博弈论论文

合集下载

博弈论论文

博弈论论文

博弈论论文引言博弈论是数学中一个重要的分支,研究决策制定者之间的相互作用和冲突。

它的应用领域包括经济学、管理科学、政治学等。

在本论文中,我们将探讨博弈论的基本概念,讨论不完全信息情况下的博弈模型,并分析几种常见的博弈解决概念。

博弈论的基本概念博弈博弈是指一组参与者在给定的规则下进行决策,并从中获得一定的收益或效益。

参与者之间的决策互相影响,并且他们的决策往往是非合作的。

策略策略是指参与者选择的行动方案。

他们根据自己对其他参与者行为的预期和自身的目标选择策略。

支配策略对于一个参与者而言,支配策略是指无论其他参与者采取何种策略,该参与者的一个策略总是获得更高的收益。

在博弈论中,支配策略是非常重要的概念。

纯策略和混合策略纯策略是指参与者选择一个明确的行动方案,而混合策略是指参与者以一定的概率分布来选择行动方案。

不完全信息博弈模型基本的博弈模型假设参与者对其他参与者的策略和效用函数有完全的信息。

然而,在现实生活中,很多博弈情况下,参与者并不完全了解其他参与者的信息。

不完全信息博弈模型引入了信息不对称的概念。

信息不对称信息不对称指的是在博弈中,一个参与者对其他参与者的信息有限或不完全。

这会导致参与者的决策受到信息的限制,进而影响博弈的结果。

基本模型不完全信息博弈模型可以通过一个双人博弈的例子来说明。

假设有两个参与者A和B,他们面临的博弈情境是投资决策。

参与者A可以选择投资或者不投资,参与者B也可以选择投资或者不投资。

他们各自的收益函数与投资与否有关,但是参与者B的收益函数对于参与者A是不可见的。

不完全信息博弈的解不完全信息博弈的解决方法包括纳什均衡和贝叶斯博弈。

纳什均衡纳什均衡是博弈论中最重要的解概念之一。

在不完全信息博弈中,纳什均衡指的是一组策略,使得任何一个参与者在其他参与者选择策略的情况下都没有改变自己的策略的动机。

贝叶斯博弈贝叶斯博弈是指在不完全信息博弈中,参与者对其他参与者的信息有先验的概率分布,并且随着游戏的进行不断修正对其他参与者信息的估计。

大学选修课《博弈论》论文

大学选修课《博弈论》论文

《博弈论》学生结课论文班级:姓名:学号:完成时间:XX大学XX学院用博弈分析生活摘要:在生活中,博弈无处不在。

无论是日常游戏,还是体育竞技,亦或是厂商之间的价格战,国家的贸易战,军备竞赛等,都应用到了博弈论的思想。

例如京东与当当之间的图书价格战,中美贸易战,大学生活中的占座问题,学校是否补课问题,企业的效率工资制度等。

囚徒困境是博弈论中非零和博弈的典型模型,它反映了个人最佳选择并非是集体的最佳选择这一现象。

关键词:囚徒困境,纳什均衡,完全信息静态博弈,非零和博弈,生活应用。

一,理论基础现代博弈论发源于西方的17世纪,1928年,冯.诺依曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生,到1944年,冯.诺依曼与摩根斯坦共著划时代巨著《博弈论与经济行为》的发表标志着现代博弈论的诞生。

其实在我国古代,“博弈”这个词就早早出现了,比如《史记》中记载的“田忌赛马”就是一个非常经典的博弈问题。

现代博弈论的主要应用领域是经济活动中的经营决策,市场竞争以及政治军事活动中的谈判,联合等。

博弈论所研究的博弈本质上就是(个人,小组,或其他组织的)决策行为,通过最优策略来达到博弈方的得益最优。

其实博弈现象不仅仅存在于经济活动中,在我们的日常生活中也是随处可见的,通过对博弈论的学习,我们能够将博弈思想与现实生活联系起来,从而获得最优策略。

下面我将从囚徒困境出发对生活中的博弈作出分析。

二,囚徒困境模型囚徒困境是博弈论中非零和博弈的典型模型,它反映了个人最佳选择并非是集体的最佳选择这一问题。

囚徒困境源自梅里尔•弗勒德和梅尔文•德雷希尔拟定出的相关困境理论,由艾伯特•塔克以囚徒方式阐述。

囚徒困境的原模型是警察抓住两名合伙犯罪的罪犯,为防止串供而将其分开审问,如果囚徒1和2都选择坦白,那么二者都将获刑5年,如果都不坦白,那么将获刑一年,如果囚徒1坦白,而囚徒2不坦白,那么囚徒1被立即释放,囚徒2获刑8年,如果囚徒1不坦白,囚徒2坦白,那么囚徒1获刑8年,囚徒2立即释放。

