 V 的 g 极被 B、D间导线短路接地而使晶闸管截止。 当短路导线被弄断时,电源 G 经 R1 和 R2 的分压使 g 极获得触 发电压,晶闸管 V 导通,防盗报警器(蜂鸣器)H 即发声报警。
第9章
晶闸管及其应用
本章学习目标
9.1 晶闸管简介 9.2 可控整流电路
9.3 晶闸管的触发电路 9.4 晶闸管的保护和防失控措施 本章小结
本章学习目标
1. 熟悉晶闸管的工作特性,理解其主要参数的含义。 2. 掌握单相可控整流电路的组成形式,理解电阻性负载 可控整流电路的工作原理。 3. 了解单结晶体管的工作特性、电路符号,理解单结晶
晶闸管的结构和符号
图 (a) 所示是常见晶闸管外形,它有三个电极:阳极 a、阴 极 c 和控制极 g。图(b)是晶闸管的符号,图(c)是晶闸管内 部结构示意图。 图 (c) 可见,晶闸管 ቤተ መጻሕፍቲ ባይዱ部有三个 PN 结,分别 用 J1、J2 和 J3 表示。
9.1.2 晶闸管的工作原理
晶闸管的工作特点有以下三点: 1.晶闸管导通必须具备两个条件:一是晶闸管阳极与阴极 间必须接正向电压,二是控制极与阳极之间也接正向电压。 2.晶闸管一旦导通后,降低或去掉控制极电压时,晶闸管 仍然导通。 3.导通后的晶闸管若要关断时,必须减小阳极电流使其小 于晶闸管的导通维持电流。 晶闸管的这些工作特性是 由其内部结构决定的,可用示 意图来解释。
二、简易检测 1.检测阳、阴极正、反向是否短路。可用万用表 R 1 k 电阻挡,测试阳、阴极间的正、反向电阻,都应很大(指针基本 不动),否则元件内部有短路或性能不好。 2.检测控制极是否短路或断开。因控制极与阴极之间是一 个 PN 结,判断的原则同测普通晶体二极管方法相同。
9.2 单相可控整流电路
电压可达几千伏,电流可大到几百安以上。因此晶闸管是 一种可控的单向导电开关,常用于以弱电支控制强电的各类电 路中。
9.1.3 晶闸管的主要参数
1.额定正向平均电流 在规定的环境温度和散热条件下, 允许通过阳极和阴极之间的电流平均值。
2 .维持电流 在规定的环境温度、控制极断开的条件下, 要保持晶闸管处于导通状态所需要的最小正向电流。
称反向阻断峰值电压。
9.1.4 晶闸管的型号及简易检测
一、型号 我国目前生产的晶闸管的型号有两种表示方法,即 3CT 系 列和 KP 系列。 3 C T - 5/500
表示正向阻断峰值电压(V)[500 V] 表示额定正向平均电流(A)[5 A] 表示晶闸管元件
表示 N 型硅材料 表示 三个电极
P K 200 - 10 D
9.2.1 单相半波可控整流电路
9.2.2 单相桥式可控整流电路
9.2.1 单相半波可控整流电路
改变触发电压到 来的时刻,亦即改变 控制角 的大小, 就改变了导通角 , 也就改变了负载电压 vL 的平均值。
9.2.2 单相桥式可控整流
由可见,此电路也是 通过调整触发信号出现的 时间来改变晶闸管控制角 和导通角 ,从而实现 控制输出的直流电压平均 值之目的。
3 .控制极触发电压和电流 在规定的环境温度及一定的 正向电压条件下,使晶闸管从关断到导通,控制极所需的电波 电压和电流。
4.正向阻断值电压 控制极断开,加正向电压晶闸管截止 的状态称正向阻断;此时允许加到晶闸管上的正向电压最大值 称正向阻断峰电压。
5.反向阻断峰电压 控制极断开,加反向电压晶闸管截止 的状态称反向阻断,此时允许加到晶闸管上的反向电压最大值
相关文档
最新文档