北师大版初中数学八年级下册 12 直角三角形第一课时直角三角形的性质和判定课件共26张

合集下载

1.2直角三角形——直角三角形的边角性质+练习课件+2023-—2024学年北师大版数学八年级下册

1.2直角三角形——直角三角形的边角性质+练习课件+2023-—2024学年北师大版数学八年级下册

【点拨】
∵1 宣=12矩,1 欘=112宣,1 矩=90°,∠A=1 矩,
∠B=1


∴∠A
= 90°,

B

1
1 2
1 ×2
×90°=
67.5°,
∴∠C=90°-∠B=90°-67.5=22.5°.
3 (母题:教材P34复习题T5)若三角形三个内角的比为 1 ∶2 ∶3,则这个三角形是__直__角____三角形.
(2)若AE是△ABC的角平分线,AE,CD相交于点F,求证: ∠CFE=∠CEF. 【证明】∵AE是△ABC的角平分线,∴∠DAF=∠CAE. ∵∠FDA=90°,∠ACE=90°, ∴∠DAF+∠AFD=90°,∠CAE+∠CEA=90°. ∴∠AFD=∠CEA. ∵∠AFD=∠CFE, ∴∠CFE=∠CEA,即∠CFE=∠CEF.
解:如图②,延长 MN 至点 C′,使 NC′=NC,连接 AC′, 则 AC′的长即为蚂蚁爬行的最短路程. 在 Rt△AMC′中,AM=3×2=6(cm), MC′=20+2=22(cm). 由勾股定理,得 AC′2=AM2+MC′2=62+222=520, 则 AC′=2 130 cm. 答:蚂蚁需要爬行的最短路程是 2 130 cm.
∵∠C=90°,∴∠4+∠5=90°. ∴∠3+∠5=90°,即∠FBG=90°. 又∵DF⊥EG,DE=DG,∴FG=EF. 在Rt△FBG中,BG2+BF2=FG2,∴AE2+BF2=EF2.
【点方法】
欲证AE2+BF2=EF2,应联想到勾股定理,把AE, BF和EF转. 化. 为同一个直角三角形的三边.
【点拨】
∵直角三角形的三边a,b,c满足c>a>b,∴该直角三 角形的斜边为c,∴c2=a2+b2,∴c2-a2-b2=0,∴S1= c2-a2-b2+b(a+b-c)=ab+b2-bc. ∵S2=b(a+b-c)= ab+b2-bc,∴S1=S2,故选C.

北师大版八年级下册数学《1.2第1课时直角三角形的性质与判定》说课稿

北师大版八年级下册数学《1.2第1课时直角三角形的性质与判定》说课稿

北师大版八年级下册数学《1.2 第1课时直角三角形的性质与判定》说课稿一. 教材分析北师大版八年级下册数学《1.2 第1课时直角三角形的性质与判定》这一课时,主要让学生了解直角三角形的性质与判定。

在学习了勾股定理和三角函数的基础上,本节课让学生通过观察、实验、推理等方法,探索并证明直角三角形的性质,从而加深对勾股定理的理解和应用。

二. 学情分析八年级的学生已经掌握了基本的代数知识和几何知识,对于观察、实验、推理等方法有一定的了解和运用能力。

但是,对于证明直角三角形的性质和判定,还需要老师在课堂上进行引导和讲解。

三. 说教学目标1.知识与技能:让学生掌握直角三角形的性质和判定方法。

2.过程与方法:培养学生通过观察、实验、推理等方法探索数学问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作能力和自主学习能力。

