数据结构——一元多项式的建立与相加
数据结构课程设计-一元多项式的加法、减法、乘法的实现

数据结构课程设计-一元多项式的加法、减法、乘法的实现一、设计题目一元多项式的加法、减法、乘法的实现。
二、主要内容设有一元多项式A m(x)和B n(x).A m(x)=A0+A1x1+A2x2+A3x3+… +A m x mB n(x)=B0+B1x1+B2x2+B3x3+… +B n x n请实现求M(x)= A m(x)+B n(x)、M(x)= A m(x)-B n(x)和M(x)=A m(x)×B n(x)。
要求:1) 首先判定多项式是否稀疏2) 采用动态存储结构实现;3) 结果M(x)中无重复阶项和无零系数项;4) 要求输出结果的升幂和降幂两种排列情况三、具体要求及应提交的材料1.每个同学以自己的学号和姓名建一个文件夹,如:“312009*********张三”。
里面应包括:学生按照课程设计的具体要求所开发的所有源程序(应该放到一个文件夹中)、任务书和课程设计说明书的电子文档。
2.打印的课程设计说明书(注意:在封面后夹入打印的“任务书”以后再装订)。
四、主要技术路线提示为把多个小功能结合成一个完整的小软件,需使用“菜单设计”技术(可以是控制台方式下的命令行形式,若能做成图形方式则更好)。
五、进度安排共计两周时间,建议进度安排如下:选题,应该在上机实验之前完成需求分析、概要设计可分配4学时完成详细设计可分配4学时调试和分析可分配10学时。
2学时的机动,可用于答辩及按教师要求修改课程设计说明书。
注:只用课内上机时间一般不能完成设计任务,所以需要学生自行安排时间做补充。
六、推荐参考资料(不少于3篇)[1]苏仕华等编著,数据结构课程设计,机械工业出版社,2007[2]严蔚敏等编著,数据结构(C语言版),清华大学出版社,2003[3]严蔚敏等编著,数据结构题集(C语言版),清华大学出版社,2003指导教师签名日期年月日系主任审核日期年月日摘要分析了matlab,mathmatic,maple等数学软件对一元多项式的计算过程,步骤后。
数据结构C语言实现之一元多项式的表示及相加(2)

数据结构 C 语言实现之一元多项式的表示及相加(2)
一元多项式的表示及相加 对于符号多项式的各种操作,实际上都可以利用线性表来处理。比较典型的是关于一元多项式的处理。在
} } e>next; /*将 q 结点加入到和多项式中*/ q =q->next; } }
} if(p!=NULL)/*多项式 A 中还有剩余,则将剩余的结点加入到和多项式中*/
pre->next=p;
else /*否则,将 B 中的结点加入到和多项式中*/ pre->next=q; }
算法 2.24 多项式相加 假设 A 多项式有 M 项,B 多项式有 N 项,则上述算法的时间复杂度为 O(M+N) 图 2.20 所示为图 2.19 中两个多项式的和,其中孤立的结点代表被释放的结点。
通过对多项式加法的介绍,我们可以将其推广到实现两个多项式的相乘,因为乘法可以分解为一系列的加 法运算。
“中的结点无需另生成,则可看成是将多项式 B 加到多项式 A 中,由此得到下列运算规则(设 p、q 分别 指向多项式 A,B 的一项,比较结点的指数项)
若 p->exp< q->exp,则结点 p 所指的结点应 是“和多项式”中的一项,令指针 p 后移;若 p>exp>q->exp,则结点 q 所指的结点应是“和多项式”中的一项,将结点 q 插入在结点 p 之前, 且令指针 q 在原来的链表上后移;
(1)用单链表存储多项式的结点结构如下: struct Polynode { int coef; int exp; Polynode *next; } Polynode , * Polylist;
c语言数据结构实现——一元多项式的基本运算

文章标题:深入理解C语言中的数据结构实现——一元多项式的基本运算在C语言中,数据结构是非常重要的一个概念,它为我们处理各种复杂的数据提供了便利。
其中,一元多项式的基本运算是数据结构中的一个重要内容,它涉及到多种数据结构的操作和算法,是我们学习C 语言中数据结构的一个重要入口。
在本文中,我们将深入探讨C语言中一元多项式的基本运算,帮助读者更深入地理解这一重要的概念。
一、一元多项式的表示方式在C语言中,一元多项式可以使用数组来表示。
每个数组元素对应一个项,数组的下标对应每一项的次数,数组的值对应该项的系数。
一个一元多项式可以表示为:```cfloat polynomial[10] = {0, 1, 2, 0, 4}; // 表示多项式 1 + 2x + 4x^4 ```二、一元多项式的基本运算1. 一元多项式的加法有两个多项式 A 和 B,它们分别表示为 `float polynomialA[10]` 和`float polynomialB[10]`,那么它们的加法运算可以表示为:```cfor (int i = 0; i < 10; i++) {polynomialC[i] = polynomialA[i] + polynomialB[i];}```2. 一元多项式的减法一元多项式的减法是指将两个多项式相减得到一个新的多项式。
