镉镍碱性蓄电池讲义.docx
镉镍蓄电池介绍

使用环境温度:-40℃~60℃
二、蓄电池参数
(六)、温度对蓄电池影响
高温:高温对蓄电池充电效率及蓄电池寿命有影响, 当蓄电池的温度为35℃时,充放电循环次数约为25℃ 时的4/5;当蓄电池的温度为40℃时,充放电循环次 数约为25℃时的3/4;当蓄电池的温度为50℃时,充 放电循环次数约为25℃时的1/2。
放电电流:放电时的电流大小,一般常用“倍率”表示, 数值上等于额定容量的倍数。
根据输出功率的不同分为超高倍率、高倍率、中倍率和 低倍率蓄电池。
二、蓄电池参数
(四)、内阻 蓄电池的包括欧姆内阻和电化学反应时表现出的极化电
阻两部分 ,与蓄电池结构、环境温度、荷电状态有关,因此 很难定义和准确地测量出内阻。
氧化镉〔Cd(OH)2〕,而在充电时则得到电子,发生还原 反应,又生成金属镉,反应式为:
放电
负极: Cd + 2OH-
Cd(OH)2 + 2e
充电
蓄电池的总反应式:
放电
Cd + 2NiOOH + 2H2O )2
2Ni(OH)2 + Cd(OH
充电
一、镉镍蓄电池原理和结构
在蓄电池被充满电后,即全充电态时,如果继续进行充 电则处于过充电状态,此时充电电流会使电解液中的水电解 ,正极上析出氧气(O2),负极上析出氢气(H2),反应式 为:
镉镍蓄电池介绍
一、镉镍蓄电池原理和结构
(一)、原理
镉镍蓄电池在充电过程中,镉镍蓄电池能够把电能转变 为化学能储存起来,使用时蓄电池把储存的化学能再转变为 电能,两者的转变是可逆的,即蓄电池能够进行充电与放电 的循环过程。
电动车的碱性镍-镉蓄电池及其应用

的优 点 ,而 且 没有 铅酸 蓄 电池 那 种 因过 充 电和 过放 电 压 片等 方法 制 成极 板 ;用 聚酰 胺 非织 布等 材料 作 隔离
而造 成 活性 物质 钝 化 的现 象 , 已 化钾 水 溶液 作 电解 质溶 液 ; 电极经 卷绕 或
镍 一 电池 是指 采 用 金 属 镉 作 负 极 活性 物 质 ,氢 镉
上 作为 启动 电源 使 用 十分 广泛 。但是 ,与碱 性 蓄 电池 氧 化 镍 作 正 极活 性 物 质 的碱 性蓄 电池 。镍一 电池采 镉 相 比较 ,也 还存 在 一些 不足之 处 。 要 是使 用寿 命 短 , 用 金属 镉 作 负极活 性 物质 ,氢 氧 化镍 作 正极 活性 物质 主 比能量较 低 ,极 板容 易硫 化 等 。 的碱 性 蓄 电池 。正 、负极 材料 分 别填 充在 穿孔 的附镍 碱性 蓄 电池 具 有质 量 轻 、使用 寿 命 长 、 自放 电少 钢 带 中,经 拉 浆 、滚压 、烧 结 、化 成 或涂 膏 、烘 干 、
21( ) 001 0
汽 工 师 车 程
摘 要 : 车尾 气排 放 造 成 的 严 重 空 气 污 染 , 已 开始 受 到 各 国政 府 的 高度 重视 。 电 动 车 辆 的 使 用是 最 终 解 决 这 一 问题 汽 的 最 佳 途 径 ,开 发 高性 能 电动 车 已成 为 当今 世 界 各 国科 技 攻 关 的 重 点 。 电 动 车 的 核 心 电池 的性 能 优 劣 ,极 大程 度