四. 说教学重难点1.教学重点:直角三角形的性质和判定方法。

2.教学难点:证明直角三角形的性质和判定。

五.说教学方法与手段1.教学方法:采用问题驱动法、实验探究法、小组合作法等。

2.教学手段:多媒体课件、黑板、几何模型等。

六. 说教学过程1.导入新课:通过一个实际问题,引发学生对直角三角形性质的思考。

2.自主学习:让学生通过观察、实验、推理等方法,探索直角三角形的性质。

3.合作交流:学生分组讨论,分享探索成果,互相提问,解决问题。

4.讲解与演示:老师对学生的探索成果进行点评,讲解直角三角形的性质和判定方法,并进行现场演示。

5.练习巩固:让学生进行一些有关直角三角形性质和判定的练习题,巩固所学知识。

6.课堂小结:让学生总结本节课所学内容,老师进行补充。

七. 说板书设计板书设计如下:直角三角形的性质与判定a.直角三角形的两个锐角互余b.直角三角形的斜边最长c.直角三角形的两条直角边互相垂直d.如果一个三角形有一个角是直角,那么它是直角三角形e.如果一个三角形的两边长满足a^2 + b^2 = c^2,那么这个三角形是直角三角形八. 说教学评价1.课堂参与度:观察学生在课堂上的发言、提问、练习等情况,了解学生的参与程度。

北师大版八年级下册直角三角形的性质与判定教案

北师大版八年级下册直角三角形的性质与判定教案
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“直角三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.在小组合作与讨论中,培养学生团队合作意识和沟通交流能力;
4.通过对直角三角形性质与判定的学习,激发学生对数学学科的兴趣,培养其数学美感;
5.引导学生运用所学知识进行自主探究和拓展,提升学生的创新意识和实践能力。
三、教学难点与重点
1.教学重点
-理解并掌握直角三角形的定义及其性质,特别是勾股定理的应用;
(3)通过具体例子,让学生理解并掌握勾股定理的逆定理,即如果一个三角形的两边平方和等于第三边平方,则这个三角形是直角三角形。 Nhomakorabea2.教学难点
-理解并运用勾股定理及其逆定理进行推理和解决问题;
-在实际问题中,能够正确识别直角三角形并运用其性质解题;
-掌握直角三角形的判定方法,并能够在复杂情况下灵活应用。
举例解释:
五、教学反思
在今天的教学中,我重点关注了直角三角形的性质与判定这一部分内容。通过引入日常生活中的实际问题,我试图让学生感受到数学知识的实际应用,激发他们的学习兴趣。从教学过程来看,我发现以下几点值得思考:
1.学生对勾股定理的理解程度。在讲授过程中,虽然大多数学生能够跟上我的思路,但仍有一部分学生对定理的理解不够深入。在今后的教学中,我需要更加关注这部分学生的需求,通过设计更多有针对性的练习题,帮助他们巩固知识。
北师大版八年级下册直角三角形的性质与判定教案

八年级数学下册《直角三角形的性质和判定》教案、教学设计

八年级数学下册《直角三角形的性质和判定》教案、教学设计
3.综合应用题:
-完成课本第47页的练习题6,结合勾股定理和逆定理,解决实际问题。
-设计一个直角三角形相关的数学小研究,可以是数学小论文、数学故事、数学游戏等,展示直角三角形在实际生活中的应用。
4.探索性问题:
-探索勾股定理的多种证明方法,了解数学史上的勾股定理证明过程。
-思考:直角三角形的性质和判定方法在解决其他类型几何问题中的应用。
2.强调勾股定理及其逆定理在实际问题中的应用,提高学生的应用意识。
3.鼓励学生提出疑问,解答学生的疑问,帮助学生巩固所学知识。
4.总结学习方法,培养学生的自主学习能力,为后续学习打下基础。
五、作业布置
为了巩固本节课所学内容,确保学生对直角三角形的性质和判定方法有深入理解,特布置以下作业:
1.基础巩固题:
(四)课堂练习
1.设计练习题:针对直角三角形的性质和判定方法,设计不同难度的练习题,包括基础题、提高题和综合应用题。
2.练习过程:
a.学生独立完成练习题,教师巡回指导。
b.学生互相讨论,共同解决问题。
c.教师选取部分学生进行解答,及时给予反馈和指导。
(五)总结归纳
1.回顾本节课所学内容,引导学生总结直角三角形的性质和判定方法。
3.解决直角三角形相关问题的策略和方法。
(二)教学难点
1.勾股定理的推导和理解,以及在实际问题中的灵活运用。
2.逆定理的理解和应用,如何从给定的条件判断一个三角形是否为直角三角形。
3.学生在解决综合应用题时,往往难以将直角三角形的性质和判定方法与实际问题有效结合。
教学设想:
1.针对教学重点,采用以下策略:
-利用多媒体教学资源,如动画和实物模型,直观展示直角三角形的性质,帮助学生建立直观印象。