博弈论论文(囚徒困境案例纳什均衡案例完全信息静态博弈完全信息动态博弈)

博弈论论文(囚徒困境案例纳什均衡案例完全信息静态博弈完全信息动态博弈)

二、博弈论的发展史 2.1中国传统文化中的博弈论
在我国,博弈论的思想源远流长,古代人民很早就认识了博弈问题,虽然没有形 成一套完整的理论体系和方法,但博弈论的思想和实践活动,则可以追溯到 2000 多年 前。著名的"齐王与田忌骞马"就是一经典事例。这里,田忌进行的是"在给定齐王策略 不变情况下如何取胜"这一策略选择,实际上就是现代博弈论中的完全信息条件下的两 人博弈问题。著名的《孙子兵法》一书对战争胜负的认识,以及胜负之间诸因素的相 互作用的深刻论述,和所提出的一系列军事对策等,都反映出其系统的博弈论思想。 而《三十六计》则可以称做是一部活生生的军事博弈论教科书。《孙子兵法》和《三
博弈论论文
摘要:在现实生活中,人们的利益冲突与一致具有普遍性。因此,几乎所有的决 策问题都可以认为是博弈。虽然博弈论是数学的一个分支,但其应用范围十分广泛, 在经济学、管理学、社会学、政治学、法律学、军事学等领域都有许多成功运用博弈 论的案例。本文对博弈论发展简史、博弈论基本概念进行阐述,对囚徒困境、纳什均 衡、完全信息静态博弈、完全信息动态博弈、进行解析与案例分析。 关键词:博弈论、博弈论发展简史、博弈论基本概念、囚徒困境案例、纳什均衡 案例、完全信息静态博弈、完全信息动态博弈。
一、在生活中广泛应用的博弈论
在高飞老师的带领下,经过一段时间的学习,我对博弈论有了一些肤浅的理解。 诚然,一门学问想在短时间内有所深入理解是不现实的。生活之中到处充满着博弈, 有人说没有,那是因为缺少发现博弈现象的眼睛。 人生就是在弈棋,学会博弈。虽说 博弈不是万能的,但没有博弈现象存在的生活是万万不能的。 博弈论毕竟是数学,更确切地说是运筹学的一个分支,谈经论道自然少不了数学 语言,外行人看来只是一大堆数学公式。好在博弈论关心的是日常经济生活问题,所 以不能不食人间烟火。其实这一理论是从棋弈、扑克和战争等带有竞赛、对抗和决策 性质的问题中借用的术语,听上去有点玄奥,实际上却具有重要现实意义。目前在生 物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛 的应用。人们每天都面临着无数个选择,而博弈能运用具体的案例模型和相对应的决 策方法,让人们在最短的时间内作出最有利于自己的选择。 早在 1994 年,提出博弈均衡理论的纳什博士与他的伙伴哈尔萨尼教授、泽尔滕教 授就共同分享了当年的诺贝尔经济学奖和 93 万美元的奖金。2005 年,瑞典皇家科学 院再次把诺贝尔经济学奖颁给了有着以色列、美国双重国籍的罗伯特·奥曼和美国人托 马斯·谢林,以表彰他们在博弈论领域作出的贡献。纳什的贡献是在 1944 年与奥斯 卡·摩根斯特恩合著了《博弈论与经济行为》一书,标志着现代系统博弈理论的的初步 形成。而谢林和奥曼两位博弈论先驱在政治理论、社会学甚至生物学等方面成功运用 到了博弈学理论。奥曼用数学分析为博弈论列出了精确的公式,谢林则是想通过实践 来展示博弈论在社会各个领域的实际意义。他们两位利用博弈论对商业谈判、种族隔 离、武器控制等领域进行了实际分析,谢林教授认为博弈论运用的重要领域应该包括 核威慑和武器控制,同时还可以研究种族关系、有组织犯罪、雇员关系乃至自我管理 等方面。