与加法类似,多项式 A 和 B 的减法运算可以表示为:```cfor (int i = 0; i < 10; i++) {polynomialC[i] = polynomialA[i] - polynomialB[i];}```3. 一元多项式的乘法式 A 和 B 的乘法运算可以表示为:```cfor (int i = 0; i < 10; i++) {for (int j = 0; j < 10; j++) {polynomialC[i+j] += polynomialA[i] * polynomialB[j];}}```4. 一元多项式的除法一元多项式的除法涉及到较为复杂的算法,需要考虑余数和商的处理。
数据结构一元多项式的运算

数据结构一元多项式的运算正文:1. 引言本文档旨在介绍数据结构中一元多项式的运算方法。
一元多项式是指在一个变量上的多项式,其中每一项由一个系数和一个指数组成。
我们将会讨论一元多项式的表示、存储和基本运算,包括多项式的加法、减法、乘法和求导等操作。
2. 一元多项式的表示和存储2.1 一元多项式的定义一元多项式是指在一个变量x上的多项式,每一项由一个系数和一个指数组成,例如:2x^3 - 5x^2 + 3x + 1.其中,2、-5、3和1分别是系数,3、2、1和0分别是指数。
2.2 一元多项式的表示方法一元多项式可以使用数组、链表或其他数据结构来表示。
在本文中,我们选择使用数组来表示一元多项式。
数组的索引代表指数,数组的元素代表系数。
例如,多项式 2x^3 - 5x^2 + 3x + 1 可以表示为 [1, 3, -5, 2]。
2.3 一元多项式的存储结构为了表示一元多项式,我们可以使用一个数组来存储多项式的系数。
数组的长度应该比多项式的最高指数大1.数组的索引代表指数,数组的元素代表系数。
例如,数组 [1, 3, -5, 2] 表示的多项式 2x^3 - 5x^2 + 3x + 1 中,索引0对应指数为3的项,索引1对应指数为2的项,以此类推。
3. 一元多项式的基本运算3.1 一元多项式的加法一元多项式的加法是指将两个多项式相加,并合并同类项。
具体操作如下:- 将两个多项式的系数相加,并将结果存储在一个新的多项式中。
- 遍历新的多项式,将相邻的相同指数的项合并。
3.2 一元多项式的减法一元多项式的减法是指将一个多项式减去另一个多项式,并合并同类项。
具体操作如下:- 将两个多项式的系数相减,并将结果存储在一个新的多项式中。
- 遍历新的多项式,将相邻的相同指数的项合并。
3.3 一元多项式的乘法一元多项式的乘法是指将两个多项式相乘,并合并同类项。
具体操作如下:- 遍历一个多项式的每一项,与另一个多项式的每一项相乘。
数据结构:一元多项式的表示与相加

实验一一元多项式的表示与相加实验目的:1.复习并熟练掌握数据结构所使用的程序设计语言——C语言;2.学会单步跟踪、调试自己的程序;3.加深对线性表特别是链表知识的理解和掌握,并能够运用相关知识来解决相关的具体问题,如一元多项式相加等;程序流程:1.定义一元多项式链表结构体类型;2.输入多项式项数以分配存储空间;3.输入多项式每项的系数和指数,将其插入当前多项式链表。
同时判断是否有与当前节点指数相同的项,若存在,则将两项系数相加合并。
此外,若存在系数为0的项,将其存储空间释放;4.进行多项数加法时,新建一个存储结果的链表,分别将两多项式各项依次插入结果多项式即完成多项式相加运算;5.进行多项数加法时,将减项多项式各项系数化为相反数后进行加法操作,即完成多项式相减运算;6.对x赋值后,将x值代入多项式进行运算得到多项式的值;7.输出多项式。
注意:进行完一次运算以后,应该及时销毁无用多项式以释放空间以便再次应用。
算法及注释:1)定义一元多项式链表结构体类型typedef struct Lnode{float cof; //定义系数int exp; //定义指数struct Lnode *next; //定义指针变量指向下一个节点}Lnode ,*Linklist; //定义新的变量类型2)建立多项式存储线性链表头结点void makehead(Linklist &head){ head=(Linklist)malloc(sizeof(Lnode)); //建立新的节点head->exp=-1; head->next=NULL; //指针赋空head->cof=1; }3)将输入的多项式信息存储于节点中void makelnode(Lnode *&p){ p=(Lnode*)malloc(sizeof(Lnode)); //建立新的节点printf(Input the cof and exp\n); scanf(%fx%d,&p->cof,&p->exp); //输入多项式底数指数信息p->next=NULL; //指针赋空}4)清除系数为零的多项式节点void clear(Linklist la){ Lnode *p,*q; //定义两个指向结构体的指针p=la; q=p->next; while (q){ if (fabs(q->cof)<=0.000001) { //判断系数为零p->next=q->next; //指针指向相隔的下一个节点free(q); //销毁系数为零的节点q=p->next; //指针后移一位} else { p=p->next; //p q分别后移一位q=q->next;} } }5)找到多项式中与当前节点同指数项位置int locate(Linklist l,Lnode *&p,Lnode*e){ p=l;//标记表头if (!l->next)return(0); while(p&&e->exp!