八年级下册数学直角三角形的性质和判定课件

八年级下册数学直角三角形的性质和判定课件

图1-3
线段CD 比线段AB短.
1 我测量后发现CD = AB. 2
图1-3
1 如图1-3, 如果中线CD = AB,则有∠DCA = ∠A . 2 由此受到启发,在图1-4 的Rt△ABC中,过直角顶点C作 射线 CD交AB于D,使 ∠ DCA = ∠A , 则 CD = AD .
1.直角三角形的判定定理和性质定理;
2.应用定理进行推理论证解决有关问题.
首页
课后作业
见《学练优》本课“课后巩固提升”
1 AB. 2
图1-4
结论
由此得到:
直角三角形斜边上的中线等于斜边的一半.
例1 已知:如图1-5,CD是△ABC的AB边上的中 AB . 线,且 CD 1 2 求证:△ABC是直角三角形.
图1-5
证明:因为 CD 1 AB= BD= AD , 2 所以 ∠1=∠A,(等边对等角) ∠2=∠B .
3.如图所示,在锐角三角形ABC中,CD,BE分别是AB, AC边上的高,且CD,BE交于一点P,若∠A=50°,则∠BPC的 度数是( B ). A.150° B.130° C.120° D.100° 解 因为BE,CD是ABC的高, 所以∠BDP=90°,∠BEA=90°. 又∠A=50° , 所以∠ABE=90°-∠A=90°-50°= 40°. 所以∠BPC =∠ABE +∠BDP = 90° + 40°= 130°. 故应选择B.
1 是否对于任意一个Rt△ABC,都有 CD = AB 成立呢? 2
图1-3
图1-4
又∵ ∠A +∠B=90° , DCA+ DCB 90 ,
∴ B DCB.
故得 CD = AD = BD = 1 AB. 2

1.2.1 直角三角形的性质与判定教说课稿 2022-2023学年北师大版八年级数学下册

1.2.1 直角三角形的性质与判定教说课稿 2022-2023学年北师大版八年级数学下册

1.2.1 直角三角形的性质与判定教说课稿一、教学目标1.知识与技能:掌握直角三角形的性质与判定方法。

2.过程与方法:通过引导学生观察、归纳和推理,培养学生分析问题、解决问题的能力。

3.情感态度价值观:培养学生对数学的兴趣,增强数学的实际应用能力。

二、教学重点和难点1.教学重点:直角三角形的性质和判定方法。

2.教学难点:引导学生运用所学知识进行问题解决。

三、教学准备1.教学工具:黑板、彩色粉笔、三角板、直尺等。

2.教学材料:教材《数学》(北师大版)八年级下册。

四、教学过程4.1 导入新课(板书)直角三角形的定义:一个三角形中,含有一个直角(90°)的三角形叫做直角三角形。

老师:同学们,我们今天将要学习的是直角三角形的性质与判定方法。

首先,请同学们简单回顾一下,什么是直角三角形?请举个例子。

4.2 引入新知识(板书)直角三角形的性质:直角三角形的两条直角边相互垂直;直角三角形的斜边最长。

老师:很好,直角三角形的定义大家都回忆了一下。

现在,我们来看一下直角三角形的性质。

请注意我的板书,直角三角形的性质有哪两个?学生:直角三角形的两条直角边相互垂直,斜边最长。

老师:非常棒!直角三角形的两条直角边相互垂直,斜边最长。

下面我们来看一些直角三角形的例子。

(教师展示直角三角形的图片,并引导学生观察)老师:同学们,请观察这些直角三角形的特点,它们的两条直角边是不是相互垂直?它们的斜边是不是最长的?学生:是的,两条直角边相互垂直,斜边最长。