博弈论论文--非合作博弈论

博弈论论文--非合作博弈论

博弈论论⽂--⾮合作博弈论⾮合作博弈论博弈论也叫对策论,是现代微观经济学的基础领域之⼀,主要研究在彼此互动的情形下个⼈是如何做决策的。

近年来它已经被⼴泛地应⽤于商业、政治、社会学等其他社会科学的分析中。

博弈的分类根据不同的基准也有不同的分类。

⼀般认为,博弈主要可以分为合作博弈和⾮合作博弈。

合作博弈和⾮合作博弈的区别在于相互发⽣作⽤的当事⼈之间有没有⼀个具有约束⼒的协议,如果有,就是合作博弈,如果没有,就是⾮合作博弈。

1950年和1951年纳什的两篇关于⾮合作博弈论的重要论⽂,彻底改变了⼈们对竞争和市场的看法。

他证明了⾮合作博弈及其均衡解,并证明了均衡解的存在性,即著名的纳什均衡。

从⽽揭⽰了博弈均衡与经济均衡的内在联系。

纳什的研究奠定了现代⾮合作博弈论的基⽯,后来的博弈论研究基本上都沿着这条主线展开的。

1944年冯·诺依曼与奥斯卡·摩根斯特恩合著的巨作《博弈论与经济⾏为》出版,标志着现代系统博弈理论的的初步形成。

尽管对具有博弈性质的问题的研究可以追溯到19世纪甚⾄更早。

例如,1838年古诺(Cournot)简单双寡头垄断博弈;1883年伯特兰和1925年艾奇沃奇思研究了两个寡头的产量与价格垄断;2000多年前中国著名军事家孙武的后代孙膑利⽤博弈论⽅法帮助⽥忌赛马取胜等等都属于早期博弈论的萌芽,其特点是零星的,⽚断的研究,带有很⼤的偶然性,很不系统。

冯·诺依曼和摩根斯特恩的《博弈论与经济⾏为》⼀书中提出的标准型、扩展型和合作型博弈模型解的概念和分析⽅法,奠定了这门学科的理论基础。

合作型博弈在20世纪50年代达到了巅峰期。

然⽽,诺依曼的博弈论的局限性也⽇益暴露出来,由于它过于抽象,使应⽤范围受到很⼤限制,在很长时间⾥,⼈们对博弈论的研究知之甚少,只是少数数学家的专利,所以,影响⼒很有限。

正是在这个时候,⾮合作博弈—“纳什均衡”应运⽽⽣了,它标志着博弈论的新时代的开始!纳什不是⼀个按部就班的学⽣,他经常旷课。

博弈论案例分析论文

博弈论案例分析论文

博弈论案例分析——“占座大战”博弈班级:姓名:学号:博弈论(Game Theory),亦名“对策论”、“游戏理论”,属应用数学的一个分支,博弈论已经成为经济学的标准分析工具之一。

目前在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。

博弈论主要研究公式化了的激励结构间的相互作用。

是研究具有斗争或竞争性质现象的数学理论和方法。

也是运筹学的一个重要学科。

博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。

生物学家使用博弈理论来理解和预测进化论的某些结果。

.博弈论是指某个个人或是组织,面对一定的环境条件,在一定的规则约束下,依靠所掌握的信息,从各自选择的行为或是策略进行选择并加以实施,并从各自取得相应结果或收益的过程,在经济学上博奕论是个非常重要的理论概念。

什么是博弈论?古语有云,世事如棋。

生活中每个人如同棋手,其每一个行为如同在一张看不见的棋盘上布一个子,精明慎重的棋手们相互揣摩、相互牵制,人人争赢,下出诸多精彩纷呈、变化多端的棋局。

博弈论是研究棋手们“出棋” 招数中理性化、逻辑化的部分,并将其系统化为一门科学。

换句话说,就是研究个体如何在错综复杂的相互影响中得出最合理的策略。

现在,我们就讨论一下生活中的博弈;大学生活中,生活也是比较的丰富,其中,吃饭也是很重要的部分,大家一般都是在学校食堂吃饭,由于大家吃饭的时间比较集中,所以吃饭的时候人数特别多,食堂座位有限,同学们也希望在食堂买完饭后不用再找座位,因此很多同学在买饭之前就用自己的私人物品占座位,为此,食堂也经常发生因为占座位而引起的纠纷。