=p->exp){//当p存在且指数不相等时指针后移p=p->next; } if(p) return(p);//当p存在时,返回p地址else {//没找到时寻找出插入位置p=l; while (p->next&&e->exp<=p->next->exp) p=p->next; if (!p->next){ p=p;return(0); } return(0); } }6)将多项式节点插入已有多项式链表中,同时完成系数运算void caseinsert(Linklist &l,Lnode *e){ Lnode *p;if (locate(l,p,e)){//指数相同项系数相加p->cof += e->cof; free(e); } else{//插入新的项e->next=p->next; p->next=e; } }7)创建新的多项式链表void creat(Linklist &head,int m){ Lnode *p;int i; makehead(head);//建立头结点for (i=1;i<=m;i++){ p=(Linklist)malloc(sizeof(Linklist));//建立新的多项式单个节点空间makelnode(p);//建立赋值caseinsert(head,p);//将多项式节点插入已有多项式链表中,同时完成系数运算} clear(head); }8)输入多项式项数并创建节点进行存储void input(Linklist &l){ int m; printf(Input the Poly numbers\n); scanf(%d,&m); creat(l,m);//建立一个l 指向的头指针有m项的多项式链表}9)输出多项式void print(Linklist l){ Lnode *p; p=l->next;printf(Poly:ox^%d,p->cof,p->exp); p=p->next; while (p){ if(p->cof>0) printf(+);//系数正负号if (fabs(p->cof)<=0.000001); break;//不输出系数为零的项printf(ox^%d,p->cof,p->exp); p=p->next;//指针后移} printf(\n); }10)进行多项式加法运算void add(Linklist la,Linklist lb,Linklist &lc) { Lnode *p,*q,*q1,*p1; p=la->next; q=lb->next; makehead(lc);//建立一个新的表头while(p){ p1=p->next; caseinsert(lc,p);//将多项式节点p插入已有多项式链表lc中,同时完成系数运算p=p1;//指针后移} while(q){ q1=q->next; caseinsert(lc,q);//将多项式节点q插入已有多项式链表lc中,同时完成系数运算q=q1; } }11)将减项多项式转化为系数为相反数的多项式便于转化为加法运算void reverse(Linklist &l){ Linklist p; p=l->next; while(p){ p->cof*=-1;//系数自乘-1p=p->next; } }12)进行多项式减法运算void sub(Linklist la,Linklist lb,Linklist &lc){ reverse(lb); add(la,lb,lc);clear(lc);//清除头结点}13)对x赋值进行多项式赋值运算float value(Linklist l,float x){ float sum=0,t; int i; Linklist p=l->next; while(p){t=1;for (i=p->exp;i>0;i--) t*=x; sum=sum+t*p->cof; p=p->next; } return(sum); }14)销毁已有多项式,清除已有多项式占用的存储空间void destroy(Linklist la){ Lnode *p,*q; p=la; while(p){ q=p; p=p->next; free(q); } }15)创建主程序即菜单界面void main(){ Linklist l[10]; int c,n,m,i; float a; printf(Choose the number to operate:\n); printf( 1:Creat a Poly\n); printf( 2:Poly Addition\n); printf( 3:Poly Substraction\n); printf( 4:Evaluation\n); printf( 5:Destroy a Poly\n); printf( 6:Print a Poly\n); printf( 0:Exit\n); printf(\nDestroy the Polys after used.