老师:很好!我们通过观察可以发现,直角三角形的两条直角边相互垂直,斜边最长。

这是直角三角形的性质之一。

接下来,我们学习一下直角三角形的判定方法。

请看我的板书。

(板书)直角三角形的判定方法:方法一:三边关系法。

如果一个三角形的两条边的平方之和等于斜边的平方,那么这个三角形就是直角三角形。

方法二:两边关系法。

如果一个三角形的两条边长已知,且两条边相互垂直,那么这个三角形就是直角三角形。

北师大2024八年级数学下册 1.2 第2课时 直角三角形全等的判定 教案

北师大2024八年级数学下册 1.2 第2课时 直角三角形全等的判定 教案

1.2 直角三角形第1课时直角三角形的性质与判定教学内容第1课时直角三角形的性质与判定课时1核心素养目标1.经历猜想、操作、观察、证明等活动,获得判定直角三角形全等的“斜边、直角边”定理,并运用“斜边、直角边”定理解决问题.2.经历探索直角三角形全等条件的过程,进一步掌握推理证明的方法,发展演绎推理能力.3.有意识地培养学生对文字语言、符号语言和图形语言的转换能力,关注证明过程及其表达的合理性.知识目标1.探索并理解直角三角形全等的判定方法“HL”.2.会用直角三角形全等的判定方法“HL”判定两个直角三角形全等.教学重点探索并理解直角三角形全等的判定方法“HL”.教学难点会用直角三角形全等的判定方法“HL”判定两个直角三角形全等.教学准备课件教学过程主要师生活动设计意图一、情境导入二、探究新知一、创设情境,导入新知问题1 :我们学过哪些判定三角形全等的方法?问题2 :两边分别相等且其中一组等边的对角相等的两个三角形全等吗如果其中一组等边所对的角是直角呢?师生活动:学生举手回答问题.师追问:如何用数学语言来描述两边分别相等且其中一组等边的对角是直角的两个三角形全等吗?二、小组合作,探究概念和性质知识点一:全等三角形的判定和性质问题:如果这两个三角形都是直角三角形,即∠B=∠E = 90°,且AC = DF,BC = EF,现在能判定△ABC≌△DEF吗?设计意图:从学生已有的知识出发,激发学生强烈的好奇心和求知欲.设计意图:教学时,如果有学生提出仿照七年级探索三角形全等条件的方法,通过赋予两边特殊值、画直角三角形、与同伴所画的直角三角形进行比较,进而归纳出结论,教师也应给予鼓励,同时,教师可由此引导学生考虑用尺规一般作出直角三角形,从而转入下面“做一做”环节.做一做:已知一条直角边和斜边,求作一个直角三角形.已知:如图,线段a,c (a<c),直角α.求作:Rt△ABC,使∠C = ∠α,BC = a,AB = c.(1) 先画∠MCN=∠α=90°.(2) 在射线CM上截取CB=a.(3) 以点B为圆心,线段c的长为半径作弧,交射线CN于点A.(4) 连接AB,得到Rt∠ABC.师生活动:学生先独立在纸上画图,然后小组交流想法,保证学生的参与度,最终派代表对问题进行讲解.验证结论:已知:如图,在∠ABC与∠A′B′C′ 中,∠C′ =∠C = 90°,AB = A′B′,AC = A′C′.求证:∠ABC∠∠A′B′C′证明:在∠ABC中,∠∠C=90°,∠ BC2=AB2-AC2 (勾股定理).同理,B'C' 2=A'B' 2-A'C' 2.∠AB=A'B',AC=A'C',∠ BC=B'C'.∠ ∠ABC∠∠A'B'C'( SSS ) .归纳总结;“斜边、直角边”判定方法文字语言:斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”).几何语言:设计意图:1.掌握三角形的尺规作图,从实践中体会三角形全等的条件.2.