在这里称为“占座大战”博弈,就这个博弈问题进行讨论;现在就这个问题来进行一个博弈论的分析,两个发生纠纷的人都有两个选择,分别是U(冲上去进行理论,争取座位),D(选择退让,找其他的座位),若两人都进行理论,争取座位的话,很有可能就是两败俱伤,两个人也可能因意见不合而进而出现打架的现象,而且在食堂这个公共场所,对大家的形象都有着很不好的影响;如果一方选择退让,而另外一方则选择理论,则结果可能就是一方另找座位,有些损失,一方占领了座位,取得了胜利;还有就是双方都选择了退让,将座位让给其他人;根据以上的分析,现在有如下的支付图:参与人2U DU -2,-2 1,-1参与人1D -1,1 0,0求解过程(箭头法):参与人2UU参与人1D现在求解这个博弈问题:由博弈问题的Nash均衡可以知道,在以上的博弈问题中存在着两个纯战略Nash均衡——(U,D)和(D,U),就是说,在整个的博弈中,两个人中有一个人退让,寻找其他的座位,另外一个人进行争论得到座位。

博弈论3000字论文

博弈论3000字论文

****2014~2015学年第二学期《博弈论》结课论文论文题目:博弈论与管理学任课教师:学院班级:学号:姓名:博弈论与管理学摘要现代管理的核心职能是激发人最大限度地发挥主观能动性,创造性地开展工作,这其中自然包含了管理者和被管理者之间的博弈。

本文从博弈论的基本概念出发,结合管理学基本理论,对博弈对管理学的作用做了简要阐述。

关键词博弈;管理;均衡;经济一、博弈论简介(一)博弈的起源和发展博弈论是二人在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜的目的博弈论思想古已有之,中国古代的《孙子兵法》等著作就不仅是一部军事著作,而且算是最早的一部博弈论著作。

博弈论最初主要研究象棋、桥牌、赌博中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展。

博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。

近代对于博弈论的研究,开始于策梅洛(Zermelo),波莱尔(Borel)及冯•诺依曼(von Neumann)。

1928年,冯•诺依曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。

1944年,冯•诺依曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统地应用于经济领域,从而奠定了这一学科的基础和理论体系。

1950~1951年,约翰•福布斯•纳什(John Forbes Nash Jr)利用不动点定理证明了均衡点的存在,为博弈论的一般化奠定了坚实的基础。

纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。

此外,莱因哈德•泽尔腾、约翰•海萨尼的研究也对博弈论发展起到推动作用。

今天博弈论已发展成一门较完善的学科。

(二)博弈论的基本概念博弈论又被称为对策论(Game Theory)既是现代数学的一个新分支,也是运筹学的一个重要学科。

博弈论主要研究公式化了的激励结构间的相互作用。

博弈论3000字论文

博弈论3000字论文

****2014~2015学年第二学期《博弈论》结课论文论文题目:博弈论与管理学任课教师:学院班级:学号:姓名:博弈论与管理学摘要现代管理的核心职能是激发人最大限度地发挥主观能动性,创造性地开展工作,这其中自然包含了管理者和被管理者之间的博弈。

本文从博弈论的基本概念出发,结合管理学基本理论,对博弈对管理学的作用做了简要阐述。

关键词博弈;管理;均衡;经济一、博弈论简介(一)博弈的起源和发展博弈论是二人在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜的目的博弈论思想古已有之,中国古代的《孙子兵法》等著作就不仅是一部军事著作,而且算是最早的一部博弈论著作。

博弈论最初主要研究象棋、桥牌、赌博中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展。

博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。

近代对于博弈论的研究,开始于策梅洛(Zermelo),波莱尔(Borel)及冯•诺依曼(von Neumann)。

1928年,冯•诺依曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。

1944年,冯•诺依曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统地应用于经济领域,从而奠定了这一学科的基础和理论体系。