地 决定着 电动汽 车技 术的先进性 。文章根 据镍一 蓄 电池性 能特 点 ,介绍 了镍一 镉 镉蓄 电池 的结构分类 ,研究 了镍一 镉
电 池 的 构 造 原 理 和 技 术 性 能 ,提 出 了镍 ~ 电 池 的使 用 特 点 。 镉
第五章镉-镍蓄电池知识讲解

成电极基板,浸渍活性物质烘干。烧结式电极强度高,孔隙率
高,可以大电流、高倍率放电,寿命长,工艺复杂,成本较高。
发泡式电极:发泡镍电极是将泡末塑料进行化学镀镍,高温碳 化后得到多孔网状镍基体,将活性物质填充在镍网上,经轧制 成泡沫电极。泡沫镍电极孔隙率高(90%以上),真实表面积大, 电极放电容量大,电极柔软性好,适合作卷绕式电极的圆筒形 电池。目前主要用于氢-镍和镉-镍电池。 纤维式电极:是以纤维镍毡状物作基体,向基体孔隙中填充活 性物质,电极基体孔隙率达93%~99%,具有高比容量和高活 性。电极制造工艺简单,成本低,但镍纤维易造成电池正、负 极短路,自放电大,目前尚未大量应用。
– 在较高的过电位下镉电极将发生钝化;金属表 面产生一层很薄的CdO钝化膜
–放电电流密度太大、温度较低、电解液浓度较 低时,易引起镉的钝化。
– 充放电循环过程中镉的重结晶使镉电极真实 表面积不断收缩, 极化增大,导致发生钝化 --主要钝化因素。
– 防止钝化: 加入表面活性剂或其他添加剂,实际生产中加入苏拉 油或25号变压器油,起分散作用,阻止海绵镉结晶时 聚集和收缩
➢添加剂LiOH的作用:
①Li+吸附在活性物质颗粒表面,阻止晶体颗粒长大聚结; ②提高氧在正极上的析出过电位。
若加量过多,Li+离子可进入活性物质晶格中,形成 一种电化学隋性的化合物—镍酸理(LiNiO2),使电化学 反应变得困难。
➢ 其它添加剂的影响:
① Ba、Co等对氧化镍电极起活化作用 ② Mg、Fe、Ca、SiO2等对氧化镍电极起毒化作用 ③ Ca对镉电极有毒化作用
同样由于固相扩散速率很小, 引起较大的浓 差极化,氧化镍电极的利用率受到限制。
镉镍蓄电池课件

镉镍蓄电池课件xx年xx月xx日•镉镍蓄电池概述•镉镍蓄电池的构造与原理•镉镍蓄电池的性能指标与测试•镉镍蓄电池的应用领域与市场前景目•镉镍蓄电池的安全使用与维护保养•镉镍蓄电池的发展趋势与挑战录01镉镍蓄电池概述镉镍蓄电池是一种二次电池,它是由正极、负极、电解质、隔膜和外壳等组成的。
镉镍蓄电池的正极材料是氢氧化镍,负极材料是海绵状镉,电解质是氢氧化钾溶液。
镉镍蓄电池的定义镉镍蓄电池的特点镉镍蓄电池具有较高的能量密度,这意味着在相同的重量下,它可以存储更多的电能。
高能量密度长寿命环保安全镉镍蓄电池的寿命较长,可以满足各种应用的需求。
镉镍蓄电池中的镉和镍都是环保的,不会对环境造成太大的污染。
镉镍蓄电池的安全性较高,不会因为过充、过放或短路等操作而产生危险。
镉镍蓄电池的发展历程镉镍蓄电池开始出现,并逐渐被应用于各种领域。
20世纪初随着电动汽车的兴起,镉镍蓄电池开始被广泛应用于汽车领域。
20世纪60年代随着电子技术的发展,镉镍蓄电池开始被广泛应用于各种电子设备中。
20世纪80年代随着环保意识的提高,镉镍蓄电池开始被广泛应用于绿色能源领域。
21世纪初02镉镍蓄电池的构造与原理由氧化镍粉、氢氧化镍、活性炭和凝胶剂等材料混合制成。
正极由镉粉、氢氧化镍、炭黑和凝胶剂等材料混合制成。
