电压控制电流源
《电路基础》受控源VCCS、VCVS、CCVS、CCCS的特性曲线实验

《电路基础》受控源VCCS 、VCVS 、CCVS 、CCCS 的特性曲线实验一. 实验目的1. 加深对受控源的理解2. 熟悉由运算放大器组成受控源电路的分析方法,了解运算放大器的应用。
3. 掌握受控源特性的测量方法二. 实验原理与说明1. 受控源是双口元件,一个为控制端口,另一个为受控端口。
受控端口的电流或电压受到控制端口的电流或电压的控制。
根据控制变量与受控变量的不同组合,受控源可分为四类:i c=0 i c=0+ u c u c - - (a) VCVS (b) VCCS u c=0 u c=0 c c -(c) CCVS (d) CCCS图9-1 受控源(1) 电压控制电压源(VCVS ),如图7-1(a )所示,其特性为:0=c i(2) 电压控制电流源(VCCS ),如图7-1(b )所示,其特性为: c m s u g i ⋅=cs u u ⋅=α0=c i(3) 电流控制电压源(CCVS ),如图7-1(c )所示,其特性为:c s i u ⋅=γ0=c u(4) 电流控制电流源(CCCS ),如图7-1(d )所示,其特性为: c s i i ⋅=β0=c u2. 运算放大器与电阻元件组成不同的电路,可以实现上述四种类型的受控源。
各电路特性分析如下。
(1) 电压控制电压源(VCVS ):运算放大器电路如图7-2所示。
由运算放大器输入端“虚短”特性可知:1u u u ==-+212R u i R =由运算放大器的“虚断”特性,可知: 21R Ri i =21221R i R i u R R ⋅+⋅=()2121R R R u +=11211u u R R ⋅=⋅⎪⎪⎭⎫ ⎝⎛+=α式(7-1)++u 1 i R1 u 1 R Lu 2R 1 −i R2 u 2 i RR 2 R − − −图7-2 电压控制电压源(VCVS ) 图7-3 电压控制电流源(VCCS )即运算放大器的输出电压2u 受输入电压1u 控制。
受控源实验指导书

实验八 受控源研究一.实验目的1.加深对受控源的理解。
2.熟悉由运算放大器组成受控源电路的分析方法,了解运算放大器的应用。
3.掌握受控源特性的测量方法。
二.实验原理1.受控源受控源向外电路提供的电压或电流是受其它支路的电压或电流控制,因而受控源是双口元件:一个为控制端口,或称输入端口,输入控制量(电压或电流),另一个为受控端口或称输出端口,向外电路提供电压或电流。
受控端口的电压或电流,受控制端口的电压或电流的控制。
根据控制变量与受控变量的不同组合,受控源可分为四类:(1)电压控制电压源(VCVS ),如图8-1(a )所示,其特性为:12u u μ= 其中:12u u =μ称为转移电压比(即电压放大倍数)。
(2)电压控制电流源(VCCS ), 如图8-1(b )所示,其特性为:12u g i = 其中:12m u i g =称为转移电导。
(3)电流控制电压源(CCVS ),如图8-1(c )所示,其特性为:12i r u = 其中:12i u r =称为转移电阻。
(4)电流控制电流源(CCCS ),如图8-1(d )所示,其特性为:12i i β= 其中:12i i =β称为转移电流比(即电流放大倍数)。
2.用运算放大器组成的受控源运算放大器的电路符号如图8-2所示,具有两个输入端:同相输入端u+和反相输入端u-,一个输出端uo,放大倍数为A ,则uo=A (u+-u-)。
对于理想运算放大器,放大倍数A 为∞,输入电阻为∞,输出电阻为0,由此可得出两︒ ︒ ︒ ︒+-1u +-12 u u μ = (a)1(b)11i (c)(d)图 8-1图 8-2O=u + u -个特性:特性1:u+=u_;特性2:i+=i_=0。
(1)电压控制电压源(VCVS )图8-3所示电路是由运算放大器构成的电压控制电压源,图中是反馈电阻,是负载电阻。
因为,且所以,又因为令,称为转移电压比或电压增益,是无量纲的常数,则;可见,运算放大器的输出电压u L 受输入电压u 1控制,其电路模型如图8-1(a )所示,转移电压比:)1(2f R R +=μ。
电路基础-电压源和电流源-受控源-基尔霍夫定律