1950~1951年,约翰•福布斯•纳什(John Forbes Nash Jr)利用不动点定理证明了均衡点的存在,为博弈论的一般化奠定了坚实的基础。

纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。

此外,莱因哈德•泽尔腾、约翰•海萨尼的研究也对博弈论发展起到推动作用。

今天博弈论已发展成一门较完善的学科。

(二)博弈论的基本概念博弈论又被称为对策论(Game Theory)既是现代数学的一个新分支,也是运筹学的一个重要学科。

博弈论主要研究公式化了的激励结构间的相互作用。

博弈论论文——协作博弈

博弈论论文——协作博弈

协商、合作共赢论协商博弈在现实生活中的应用摘要:在现实生活中,博弈几乎无处不在,博弈的结果也因人而异,对于一些博弈双方存在共同利益的博弈,双方可以通过协商,采取有利于双方的策略,从而最终实现双方利益最大化,也就是通过协作博弈实现了正和博弈。

关键词:博弈论协作博弈合作共赢当代凯恩斯主义的集大成者、经济学的最后一个通才——保罗·萨缪尔森曾说过:“要想在现代社会做一个有文化的人,你必须对博弈论有一个大致了解。

在今天这个尔虞我诈、竞争激烈的社会中,要想拥有一个美丽的人生,不付出汗水怎么行?不绞尽脑汁又怎么行!而我们绞尽脑汁思考的过程,其实就是博弈。

”在现实生活中,博弈几乎无处不在,例如:在游戏中,我们必须通过博弈来分出胜负;在购物时,我们不能确切地知道产品质量是否良好,要通过博弈才能作出选择;在恋爱中,我们要想确切地知道恋人爱自己有多深,也得通过博弈;在政治领域、军事领域,博弈都是帮助我们确切地判断对手实力的必需“工具"……由此可见,博弈是如此重要。

博弈有三个关键概念:正和博弈、零和博弈、以及负和博弈,但是对于一些博弈双方存在共同利益,有共同兴趣爱好的博弈,双方可以通过协商,采取有利于双方的策略,从而最终实现双方利益最大化,也就是通过协作博弈实现了正和博弈。

现实生活中也有很多通过协作博弈实现共赢的例子,假设宿舍中有甲、乙两个同学,他们各有两个选择的策略,上网娱乐或者学习。

若两人都学习,甲乙各有7各单位的收益若两人都选择上网娱乐,则甲乙各得到5各单位的收益若其中一人选择上网,另一人选择学习。

则因为相互干扰,学习的获得2各单位的效益,而上网的获得三个单位的效益如图所示:上网学习上网通过划线求解法可以得出,在甲乙两人上网与学习的博弈中没有优势策略,但是存在着最优反应,图表中得出共有四个最有反应。

针对这种没有优势策略的博弈而言,最好的解决方法就是通过协商解决,因为进行博弈的双方之间有共同的兴趣偏好,存在着共同利益,因此通过甲、乙双方的协商,建立一种合作关系,可以使学习和娱乐的效率大大提高,从而实现双方利益的最大化,即通过协商实现了双方的共赢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科毕业论文(设计)论文(设计)题目:用博弈论思想分析经济学现象,分析生活中一个经济现象学院:计算机技术与科学学院专业:软件工程年级:软件123学号: 1208060324学生姓名:廖杰指导教师:刘涛2014年 5月 23日目录摘要 (2)ABSTRACT (3)正文 (4)一、完全信息讨价还价 (4)二、不完全信息下的讨价还价 (6)三、总结 (7)参考文献 (7)附录一 (8)从讨价还价看经济、市场摘要本文阐述了博弈论在讨价还价方面的应用理论。

主要在完全信息与不完全信息下,进一步针对不同的情况,综合地介绍讨价还价理论模型以及应用。

讨价还价作为市场经济中最常见、普通的事情,也是博弈论中最经典的动态博弈问题。

现实经济中充满了“讨价还价”的情形,大到国与国之间的贸易协定,小到个体消费者与零售商的价格商定,还有厂商与工会之间的工资协议、房产商与买者之间关于房价的确定、各种类型的谈判等等。