负极通常由聚乙烯或聚丙烯制成,用于隔离正负极,防止短路。
隔膜通常由镍合金或不锈钢制成,用于容纳正负极和电解液。
电池外壳镉镍蓄电池的内部结构在充电时,正极材料中的氧化镍被还原成金属镍,同时释放出电子,通过导线传输到正极。
在负极上,镉粉被氧化成镉离子,同时吸收电子,也通过导线传输到负极。
此时,正负极之间产生电势差,这个电势差是电池储存电能的原因。
放电过程在放电时,正负极上的电子通过导线释放出来,供给外部电路使用。
同时,正极和负极上的金属镍和镉离子分别还原成金属单质,附着在电极表面。
这个过程就是电池放电的过程。
充电过程镉镍蓄电池的工作原理VS镉镍蓄电池的材料要求要求具有高电导率、良好的化学稳定性和耐腐蚀性。
镉镍碱性蓄电池说明书

附录6-9GNZ120-(4)型中倍率碱性免维护蓄电池GNZ120-(4)中倍率碱性免维护蓄电池本产品是镉镍碱性蓄电池系列中的袋式电池,具有适用温度范围宽,自放电小,耐过充过放电性能好,机械强度高,使用维护简便,循环寿命长,使用成本低等特点,广泛应用于电器、电讯、照明、UPS系统及电力系统作直流备用及直流操作电源。
1 结构蓄电池由镍正极组和镉负极组,以隔板隔离,牢固装配工程塑料外壳内。
蓄电池组由单体蓄电池串联安装在组合框内而成。
2 安装使用与维护2.1 检查该蓄电池是以充电态带电解液出厂,使用前应开箱检查蓄电池外壳在运输过程中有无损伤、蓄电池的电解液液面高度是否合适、蓄电池外部金属件是否有锈蚀、螺母是否松动、蓄电池数量和配件数量是否正确、包装箱中是否装有使用说明书等相关事项。
如果金属零件有锈蚀可以用去污粉擦净,并补涂凡士林油。
如果蓄电池的电解液液面离最高液面线的距离超过15mm,则应向蓄电池补加蒸馏水使电解液液面至最高液面线后再投入使用。
2.2 蓄电池的连接如蓄电池的搁置时间不长(不超过6个月),可以直接装车使用;如蓄电池的搁置时间较长(超过6个月),则应按照补充电方法对蓄电池进行补充电后再投入使用。
将蓄电池用配备的跨接板或连接条(片)串联起来。
检查正、负极连接正确无误后再拧紧极柱螺母(严禁虚接、松动),同时螺母要求拧正以免损坏极柱螺纹。
在连接过程中严禁金属零件掉落等引起蓄电池组短路。
2.3蓄电池在强烈振动工作场合下运行时,应定期检查紧固件拧紧程度。
2.4蓄电池若连续在高温或浮充电压高的情况下工作,电解液中水的消耗速度就会加快,维护周期就会缩短。
当发现个别蓄电池的电解液液面在最高液面线与最低液面线之间的中下部时应及时向该蓄电池补加蒸馏水,调整蓄电池的电解液液面至最高液面线,以保证蓄电池安全可靠地工作。
2.5蓄电池(组)上严禁放置导电体及其它杂物,以避免蓄电池(组)短路而发生危险。
2.6蓄电池应保持清洁,安装场所应通风、干燥,严禁与酸性电池同室安装,并严禁烟火。
镉镍蓄电池课件

高温对电池性能的影响
高温环境下,镉镍蓄电池的电解液可能蒸发加快 ,导致电池性能下降,同时增加电池内部压力。
热失控风险
高温环境下,电池内部的化学反应可能加速,导 致热失控现象,引发安全问题。
3
安全性建议
在高温环境下使用镉镍蓄电池时,应确保电池具 有良好的散热条件,避免长时间暴露在高温环境 中,并定期检查电池状态。
国外政策法规