电路基础-电压源和电流源-受控源-基尔霍夫定律————————————————————————————————作者:————————————————————————————————日期:2第一章电路模型和基尔霍夫定律3讲授板书1、掌握电压源、电流源的概念、用法及特性;2、熟悉受控源的用法;3、掌握基尔霍夫定律的应用。
1、电压源、电流源用法及特性2、基尔霍夫定律的应用受控源的概念及用法1. 组织教学 5分钟3. 讲授新课70分钟1)电压源及电流源25 2)受控源15 3)基尔霍夫定律302. 复习旧课5分钟电路元件特性4.巩固新课5分钟5.布置作业5分钟34一、学时:2二、班级:06电气工程(本)/06数控技术(本)三、教学内容:[讲授新课]:第一章电路模型和电路定律(电压源和电流源的概念及特点受控源的概念及分类基尔霍夫定律)§1-8电源元件(independent source)1. 理想电压源1)定义:其两端电压总能保持定值或一定的时间函数,且电压值与流过它的电流i 无关的元件叫理想电压源。
2)电路符号3)理想电压源的电压、电流关系(1)电源两端电压由电源本身决定,与外电路无关;与流经它的电流方向、大小无关。
(2)通过电压源的电流由电源及外电路共同决定。
伏安关系曲线如下图示:实际电流源可由稳流电子设备产生,如晶体管的集电极电流与负载无关;光电池在一定光线照射下光电池被激发产生一定值的电流等。
4)电压源的功率在电压、电流的非关联参考方向下;P = us i56物理意义:电流(正电荷 )由低电位向高电位移动,外力克服电场力作功电源发出功率。
例1-3图示电路,当电阻R 在0~∞之间变化时,求电流的变化范围和电压源发出的功率的变化。
解:(1)当电阻为R 时,流经电压源的电流为: 电源发出的功率为:表明当电阻由小变大,电流则由大变小,电源发出的功率也由大变小。
(2)当,则(3)当,则由此例可以看出:理想电压源的电流随外部电路变化。
电压源与电流源

电压源与电流源实际电源有电池、发电机、信号源等。
电压源和电流源是从实际电源抽象得到的电路模型,它们是有源二端元件。
一、电压源电池是人们日常使用的一种电源,它有时可以近似地用一个理想电压源来表示。
理想电压源简称电压源,它是这样一种理想二端元件:它的端电压总可以按照给定的规律变化而与通过它的电流无关。
常见的电压源有交流电压源和直流电压源。
电压源的图形符号如图1-16所示。
图1-16(a)既可表示交流电压源又可表示直流电压源,图1-16(b)仅表示直流电压源符号。
电压源具有以下两个特点:①电压源对外提供的电压总保持定值US 或者是给定的时间函数us(t),不会因所接的外电路不同而改变。
②通过电压源的电流的大小由外电路决定,随外接电路的不同而不同。
图1-17给出了直流电压源的伏安特性,它是一条与横轴平行的直线,表明其端电压与电流的大小无关。
由于实际电源的功率有限,而且存在内阻,因此恒压源是不存在的,它只是理想化模型,只有理论上的意义。
需要说明的是,将端电压不相等的电压源并联,是没有意义的。
将端电压不为零的电压源短路,也是没有意义的。
图1-16 电压源的图形符号图1-17 直流电压源的伏安特性二、电流源理想电流源简称为电流源。
电流源是这样一种理想二端元件:电流源发出的电流总可以按照给定的规律变化而与其端电压无关。
电流源的图形符号如图1-18(a)所示,直流伏安特性如图1-18(b)所示。
图1-18 电流源的图形符号及其伏安特性电流源有以下两个特点:①电流源向外电路提供的电流总保持定值IS 或者是给定的时间函数is(t),不会因所接的外电路不同而改变。
②电流源的端电压的大小由外电路决定,随外接电路的不同而不同。
恒流源是理想化模型,现实中并不存在。
实际的恒流源一定有内阻,且功率总是有限的,因而产生的电流不可能完全输出给外电路。
需要说明的是,将电流不相等的电流源串联,是没有意义的。
将电流不为零的电流源开路,也是没有意义的。
电压源和电流源最大的区别就是一个是负载决定电流