这实际上是两个行为主体之间的博弈问题,也可以把讨价还价看作为一个策略选择问题,即如何分配两个对弈者之间的相互关联的收益问题。

关键词:博弈论,讨价还价,博弈树Viewing from the bargaining, market economyAbstractThis paper expounds the bargaining game theory in the application of theory. Main under complete information and incomplete information, further according to different situation, comprehensive introduction to bargaining model in theory and application. Bargaining as the most common, ordinary things in market economy, as well as the most classical game theory of dynamic game problems. Is full of "bargain" in real economic situations, big to trade agreements between countries and agreed on the price of small to individual consumers and retailers, and manufacturers and the unions wage agreement between, between property developers and buyers about the determination of prices, various types of negotiation, and so on. This is actually a game between two agents, can also read the bargain as a strategy choice problem, namely how to divide the two players of the correlation between income problem.Key words:Game theory Argy-bargy, Game tree正文一、完全信息讨价还价(一)纳什讨价还价假设讨价还价主体为两个人:甲和乙,二人共同努力完成了一个项目并获得收益10000元,现在二人将针对每个人将获得多少而展开讨价还价博弈。

为解决此类问题,纳什则做出了一系列研究并得出纳什讨价还价解。

当达不成协议时,参与双方可以有不同的效用水平,而且效用函数可以是分配比例的非线性函数。

(二)博弈树:(三)有限期轮流出价1、无贴现假设条件:回合T为奇数(设T=3),乙先出价。

由于回合数为奇数,对于甲来说,接受或拒绝没有差异,因此所有的均衡都是弱的。

这些均衡结果只决定于甲最后决定接受的时间。

因为在奇数回合中,乙享有最后一期的出价权利,当他要求得到全部收益时,即使甲拒绝,甲仍然一无所获,乙则获得全部收益。

若此博弈只有一轮,那么甲根本没有机会提出反驳意见。

现在假设乙仍然先出价,但是回合数为偶数时,博弈的结果就是甲将得到全部收益。

在此例中,很明显看到一个最终行动者优势的存在,这就是后动的博弈优势。

2、有贴现,且贴现对等有贴现的情况就是讨价还价每多进行一个回合,由于谈判费用和利息损失等,双方的利益都要打一个折扣。

假设条件双方折扣率均为σ(0<σ<1),回合数T =3。

对于此种三回合情况可用下面方式加以描述:第一回合:乙的方案是自己得X1,甲得10000-X1。

甲若接受,二人收益分别为X1和10000- X1,谈判结束。

如果甲拒绝,则开始第二回合谈判。

第二回合:甲的方案是乙得X2,自己得10000-X2。

乙若接受,二人收益分别为σX2和σ(10000-X2),谈判结束。

如果拒绝,则开始第三回合谈判:乙自己得X,甲得10000-X,此时乙必须接受,最后二人的实际收益分别为σ2X和σ2(10000-X)。

这三回合中双方所提出的X1 、X2 和X 都是0到10000之间的任意金额,因此可以认为由于X1 、X2 和X都有无限多种,所以这个讨价还价博弈是一个无限策略的动态博弈。

3、有贴现,但不等假设乙的折扣率为σ1,甲的折扣率为σ2,0<σ2,σ1<1并且两人知道对方的折扣率,回合数T=3。

此类博弈和贴现相等情况是很类似,用逆推归纳法来分析这个博弈。

第三回合:知道双方的收益分别为σ12X和σ22(10000-X)。

第二回合:甲在第二回合会出能让乙接受的,也是可能使自己得益最大的X2,应满足使乙得益σ12X =σ1X2,即X2 =σ1X,则甲得益就是σ2 (10000-X2)= σ2 (10000-σ1X),由于0<σ2,σ1<1,所以σ2 (10000-σ1X)>σ22(10000-X)。

第一回合:乙只要令10000- X1=σ2 (10000-σ1X),即X1=10000-σ2 (10000-σ1X)即可。

这样第一回合与第二回合甲的得益相同,而乙的得益X1=10000-σ2 (10000-σ1X),比第二、三回合得益更大。

因此这个博弈,乙会在第一回合出价X1=10000-σ2 (10000-σ1X),甲会接受,最终二人得益分别为X1=10000-σ2 (10000-σ1X)和σ2(10000-σ1X),这个就是这种有限奇数次讨价还价有贴现情况的均衡解。