欧盟、美国、日本等发达国家和地区也制定 了相应的废旧电池回收处理法规和标准,对 电池生产商、销售商和消费者都提出了明确
的责任和要求。
企业如何参与并推动回收利用工作
01 02
建立回收体系
企业应建立完善的废旧电池回收体系,包括回收网络的建设、回收渠道 的拓展、回收技术的研发等方面,以确保废旧电池得到有效回收和处理 。
建立完善的回收处理机制
对于废旧镉镍蓄电池进行专业回收处 理,避免对环境造成污染,同时降低 安全隐患。
07
镉镍蓄电池回收利用与环保政 策解读
回收利用现状及方法介绍
回收利用现状
目前,镉镍蓄电池的回收利用工作已经得到 了广泛的关注,许多国家和地区都建立了相 应的回收体系和制度,以确保废旧电池得到 妥善处理。
。
导电剂与粘结剂
为了提高电极的导电性和粘结强度 ,需选用合适的导电剂和粘结剂。
电解液
一般采用氢氧化钾水溶液作为电解 液,需严格控制其浓度和杂质含量 。
电极制备工艺
配料与混合
将金属粉末、导电剂、粘 结剂等按一定比例混合均 匀,形成电极浆料。
涂布与干燥
将电极浆料均匀涂布在金 属集流体上,然后进行干 燥处理,使浆料中的粘结 剂固化。
放电性能
高温环境下,电池放电性能提高,但过高的温度会加速电 池老化。低温环境下,电池放电性能下降,可能导致电池 无法正常工作。
镉镍蓄电池工作原理

镉镍蓄电池工作原理
镉镍蓄电池是一种可充电电池,其工作原理主要包括以下几个步骤:
1. 充电:当外部直流电源连接到蓄电池时,正极的氢氧化镉(Cd(OH)2)会被还原成金属镉(Cd),同时负极的氢氧化镍(Ni(OH)2)会被氧化成氢氧化镍(NiOOH)。
2. 放电:当需要使用电能时,蓄电池会被连接到负荷电路,正负极之间产生电流。
在放电过程中,金属镉正极的镉被氧化成氢氧化镉,而氢氧化镍负极的氢氧化镍会被还原成氢氧化镍。
3. 反应:在充放电过程中,氢氧化镍和氢氧化镉之间的离子交换反应是主要的电化学反应。
在放电过程中,氢氧化镉负极释放氢离子(H+)到电解质中,同时氧化镍正极吸收电解质中的氢离子,并产生水。
在充电过程中,这些反应逆转,氢氧化镉正极吸收氢离子,氧化镍负极释放氢离子。
4. 电解质:电解质通常是氢氧化钠(NaOH)溶液,它提供了离子传输的媒介,同时参与了反应过程中的离子交换。
通过反复的充放电过程,镉镍蓄电池能够实现电能的储存与释放,以满足电力需求。
第六节镉镍电池概论

密封措施
①负极的容量大于正极容量
密封镉-镍蓄电池的电极容量配置
②控制电解液用量 ③采用微孔隔膜 ④采用多孔薄型镍电极和镉电极, 实现紧密装配 ⑤采用反极保护
落后电池 过放电初期
过放电 继续下去
负极 Cd + 2OH- Cd(OH)2 + 2e 正极 2H2O + 2e 2OH- + H2
优点:使用寿命长,蓄电池自放电小, 使用温
度范围广, 耐过充过放, 放电电压平稳, 机械 性能好.
缺点:活性物质利用率低, 成本较高, 负极镉
有毒, 电池长期浅充放循环时有记忆效应.
▪ Cd/NiOOH电池的分类
▪ Cd/NiOOH电池的用途
二、Cd/NiOOH蓄电池的工作原理
▪ 成流反应
正极 2NiOOH + 2H2O +2e 2Ni(OH)2 2OH负极 Cd +2OH- Cd(OH)2 + 2e
2. 有一定的气室, 便于氧气迁移.