\n); printf(\n*use ',' to separate\n);scanf(%d,&c); while (c){ switch (c){ case 1: printf(Input the Poly number 1~9\n);scanf(%d,&n); input(l[n]);break; case 2: printf( Input the Poly number to add,and the Poly number stored in\n); scanf(%d,%d,%d,&n,&m,&i); add(l[n],l[m],l[i]);break; case 3: printf( Input the Poly number to subtract,and the Poly number stored in\n); scanf(%d,%d,%d,&n,&m,&i);sub(l[n],l[m],l[i]);break; case 4: printf(Input the number to operate and the value of x:\n);scanf(%d,%f,&n,&a); printf(%f\n,value(l[n],a));break; case 5: printf(Input the Poly number:\n); scanf(%d,&n); destroy(l[n]);break; case 6: printf( Input the Poly number:\n); scanf(%d,&n); print(l[n]); case 0: n=0;break; default:printf(ERROR!); } printf(Choose the number to operate:\n); scanf(%d,&c); }printf(OK!\n);程序运行截图:实验总结:这次实验室数据结构第一次上机实验,由于与C语言课程的学习相隔已经一个学期,对C语言有些生疏和遗忘,在编程过程中出现很多错误。
c语言数据结构实现——一元多项式的基本运算

c语言数据结构实现——一元多项式的基本运算在C语言中,一元多项式的表示与运算是常见的数据结构操作之一。
一元多项式由一系列具有相同变量的单项式组成,每个单项式由系数和指数组成。
本文将介绍如何使用C语言实现一元多项式的基本运算,包括多项式的创建、求和、差、乘积等操作。
首先,我们需要定义一个结构体来表示单项式。
每个单项式由一个系数和一个指数组成,我们可以将其定义如下:```cstruct term{float coefficient; // 系数int exponent; // 指数};typedef struct term Term;```接下来,我们可以定义一个结构体来表示一元多项式。
一元多项式由一系列单项式组成,可以使用一个动态数组来存储这些单项式。
```cstruct polynomial{Term* terms; // 单项式数组int num_terms; // 单项式数量};typedef struct polynomial Polynomial;```现在,我们可以开始实现一元多项式的基本运算了。
1. 创建一元多项式要创建一元多项式,我们需要输入每个单项式的系数和指数。
我们可以使用动态内存分配来创建一个适应输入的单项式数组。
```cPolynomial create_polynomial(){Polynomial poly;printf("请输入多项式的项数:");scanf("%d", &poly.num_terms);poly.terms = (Term*)malloc(poly.num_terms * sizeof(Term));for(int i = 0; i < poly.num_terms; i++){printf("请输入第%d个单项式的系数和指数:", i+1);scanf("%f %d", &poly.terms[i].coefficient, &poly.terms[i].exponent);}return poly;}```2. 求两个一元多项式的和两个一元多项式的和等于对应指数相同的单项式系数相加的结果。
数据结构——链表实现一元多项式的表示和加法

数据结构——链表实现⼀元多项式的表⽰和加法⼀元多项式的链式结构:Typedef struct Lnode{float coef;///系数int expn;///指数struct Lnode *next;} PLnode, *PLinkList;基本思想:(1)若pa->expn⼩于pb->expn,则pa继续向前扫描;(2)若pa->expn等于pb->expn,将其系数相加,若相加结果不为0,将结果放⼊pa->coef中,并删除pb所指的结点,否则同时删除pa和pb所指的结点,然后pa和pb继续向前扫描;(3)若pa->expn⼤于pb->expn,则将pb所指的结点插⼊pa所指的结点之前,然后pb继续向前扫描;(4)重复上述过程直到pa或pb有⼀个为空为⽌,最后将剩余结点的链表接在结果链表上。