电压源和电流源最大的区别就是一个是负载决定电流,一个是负载决定电压。
PWM对电压源和电流源控制同时有效,可以改变平均电压或平均电流。
用来分析电压PWM 控制的方法也可以用来分析电流PWM控制(将容感进行互换)。
以AC-DC-AC为例,电压型直流侧并大电容,电压脉动小,可近似恒压源,电压无法反向。
电流型直流侧串大电感,电流脉动小,可近似恒流源,电流无法反向。
文档收集自网络,仅用于个人学习逆变电路来看,由于电流型电流不可反向,而电压可反向,因此无需电压型所用的反并联无功反馈二极管。
而电机驱动时,电流型更容易实现再生制动。
文档收集自网络,仅用于个人学习逆变负载来看,电压型适合对谐波电流表现出高阻抗的负载,如电感。
而电流型则适合谐波阻抗低的负载,如电容。
因此在控制电机时,电流型需并联电容。
类似电压型接电容负载时,需串联电感。
文档收集自网络,仅用于个人学习电流型可能因负载多为感性,直流侧电感往往体大笨重,应用较少,所以接触太少。
以上是仅个人观点,一起探讨。
感应电机定转子之间靠电磁感应作用,在转子内感应电流以实现几点能量转换的电机。
感应电机一般用作电动机。
特点:优点:结构简单,制造方便,价格便宜,运行方便。
缺点:功率因素滞后,轻载功率因数低,调速性能稍差。
感应电机是异步电机的一种,由于现在异步电机主要是感应电机,所有现在也有人直接在定义时候将异步电机定义为感应电机,呵呵,其实异步电机包括感应电机、双馈异步电机和交流换向器电机————自己归纳总结,不知道正确否???功率强大的AC感应电机慢慢发展为标准的电机设计类型,其特点是效率高,且价格具诱惑力。
美国国家电气制造协会(National Electrical Manufacturers Associ ation, NEMA)已经开发了针对于此的规范,名为NEMA A、B、C和D电机类型,将典型电机特性标准化,如起动电流、转差、转矩点,以适应各种不同的负载应用。
第三节 开关电源电压型控制和电流型控制基本原理

电压型控制的优点
• 1。单环控制,易于设计和分析; • 2。噪声裕量大; • 3。多路输出时,交叉调节性能好。
负载
0
x
PWM比较器 + C1 z=xy
R3
PI调节器
X为误差信号
+
Vref
将前面各个环节的传递函数代入上述控制系统,并进行 归一化后可以得到博德图。从博德图可知,电压模式控 制的开关电源,其稳定性和动态特性之间的矛盾比较突 出。(参阅教材和参考书得到此问题的详尽解释)
电压型控制的过电流保护形式 及其常用控制芯片
一、电压控制模式和电流控制模式
开关电源的控制模式分为:电压控制模式(Voltage Mode Control)和电流控制模式(Current Mode Control)两种。 电压控制模式:仅有一个输出电压反馈控制环。 电流控制模式:输出电压反馈控制外环和电流控制内环。 电流控制模式分类:峰值电流、滞环电流和平均电流控 制模式三种。
t=0
Qs =
π ( M1 − M 2 + 2M c )
2( M 1 + M 2 )
, 通过合理选择 M c,就可以使 Qs > 0,
MC − M2 n ] e0 从而保证系统的稳定。 此时误差en = [ M C + M1
峰值电流控制的优缺点及其 集成电路芯片
优点:(1)系统得稳定性增强,响应速度快(能够直接将干
受控源实验