3. 采用合适的隔膜, 便于氧气通过, 促进氧气快速 向负极扩散
• 对Cd/Ni电池进行分析
1. 氧气的还原问题 2. 镉电极的析氢问题:热力学、动力学
正极 4OH- O2 2H2O 4e
负极 化学反应 2Cd + O2 + H2O 2Cd(OH)2
电化学反应 2Cd + OH- 2Cd(OH)2 + 4e O2 + 2H2O + 4e 4OH-
2NiO2 H2O 2NiOOH 1/ 2O2
• 放电时
H2O(液) + H+ (固) e- (固) e H+ (固) OH- (液)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、镉镍袋式碱性蓄电池的基本构造1、一般结构:主要部件有正、负极板、隔膜、电解液、电池壳,另还有一些零件,如端子、连接条等。
2、镉镍袋式碱性蓄电池的结构、特点镉镍袋式蓄电池具有优良的电性能、寿命长、结构坚固、耐过充过放电、自放电小、可靠性高、维护方便,并用不同极板结构来适应不同倍率电流的放电。
可在-40℃ — 60℃环境下使用,并且有良好的荷电保持能力。
可以在任何条件下长期贮存而无损坏。
(1)极板:正负极是由正、负极性活性物质包在穿孔镀镍(负极未镀镍)钢带制成的袋子里。
(2)外壳:一般为塑料或镀镍钢外壳。
(3)隔板:通常是塑料栅或镀镍栅。
(4)电解液:以氢氧化钾为主体的水溶液,比重 1.20(20℃时)。
三、镉镍袋式碱性蓄电池工作原理1、电池特性袋式极板的基本原理是把粉末状的活性物质包在一个封闭的扁平穿孔钢带袋里,并把这些袋叠放在一起制成电极。
开口袋式电池是由包于钢带盒中的氢氧化镍正极,隔板和与正极相同的包于钢盒中的镉负极组成。
它们均浸没在氢氧化钾的净化水溶液里,并装在塑料或镀镍钢板制成的开口电槽里。
2、充放电工作原理它的基本电化学原理与其它各种镉镍电池相同,其充放电反应如下:放电2NiOOH+2H 2O+Cd2Ni ( OH)2+Cd( OH)2充电放电时,三价氢氧化镍消耗水并还原成两价氢氧化镍,金属镉被氧化成氢氧化镉。
充电时发生逆反应,电池的电动势是 1.29V 。
氢氧化钾电解液的比重和组成,在充放电过程中没有明显的变化,这与铅酸电池中硫酸的变化情况正好相反。
电解液的比重通常为 2.2g/ml ,为了提高循环寿命和高温性能,通常电解液里还加入氢氧化钾。
四、蓄电池的容量蓄电池的容量是在一定放电条件下,电池所能给出的电量。
它是放电电流( A )和放电时间(h)的乘积,单位一般为安时或毫安时。
蓄电池的容量计算公式:容量=电流×时间,即: C=I×h式中: C为蓄电池实际放电容量(安时)I为放电电流(安培)h为放电时间(小时)五、蓄电池的连接方式蓄电池的连接方式分为串联和并联。
要提高蓄电池组的电压则采用串联方式,串联是蓄电池的正极端和相邻的蓄电池的负极端相连接。
如:现有 1.2V 的蓄电池,而蓄电池组所需电压为60V ,那么就需要 50只1.2V 的蓄电池串联。
要提高蓄电池组的容量则采用并联方式,并联是蓄电池(或蓄电池组)和相邻的蓄电池(或蓄电池组)的正极端和的正极端相连接,负极端和负极端相连接。
如:现有 1.2V , 1000Ah 的蓄电池,而所需蓄电池组为 1.2V ,2000Ah ,那么就需要 2只1.2V 的蓄电池串联。
例:现有 1.2V , 1000Ah 的单体蓄电池,系统所需蓄电池组电压为60V ,容量为 2000Ah ,那么就共需要只 100只 1.2V ,1000Ah 的单体蓄电池。
其中50只蓄电池分别串联后, 2组并联。