PLinklist Add(PLinklist pa,PLinklist pb){PLinklist p,q,r,s; /*两个多项式相加*/int cmp,x;p=pa->next; /*指向pa的第⼀个元素*/q=pb->next; /*指向pb的第⼀个元素*/s=pa; /*s作为P的跟踪指针*/r=pb;/*r作为q的跟踪指针*/while(p!=NULL&&q!=NULL){if(p->exp<q->exp){cmp=-1;}else if(p->exp>q->exp){cmp=1;}else///指数相等{cmp=0;}switch(cmp){/*根据指数的⽐较情况进⾏不同的处理*/case -1:{s=p;p=p->next;///pa表指针后移,没有插⼊break;}case0:{x=p->coef+q->coef;///指数相等,系数相加if(x!=0) /*系数不为0*/{p->coef=x;s=p;p=p->next;}/*if*/else///系数为0,在pa表中删除该结点{s->next=p->next;free(p);p=s->next;}/*else*/r->next=q->next;///在pb表中删除该结点free(q);q=r->next;break;} /*case0*/case1:{q->next=s->next;s->next=q;///将pb表中的q插⼊到pa表中的s的后⾯r->next=q->next;s=q;q=r->next;break;} /*case1*/}/*switch*/}/*while*/if(q!=NULL)///当pb连表还有剩余时接⼊到pa连表的尾部 {s->next=q;}free(pb);return pa;}/* Add*/。
数据结构《一元多项式》

一元多项式相加问题实验报告本实验的目的是进一步熟练掌握应用链表处理实际问题的能力。
一、问题描述通过键盘输入两个形如Po+P₁X¹+P₂X²+…+PX的多项式,经过程序运算后在屏幕上输出它们的相加和。
二、数据结构设计分析任意一元多项式的描述方法可知,一个一元多项式的每一个子项都由“系数-指数”两部份组成,因此可将其抽象为包含系数coef、指数 exp、指针域next 构成的链式线性表。
对多项式中系数为0的子项可以不记录它的指数值,将两个多项式分别存放在两个线性表中,然后经过相加后将所得多项式存放在一个新的线性表中,但是不用再开辟新的存储空间,只依靠结点的挪移来构成新的线性表,期间可以将某些不需要的空间回收。
基于这样的分析,可以采用不带头结点的单链表来表示一个一元多项式。
具体数据类型定义为:struct nodefloat coef;//系数域int exp; //指数域struct node *next;};三、功能函数设计1、输入并建立多项式的功能模块具体函数为node *in f un()此函数的处理较为全面,要求用户按照指数递增的顺序和一定的输入格式输入各个系数不为0的子项,输入一个子项建立一个相关结点,当遇到输入结束标志时住手输入。
关键步骤具体如下:(1)控制用户按照指数递增的顺序输入r=a;while(r!=q->next)if(y<=r->exp)cout<<"请按照指数递增顺序输入,请重新输入";cin>>x>>y;break;r=r->next;从头开始遍历,若遇到目前输入的指数不是最大时,就跳出循环,让用户重新输入。
(2)当输入的系数为零时,不为其分配存储空间存储while(x==0){cin>>x>>y;continue;}即若系数为0,再也不进行动态分配并新建结点,而是重新提取用户输入的下一个子项的系数和指数,利用continue 进入下一次循环。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
#include <cmath>
using namespace std;
typedef struct PolyNode
{
int coef; //系数
int expn; //指数
struct PolyNode *next;
} *PNode; //多项式结点的指针
void InitPoly(PNode &head,PNode &p)
{
int n;
PNode s,p;
pa=pa->next;
pb=pb->next;
p=pc;
while (pa!=NULL && pb!=NULL)
{
if (pa->expn>pb->expn)
{
s=(PNode)malloc(sizeof(struct PolyNode));
s->coef=pa->coef;
{
if(i) //显示第一对的时候是不需要显示加号的
{