(三)无限期轮流出价无限期讨价还价博弈由于时间会持续很久,所以折扣是肯定会存在的,所以直接讨论有贴现情况。

1、对等贴现此情况逆推法无法应用。

解决方法如下:先假设整个博弈有一个逆推归纳解,乙和甲分别得益X和10000-X,即乙在第一回合出价X,甲接受。

夏克德和萨顿曾提出无限期讨价还价中,从第三回合开始还是从第一回合开始结果都是一样的,本文直接引用这一结论来解决问题。

所以根据这个理论,上述逆推归纳的解也应该是从第三回合开始的博弈的结果。

即第三回合也是乙出价X,甲接受,而且这个结果也是最终的结果。

2、不等贴现假设乙的折扣率为σ1,甲的折扣率为σ2,0<σ1,σ2<1。

乙想分得X1份额,并想使X1最大化,但他得考虑到甲,若X1过多而遭拒绝,则他的愿望就成为泡影。

所以乙揣测将出价给甲X2。

在第一回合讨价还价中,乙要保证给甲的10000-X1不小于他还价后的10000-X2贴现到现在的价值,这时乙可根据甲的X2和观察可解出X2,故先要价X1。

之后第二轮讨价还价开始,甲出价为X2,而且也考虑到乙会还价,所以他也要保证乙将再出价贴现为现值不小于甲的还价,又要尽量使自己的收益最大化,这时他可根据推测的X3求出X2,所以出价X2。

乙第三回合再出价时,就会重复开始的过程,所以由此可知甲获得的收益与自己的折扣率呈增函数关系,而与对方的折扣率呈减函数关系。

这就是Rubinstein针对此问题曾提出的解。

3、无贴现、有成本现假设乙或甲每个回合出价时贴现变为了成本,设为C1和C2,且C1=C2=C。

(1)C1这种情况下回合期限越长,甲的损失就会越大,但是除了会降低二人总体收益之外,并不会改变二者的博弈地位。

此时,博弈可以看作是静态的。

因为不论经过多少回合,在二人看来,博弈与初期相同。

仍然用逆推归纳法,在第T回合若是甲出价分给乙X,则在第T-1回合,乙就会出价分给甲10000-X-C2,而自己保留X+C2;在T-2回合,甲则会分给乙X+C2-C1,自己保留10000 –X-C2+C1。

依次类推,不断前推结果是:乙可以得到比甲高任意γ(C2-C1)倍收益。

因此博弈一开始,甲就会放弃讨价还价接受0分配。

(3)C1>C2乙作为先行动者,他的份额受限于成本C2,因为他明确知道甲会在第二回合出价为自己保留10000,所以他会在第一期提出自己分配C2,甲得益为10000-C2,这样甲就会接受,而不会进入到第二个回合了。

二、不完全信息下的讨价还价Fudenberg和Tirole二人则对这类问题作了研究。

现假设有一个买方和一个卖方,买方类型有两种:B100和B150,其中买方为B100的概率为γ,为B150的概率为(1-γ) 。

博弈的过程是,卖方先出价P1,买方接受则博弈结束,买方拒绝则卖方再出价P2,买方再决定是否接受。

(一)低效用买方很多的情况先假设γ=0.5,即买方是低效用者的可能性很高;σ=0.9。

第一回合,B100类的买者在P1≤P(B100)1=100时,就接受这个价格;B150类的买者在P1≤P(B150)1=105时接受。

第二回合,B100类的买者在P2≤P(B100)2=100时,就接受这个价格;B150类的买者在P2≤P(B150)2=150时接受。

卖方在非均衡路径的信念是:如果买方拒绝P1,则他是B100类买者的可能性为γ。

均衡的结果是,买方出价P1,并且买方接受。

这个均衡就是完美贝叶斯均衡。

卖方知道,即使105,他仍然可以将货物卖给B150类型买者。

但是如果他这么做,就有可能在第一回合卖不出去,他将延期得到收入。

因为100>105(1-γ)+100σγ=97.5,即卖方更愿意拿到稳定的现期收入100,而不愿意在现期收入105和将来的100之间碰运气。

(二)低效用买方很少的情况1、均衡(混合策略下的分离均衡)假设γ=0.05,即买方是低效用者的可能性不高;σ=0.9。

相关文档
最新文档