七、蓄电池的放电方法蓄电池的放电方法有两种,即直接给负荷供电和人工负荷放电。
人工负荷放电往往是用来检验电池的特性而使用的,通常以恒流方式进行。
八、镉镍袋式碱性蓄电池电性能和特点1、蓄电池的额定电压为 1.2V/ 只,这个电压与蓄电池的容量大小无关。
蓄电池组的额定电压为n×1.2伏( n为串联的蓄电池的只数)。
2、碱性蓄电池的内阻要比铅酸蓄电池的小。
3、自放电率较其它蓄电池低。
4、寿命要比一般的铅酸蓄电池长。
5、工作温度范围广,可在-40℃至 +45 ℃之间工作。
九、蓄电池使用维护注意事项1、使用过程的维护1、1蓄电池补加水,电解液由于水分蒸发与充电电解作用,密度增大,因此要及时检查液面高度与调整电解液密度。
恒流充放电连续使用时,在充电前要检查并调整液面高度。
恒压充电使用可每三个月检查一次,浮充电使用可每半年检查一次(随着气温的升降可适当增减补水次数),其水质要求按配电解液用水的标准。
(要求电站管理人员每三个月检查一次单体蓄电池的液面高度,但平时如果发现蓄电池电解液达不到标准时,一定要及时通知我们相关人员,调整液面高度到标准高度。
)1、 2电池在不同环境中使用,应选用相应配方的电解液,否则将影响蓄电池的容量和寿命。
1、3低温下充电,将降低充电效率,最好是在常温下充好电,再到低温环境中使用,这样才能保证电性能,如果确需在低温下充电,采用过充电进行充电。
1、 4蓄电池贮存及使用室内要干燥通风,温度适宜(25+10℃)严禁与酸性电池及其它酸类物质存放在同一房间,所有容器及工具不允许与酸性电池混用。
1、 5蓄电池不允许用金属工具撞击,拧紧螺母时,不得使工具同时接触蓄电池正、负极柱,铁壳电池要避免外壳与负极柱接触,以防短路,且在充电时严禁明火接近。
1、6蓄电池表面清洁,溢在蓄电池表面的电解液会形成白色结晶,影响绝缘性能,因此要保持蓄电池表面清洁干燥,铁质外壳及金属零件上如有锈点应及时用布沾上电解液慢慢地擦掉,然后薄薄地涂上一层防锈油或凡士林油,塑料壳电池的外壳清洗可以用Na2 CO3洗涤剂。
切忌用酒精和汽油清洗,以免外壳发生破裂。
1、 7充电过程中,电解液温度不允许超过45℃,如果超过,则应停止充电或减小充电电流,或采取降温措施,待冷却后再进行充电。
2、电解液的更换2、 1电解液的更换2、 1、 1电解液的更换时间在使用过程中,蓄电池内的电解液容易吸收空气中的二氧化碳生成碳酸盐,增加了电池内阻,当碳酸盐的含量超过60g/L 时,或发现电解液由于种种原因被污染,造成容量下降,均需更换电解液。
浮充电使用时,每 1.5— 2年检查一次电解液中碳酸盐的含量,当其含量超过规定时,则需要更换电解液。
2、 1、 2更换电解液的方法将蓄电池放电到 1.0V/ 只后,打开气塞倒置并摇动蓄电池,使内部沉积粉尘随电解液倒出,如倒出的电解液过脏,可用配电解液的水冲洗蓄电池内部2— 3次,把水倒干净后及时注入新配置的电解液。
2、 2性能检查蓄电池组在使用过程中,如发现个别蓄电池容量下降或单体蓄电池的电压较其它蓄电池差别太大则应更换,否则会影响蓄电池组的性能。
(要求电站管理人员每个月用万用表测量一次蓄电池的单体电压,以便及时发现落后电池,测量时一定要注意测量时间。
)2、3蓄电池在使用时应有专人负责维护,特别在充电时应保证充电电流的准确性和足够的充电时间,否则蓄电池充电不足会影响使用。