操作探究活动的设计不仅让学生直观地感受了“斜边、直角边”可以确定一个直角三角形的大小和形状,而且也让学生较好地感悟到“斜边、直角边可以判定两个直角三角形全等.3培养学生的识图能力,并规范证明过程的书写格式.设计意图:学生经历了定理的发现、提出和证明的全过程,感受了合情推理与演绎推理的紧密联系.设计意图:培养学生逻辑思维能力,学会用“HL”条件判定三角形全等.典例精析例1如图,AC∠BC,BD∠AD,垂足分别为C,D,AC = BD. 求证BC = AD.证明:∠ AC∠BC,BD∠AD,∠∠C与∠D都是直角.在Rt∠ABC和Rt∠BAD中,AB = BA,AC = BD.∠ Rt∠ABC∠Rt∠BAD (HL).∠ BC = AD.师生活动:教师给出例题后,让学生独立作业,同时分别选派四名同学上黑板演算. 教师巡视,对学生演算过程中的失误及时予以指正,最后师生共同评析.变式1:如图,∠ACB=∠ADB=90°,要证明∠ABC ∠∠BAD,还需一个什么条件?把这些条件都写出来,并在相应的括号内填写出判定它们全等的理由.(1) AD=BC( HL )(2) BD=AC( HL )(3) ∠DAB=∠CBA( AAS)(4) ∠DBA=∠CAB( AAS)师生活动:学生独立思考,然后举手回答问题,老师针对有问题的给与解释,或者大家一起探讨错误的原因.例2 如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相设计意图:巩固所学的“斜边、直角边”定理,使学生对本节课所形成的概念有更深刻的理解.三、当堂练习,巩固所学等,两个滑梯的倾斜角∠B和∠F的大小有什么关系?师生活动:教学时,给几分钟时间先让学生尝试着解决问题,在学生出现思维盲区时,教师给予详细分析,边讲边演示,在思维的激烈碰撞过程中,逐渐形成对“HL”判定方法证明三角形全等解决实际问题的认识.练一练1.如图,已知AD,AF分别是两个钝角∠ABC和∠ABE的高,若AD=AF,AC=AE,求证:BC=BE.证明:∠ AD,AF分别是两个钝角∠ABC和∠ABE的高,且AD=AF,AC=AE,∠ Rt∠ADC ∠ Rt∠AFE (HL).∠ CD=EF.∠ AD=AF,AB=AB,∠ Rt∠ABD∠Rt∠ABF (HL).∠ BD=BF.∠ BD-CD=BF-EF,即BC=BE.三、当堂练习,巩固所学1. 判断两个直角三角形全等的方法不正确的有( )A. 两条直角边对应相等B. 斜边和一锐角对应相等C. 斜边和一条直角边对应相等D. 两个锐角对应相等2.如图,∠ABC中,AB = AC,AD是高,则∠ADB与∠ADC(填“全等”或“不全等”),依设计意图:及时运用知识解决问题,提高学生分析问题和解决问题的能力,增强应用意识、参与意识,巩固所学的“斜边、直角边”定理.设计意图:规范使用“HL”判定方法证明三角形全等的书写格式.在证明两个直角三角形全等时,要防止学生使用“SSA”来证明.设计意图:考查对使用“HL”证明两个直角三角形全等的使用条件的理解.据是(用简写法).3.如图,在∠ABC中,已知BD∠AC,CE∠AB,BD = CE.求证:∠EBC∠∠DCB.能力拓展4. 如图,有一直角三角形ABC,∠C=90°,AC=10 cm,BC=5 cm,一条线段PQ=AB,P、Q两点分别在AC上和过A点且垂直于AC的射线AQ上运动,问P点运动到AC上什么位置时∠ABC才能和∠APQ全等?设计意图:考查对使用“HL”证明两个直角三角形全等的使用条件的运用.板书设计1.2.2 直角三角形的性质与判定“斜边、直角边”判定方法文字语言:斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”).几何语言:课后小结。