if (p->expn==1) cout<<p->coef<<"x";
else if (p->expn==0) cout<<p->coef<<endl;
else cout<<p->coef<<"x^"<<p->expn;
i=0;
}
else
{
if (p->expn==1) cout<<p->coef<<"+x";
else if (p->expn==0) cout<<"+"<<p->coef<<endl;
else cout<<"+"<<p->coef<<"x^"<<p->expn;
}
p=p->next;
}
cout<<endl<<endl;
}
void Addpoly(PNode &pa,PNode &pb,PNode &pc)
{
head=(PNode)malloc(sizeof(struct PolyNode));
head->next=NULL;
head->coef=0;
head->expn=-1;
p=head;
}
void CreatePoly(PNode &head,int a,int n)
{
PNode s;
s=(PNode)malloc(sizeof(struct PolyNode)); //建立新的结点
}
s=(PNode)malloc(sizeof(struct PolyNode)); //pc上还要再多建立一个节点
s->next=NULL;
p->next=s;
}
void Subpoly(PNode &pa,PNode &pb,PNode &pc)
{
}
int main()
{
PNode poly1,poly2,poly3;
Addpoly(p1,p2,poly3);
PrintPoly(p3);
cout<<endl;
cout<<"两个多项式相减得到新的多项式: "<<endl;
return 0;
}
PNode p1,p2,p3;
cout<<"请输入第一个一元多项式的系数和指数,以0 0为结束!!!"<<endl;
cout<<"指数请从大到小输入!!!"<<endl;
InitPoly(poly1,p1);
int a=1,m=1;
int i=1;
while(a!=0&&m!=0)
{
cout<<"第"<<i<<"对系数和指数分别是: ";
i=1;
while(b!=0&&n!=0)
{
cout<<"第"<<i<<"对系数和指数分别是: ";
cin>>b;
cin>>n;
CreatePoly(poly2,b,n);
i++;
}
PrintPoly(p2);
InitPoly(poly3,p3);
cout<<"两个多项式相加得到新的多项式: "<<endl;
s->next=NULL;
p->next=s;
p=s;
pb=pb->next;
}
else //两者的幂相等时
{
n=pa->coef+pb->coef;
if (n!=0)
{
s=(PNode)malloc(sizeof(struct PolyNode));
s->coef=n;
s->expn=pb->expn;
cin>>a;
cin>>m;
CreatePoly(poly1,a,m);
i++;
}
PrintPoly(p1);
cout<<"请输入第二个一元多项式的系数和指数,以0 0为结束!!!"<<endl;
cout<<"指数请从大到小输入!!!"<<endl;
InitPoly(poly2,p2);
int b=1,n=1;
s->next=NULL;
p->next=s;
p=s;
}
pa=pa->next;pb=pb->next;
}
}
while (pb=NULL)
{
s=(PNode)malloc(sizeof(struct PolyNode));
s->coef=pa->coef;
s->expn=pa->expn;
s->next=NULL;
s->coef=a;
s->expn=n;
s->next=NULL;
head->next=s;
head=s;
}
void PrintPoly(PNode head)
{
int i=1;//控制第一对系数指数的显示
head=head->next;//指向表头结点的下一个
PNode p;
p=head;
while ((p->next)!=NULL)
p->next=s;
p=s;
pa=pa->next;
}
while (pa=NULL)
{
s=(PNode)malloc(sizeof(struct PolyNode));
s->coef=pb->coef;
s->expn=pb->expn;
s->next=NULL;
p->next=s;
p=s;
pb=pb->next;
s->expn=pa->expn;
s->next=NULL;
p->next=s;பைடு நூலகம்
p=s;
pa=pa->next;
}
else if (pa->expn<pb->expn)
{
s=(PNode)malloc(sizeof(struct PolyNode));
s->coef=pb->coef;
s->expn=pb->expn;