3、主要故障与排除方法故障原因排除方法1、电解液使用时间过长,碳酸盐含量太高更换新电解液2、使用电解液不当更换适当电解液补加蒸馏水,或低密度电解液并调3电解液用量过少,露出部分极板整密度,然后过充电容4、电解液中有害杂质过多清洗后,更换合格的电解液5、充放电制度不当改用适当的充、放电制度量沉淀造成,则倒出电解液,清洗电6、蓄电池内部短路或微短路池内部,过滤或更换电解液,然后下过充电,如系其它原因,应拆开电池,酌情修理降保持蓄电池周围干燥,加强绝缘,7、蓄电池外部短路或微短路清除造成短路的各种因素8、使用仪表不正确检查校正所用电流表、电压表9、蓄电池组中个别电池损坏更换新电池替补电1、蓄电池内部短路、断路或无电解液仔细检查原因,清洗电池后,更换电解液或拆开修理、补加电解液压保持蓄电池周围干燥,加强绝缘,不2、蓄电池外部短路或断路检查清除造成短路、断路的因素正常3、接触不良或断开检查各接触点包括跨接板、导线接触情况,并予以修理蓄电池内部析电解液内含有机杂质更换合格电解液出泡沫外1、正极板膨胀不便修理,以不影响使用为原则2、气塞孔堵塞壳用热水清洗,使其畅通或更换新气塞膨3、蓄电池内部短路或电解液中有害杂质过多,清除蓄电池内部短路因素,更换新胀产生大量气体来不及排除电解液1、使用电解液液面过高吸出电解液至规定水平2、极柱气塞密封不严更换密封零件,并拧紧爬碱3、流出电解液过多经常擦洗,并保持通风干燥严重4、凡士林涂抹不良及时清理并保持干燥5、经常在较高湿度环境中使用或存放注意调整环境湿度,经常使蓄电池表面保持干燥塑料外壳有砂眼或壳盖粘接处漏粘、运输(使用)过程用 ABC 树脂溶于二氯乙烷或丙酮渗漏配制的粘补剂,但粘补前一定将该中由于损伤造成的裂缝等电解处的碱清洗干净液倒出电解液,铁外壳蓄电池底盖焊缝胀开可将电池浸入稀碱液中,将铁焊缝胀开部位露出 10—15mm用 4外1、焊缝胀开或砂眼号或 5号焊嘴、小号气焊枪补焊,如壳果底部,倒置时将注液口密封,以渗防液体进入蓄电池,蓄电池底盖部漏位以外的焊缝漏液,则需要更换外电壳解如果是底、盖部位焊接缝锈蚀,可液2、铁外壳蓄电池使用过程中发生电化学锈蚀用小号焊枪补焊,如果是其它部位致漏锈蚀应更换外壳,并加绝缘保持干燥4、蓄电池(组)的保管与运输蓄电池(组)保管的好坏和周围环境温度、空气湿度及蓄电池保存前状态有关,按要求维护和保管可以延长使用寿命。
4、 1长期保存准备长期保存的蓄电池(组)在正常放电后倒出电解液,并立即装上气塞,把表面清理干净,如气塞上有出气孔,需用医用胶布密封,极柱等所有金属零件应均匀地涂上一层凡士林油,放在通风、干燥、没有酸雾、温度不大于35℃相对湿度不大于75%的环境中保存。
4、 2短期保存蓄电池(组)保存不超过一年,可带电解液保存,充、放电态均可,但保存时必须调整电解液液面高度符合规定,将气塞拧紧,表面清理干净,将蓄电池(组)存放在湿度不大于35℃的干燥、通风、无酸性污染的房间内。
4、3为了运输安全,将蓄电池放电后,倒掉电解液,避免因蓄电池短路引起燃烧和漏出的电解液将器具腐蚀等事故的发生。
镉镍碱性蓄电池在日常使用维护上的注意事项注意事项原因结果设定电压高寿命减少,液面降低则补水间隔缩短维浮充电电压设定电压低容量降低,促进不活性化,导致性能低下护上忘记补水露出极板使其氧化,发热直至烧损需补水过补水溢液泄漏要使用了不纯净的水寿命减少特性低下注定期的均充未能实施使单体电池的性能不平衡缩短使用寿意命的蓄电池45℃以上使用缩短寿命,容量降低,补水间隔缩短方的温度面清扫未实施泄漏、腐蚀进行很快使用干布擦拭发生静电蓄电池引火爆炸用有机溶剂清扫破坏有机部件(电槽、盖等)禁火蓄电池引火爆炸防止外全部短路产生火花损伤部件,蓄电池引火爆炸体注意液注电解液太少而烧损体短缺意的严禁硫酸腐蚀、溶解而缩短寿命与铅蓄电池的方腐蚀、溶解而缩短寿命用具混用面使用电解液接触后有烧伤,失明的危险防止触电接触导电部位触电。