北师大版八年级数学直角三角形(1)教案

北师大版八年级数学直角三角形(1)教案

“直角三角形〔第一课时〕〞教学设计一、教材的地位与作用“直角三角形〔第一课时〕〞选自《义务教育课程标准实验教科书〔北师大版〕·数学》八年级下册第一章第二节。

本课是《直角三角形》(第1课时)的教学内容,是在学生学习和掌握了直角三角形相关知识的根底上,进步探讨直角三角形的性质定理以及判定定理。

教学内容主要为勾股定理及其逆定理的证明方法,了解逆命题、互逆命题、逆定理的概念,让学生经历和了解勾股定理及其逆定理的证明方法,进一步理解证明的必要性,并通过具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立,其逆命题不一定成立。

本节通过观察、操作、推理、交流等数学活动进一步探索直角三角形的性质和判定。

以直观认识为根底进行简单的说理,将直观与简单推理相结合,表达具体--抽象--具体的过程,培养学生学习数学的兴趣,提高他们应用所学知识解决问题的能力。

二、学情分析在图形的学习中,学生已经历观察、画图、推理、合作等活动体验,具备了本节课所需的探索、交流和演绎推理能力。

本节课在学生已经认识了直角三角形的性质和判定方法的根底上,将进一步探索直角三角形的性质和判定的证明方法。

让学生对命题的条件和结论经历观察、归纳出他们的共性,以得出互逆命题、逆命题的概念。

并能解决一些简单的实际问题。

同时注重培养学生寻找生活中蕴含数学知识的例子。

在活动中引导学生主动参与、相互合作,让他们感受到数学的乐趣、魅力和成功的快乐。

让学生参与知识的产生和开展教学过程,注重培养他们的自主学习的能力。

三、教学目标1.知识与能力目标〔1〕掌握直角三角形的性质定理及判定定理,了解勾股定理的证明,理解勾股定理逆定理的证明方法,并能应用定理解决与直角三角形有关的问题.〔2〕结合具体例子了解逆命题的概念,会识别两个互逆命题,并知道原命题成立其逆命题不一定成立.2.过程与方法目标〔1〕经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,开展抽象思维。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
证明: 作Rt△DEF, 使∠E=90 °,
DE=AC,FE=BC ,
C
B
则DE2+EF2=DF2(勾股定理 ).
∵AC2+BC2=AB2(已知), DE=AC,FE=BC( 作图),
∴AB2=DF2,
∴AB=DF ,
D

E
F
归纳总结
勾股定理 :直角三角形两条直角边的平方和等于斜 边的平方.
定理:如果一个三角形两边的平方和等于第三边的 平方,那么这个三角形是直角三角形.
∵ (a+b)2 = c2+ 2ab ,
c ab+b2 = c2+2ab,
a
∴a 2+b2=c2.
3.赵爽弦图 大正方形的面积可以表示为 ;
也可以表示为

c a
b
b
b
b
c
c
勾股定理反过来,怎么叙述呢?
如果一个三角形两边的平方和等于第三边的平方 , 那么这个三角形是直角三角形.
勾股定理反过来,怎么叙述呢?
观察上面三组命题 ,你发现了什么 ?
在两个命题中,如果第一个命题的 条件和结论 分 别是另一个命题的 结论和条件 ,那么这两个命题叫做 互逆命题 .
如果把其中一个命题叫做 原命题,那么另一个 命题就叫做它的 逆命题.
例如:命题“两直线平行,内错角相等”的 条件和结论为: 条件为:两直线平行 ; 结论为:内错角相等 . 因此它的逆命题为:内错角相等,两直线平行 .
典例精析
例2 指出下列命题的条件和结论,并说出它们 的逆命题 . (1)如果一个三角形是直角三角形,那么它的两个 锐角互余.
条件:一个三角形是直角三角形 . 结论:它的两个锐角互余 .
逆命题:如果一个三角形的两个锐角互余,那
么这个三角形是直角三角形 .
(2)等边三角形的每个角都等于 60°.
条件:一个三角形是等边三角形 ; 结论:它的每个角都等于 60°. 逆命题:如果一个三角形的每个角都等于 60°,
如果一个三角形两边的平方和等于第三边的平方 , 那么这个三角形是直角三角形.
这个命题是真命 题吗?为什么?
例1 证明此命题: A
经典证法 “构造法”
C
B
已知:如图 ,在△ABC中,AC2+BC2=AB2. 求证:△ABC是直角三角形. 分析:构造一个直角三角形与△ ABC全等,你能自 己写出证明过程吗?