3.3.恒流源(0 500mA可调)
4.4.EEL-31组件或EEL-54组件
四.四.实验内容
1.1. 测试电压控制电压源(VCVS)特性
0.15
0.2
0.25
0.3
0.4
(2)(2)测试CCCS的负载特性
保持 ,负载电阻 用电阻箱,并调节其大小,用电流表测量对应的输出电流 ,并将数据记入表8-8中
表8-8 CCCS的负载特性数据
50
100
150
200
1K
2K
10K
80K
五.五.注意事项
1.1.用恒流源供电的实验中,不许恒流源开路;
2.2.运算放大器输出端不能与地短路,输入端电压不宜过高(小于5V)。
三、实验内容
(一).VCVS的转移特性u2=f(u1)和负载特性u2=f(iL)研究。
图3—6
(1)零点漂移。按图3—6接线,当输入电压为零,RL=1KΩ时测量u2。
(2)固定RL=1KΩ调节稳压电源的输出电压,测量相应的u1和u2值。数据填入表3—2中。
表3—2
1
2
4
5
6
7
8
-1
-2
-4
-5
-6
-7
表3—1
名称
参数
CCCS
VCCS
CCVS
VCVS
H
Y
Z
G
A
受控源的受控量与控制量之比称为转移函数。四种受控源的转移函数分别用α、gm、µ、和rm表示。它们的定义如下:
电路基础原理电流源与电压源的区别与应用

电路基础原理电流源与电压源的区别与应用在电路中,电流源和电压源是两个基本的电子元件。
它们在电路中扮演着不同的作用,并且有着各自的特点和应用。
本文将探讨电流源和电压源的区别以及它们在电路中的应用。
一、电流源和电压源的区别1.1 电流源电流源是一个能够持续地提供稳定电流的元件。
当电路中存在电流源时,该源会向电路提供稳定的电流,无论电路中其他元件的电阻值如何,电流源的输出电流都不会改变。
电流源的电流输出是独立于电路中其他元件的。
1.2 电压源电压源是一个能够持续地提供稳定电压的元件。
电压源会向电路提供恒定的电压,无论电路中其他元件的电阻值如何,电压源的输出电压都不会改变。
电压源的电压输出是独立于电路中其他元件的。
1.3 区别与联系电流源和电压源的最大区别在于它们的输出特性。
电流源输出的是稳定的电流,而电压源输出的是稳定的电压。
此外,电流源和电压源通常可以相互转换,通过不同电路的设计可以将电流源转换为电压源,或者将电压源转换为电流源。
二、电流源和电压源的应用2.1 电流源的应用电流源在电路中有着广泛的应用。
一个常见的应用场景是在实验室中,用于提供稳定的电流供给。
例如,在进行电阻的测量时,需要一个稳定的电流源。
此外,电流源还常被应用于常流源电路中,通过控制电流的大小来实现对其他元件的工作状态的控制。
2.2 电压源的应用电压源同样在电路中有重要的应用。
一个例子是在直流电路中,电压源可以被用作电路的电源,为电路提供恒定的电压。
另外,在电子设备和电器中,我们常常使用电池和电源适配器作为电路的电压源,为设备提供所需的电压。
电压源的应用还包括在放大器电路中,通过控制电压源的大小来控制放大倍数。
2.3 电流源与电压源的组合应用在一些复杂的电路中,电流源和电压源可以结合使用,在实现不同的功能和控制上起到互补的作用。
例如,在集成电路设计中,常常使用电流源作为参考电流源,通过与其他电路元件配合使用来提供恒定的电流和电压。
这种组合应用能够满足电路对恒定电流和电压的要求,提高整体电路的性能和稳定性。