A的面 B的面积 C的面

积(单位 (单位 积(单位 面积) 面积) 面积)

图1

图2

图3
S +S =S 得
A、B、 C 面积
关系 A B C
a 2+b2=c2
图 1
图2
图3
c b
a
1.美国第二十任总统的证法:
c
b a
s1
?
1 2
(a
?
b)(a
?
b)
?
1 2
(a 2
?
2ab ?
b2 )
互逆命题与互逆定理
下面两个定理的条件和结论有什么样的关系? 勾股定理 :直角三角形两条直角边的平方和等于斜 边的平方. 定理:如果一个三角形两边的平方和等于第三边的 平方,那么这个三角形是直角三角形. 一个命题的 条件和结论分别是另一个命题的 结论和条件.
说出下列命题的条件和结论: 1.两直线平行 ,内错角相等; 2.内错角相等 ,两直线平行; 3.如果小明患了肺炎 ,那么他一定会发烧; 4.如果小明发烧 ,那么他一定患了肺炎; 5.一个三角形中相等的边所对的角相等; 6.一个三角形中相等的角所对的边相等;
例3 判断下列命题的
的真假.
(1)如果一个整数的个位数字是 5 ,那么这个整数 能被5整除.
逆命题:如果一个整数能被 5整除,那么这个整数
的个位数字是 5.
(2)如果两个角都是直角,那么这两个角相等 . 逆命题:如果两个角相等,那么这两个角是直角 .
知识归纳
如果一个定理的逆命题也是定理,那么这两 个定理叫做互逆定理, 其中的一个定理叫做另一 个定理的 逆定理 .
稀有,一定 “真”
当堂练习
1.如图是一张直角三角形的纸片,两直角边 AC=6 cm, BC=8 cm,现将△ABC折叠,使点 B与点A 重合,折痕为 DE,则BE的长为( B )
A.4 cm C.6 cm
B.5 cm D.10 cm
CD的长为 __74_c_m___
2.写出下列定理的逆命题,并判断是真命题还 是假命题
注意1:逆命题、互逆命题不一定是真命题, 但逆定理、互逆定理,一定是真命题 .
注意2:不是所有的定理都有逆定理 .
命题
互换条件结论
逆命题 例:如果两三角形全等,那么对应角相等; 如果对应角相等,那么两三角形全等
一定存在,但不一定 “真”
假命题
互换条件结论 +是真命题
定理
逆定理 例:两直线平行,内错角相等; 性质 互为逆定理 内错角相等,两直线平行 判定
a
?
1 2
a2
?
1 2
b2
?
ab,
s2
?
1 2
ab ?
1 2
ab ?
1 2
c2
?
ab ?
1 2
c2
b s1 ? s2,
1 2
a2
?
1 2
b2
?
ab
?
ab ?
1 2
c2,
a2 ? b2 ? c2.
2.利用正方形面积拼图证明:
a
b
c
c
大正方形的面积可以表示 为 (a+b)2 ; 也可以表示为 _c_2+__4_? _12_ab
(1)同旁内角互补,两直线平行 . 逆命题:两直线平行,同旁内角互补 . 真
(2)有两个角相等的三角形是等腰三角形 .
逆命题:如果一个三角形是等腰三角形,那
么它有两个角相等 .

课堂小结
直角三角形
性质
那么这个三角形是等边三角形 . (3)全等三角形的对应角相等 .
条件:两个三角形是全等三角形 . 结论:它们的对应角相等 . 逆命题:如果两个三角形的对应角相等,那
么这两个三角形全等 .
知识归纳 每一个命题都有逆命题,只要将原命题的条件改
成结论,并将结论改成条件,便可得到原命题的逆命 题.但是原命题正确,它的逆命题未必正确.
第一章 三角形的证明 1.2 直角三角形
第1课时 直角三角形的性质与判定
10.如图,∠AOB=60°,点P在边OA上,OP =12,点M ,N在边OB上,PM =PN. 若MN =2, 则OM 等于( ) A.3 B.4 C.5 D.6
第一章 三角形的证明
2.直角三角形
直角三角形的判定
1.定义:有一个角是直角的三角形是 直角三角形。 2.定理:有两个角互余的三角形是直角三角形 . 3.定理:如果一个三角形两边的平方和等于 第三边的平方,那么这个三角形是直角三角 形.(勾股定理逆定理)
相关文档
最新文档