电工基础实验3(戴维南定理的验证)

合集下载

实验三 叠加定理

实验三  叠加定理

实验三 叠加定理、戴维南定理的验证一、实验目的1.通过实验验证线性电路叠加定理、戴维南定理的正确性,加深对该定理的认识和理解。

1. 掌握测量有源二端网络等效参数的一般方法 2. 掌握测量有源二端网络等效参数的一般方法。

二、实验原理1.叠加定理指出:在有几个独立源共同作用下的线性电路中,通过每一个组件的电流或其两端的电压,可以看成是一个独立源单独作用时在该组件上所产生的电流或电压的代数和。

2.戴维南定理指出:任何一个线性有源网络,对外电路而言,都可以用一个电压源和内阻的串联支路来代替如图3-1所示。

图3-1其中电压源的数值等于原有源二端网络的开路电压U o ,其内阻R o 等于有源二端网络中所有独立源置零(理想电压源视为短路,理想电流源视为开路)时的等效内阻。

三、实验内容与要求图3-2 叠加定理实验图1.叠加定理的验证实验线路如图3-2所示,取E1=12V,E2=6V(1)E1单独作用时,各支路的电流和电压测量E1单独作用时(将开关S1投向E1侧,开关S2投向短路侧),用数字电压表和数字毫伏表(接电流插头)测量各支路电流及各电阻组件两端的电压,记录于表3-1中。

(2)E2单独作用时,各支路的电流和电压测E2单独作用时(将开关S1投向短路侧,开关S2投向E2侧)重复实验步骤(1)的测量,将测试结果记录于表3-1中。

(3)E1和E2共同作用时,各支路的电流和电压测量E1和E2共同作用时(开关S1和S2分别投向E1和E2侧)重复上述的测量,将测试结果记录于表3-1中。

表3-12.戴维南定理的验证实验线路如图3-3所示。

图3-3 戴维南定理实验图(1)用开路电压、短路电流法测定戴维南等效电路的Uoc 和Ro按图3-3(a)所示,接入稳压电源Es 和恒流源Is及可变电阻箱RL ,用直流电压表测AB两点开路电压Uoc,然后测AB两点短路时的电流Isc,记录于表3-2中,从而算出有源二端网络的等效内阻Ro。

3戴维南定理的验证

3戴维南定理的验证
三.戴维南定理的验证
1.实验目的:
1.1.验证有源二端电路戴维南定理。 1.2.通过实验,熟悉伏安法.半压法.零示法等典型的电路测量法。
2.戴维南定理:
戴维南定理:任何线性有源二端电路都可以用一个电压源Us
与电阻R0 串联的等效电路代换。其中电压源US大小就是有源
二端电路的开路电压UOC;电阻RO大小是有源二端电路除去电
电流记录在表-2中,根据测量数据作有源二端电路的伏安特性曲线。
表-2 有源二端电路伏安特性测量表
负载 标称值 0 1K 2K 3K 5.1K 10k ∞ RL=R0=
RL 测量值 短路
开路
U(V) 测量值 0 I (mA) 实验值 ISC=
U0C= 0
U0C/2=
2020/9/29
长江大学电工电子实验中心龙从玉



UL=UOC/2

RL’= RO


图-3半压法 测输出电阻RO
3.4 零示法:用于测量高内阻网络的开路电压UOC。(略)
2020/9/29
长江大学电工电子实验中心龙从玉
2
4. 实验内容与实验步骤
4.1.用开路电压与半压法测量二端 电路等效参数与元件参数。
表-1 二端电路等效参数及元件参数
测量 U0C R0 R1 R2 R3
2020/9/29
长江大学电工电子实验中心龙从玉
4
5.注意事项
5.1.半压法测量有源二端网络等效电阻时,先调负载电阻RL,使U=Uoc/2, 再用电阻档测出此时的电阻RL=Ro
5.2.戴维南等效电路的电压源Uoc要用有源二端电路的开路电压Uoc,不可 用有源二端网络内的实际电源电压Us!!!

实验三戴维南定理的验证

实验三戴维南定理的验证

实验三戴维南定理的验证实验目的:验证戴维南定理,即两个力的合力可表示为它们夹角的余弦和正弦分别乘以它们的大小的乘积。

实验器材:万能传感器、数据采集器、几何夹具、两个力传感器、悬挂支架、并联弹簧、砝码组、指南针。

实验原理:戴维南定理:当两个力 F1 和 F2 作用于同一个点,夹角为θ 时,它们的合力 F 为:F=F1+F2=√(F1^2+F2^2+2F1F2cosθ)根据上述公式,可得:F1+F2=√(F1^2+F2^2+2F1F2cosθ)同时,用正弦定理可得:F1/F2=sin(θ2)/sin(θ1)实验步骤:1. 将悬挂支架固定在水平桌面上。

2. 将两个力传感器分别固定在悬挂支架上,并将它们的读数清零。

3. 将几何夹具固定在力传感器上,并调整两个夹具,使得它们之间夹角为θ。

4. 在夹具的正中央挂上并联弹簧和砝码组,记录下此时的读数F1。

5. 更改夹具的位置,调整夹角至相反方向,重复步骤 4,记录下此时的读数 F2。

6. 将 F1 和 F2 的读数输入数据采集器,计算出 F 和θ2/θ1。

7. 使用指南针测量出夹角θ 的实际值。

8. 根据实际值和计算值进行比较,验证戴维南定理的正确性。

注意事项:1. 实验中夹具的位置应固定且夹角应准确测量。

2. 实验过程中力传感器的不少于两组读数应记录。

3. 实验结果应与理论值相符合。

实验结果与分析:将实验得到的数据代入戴维南定理的公式中计算,得到 F 和θ2/θ1 的值。

并使用指南针测量夹角θ 的实际值,将计算值和实际值进行比较。

根据实验数据计算得到 F 的值为 3.10 N,θ2/θ1 的值为 0.911。

测量得到夹角θ 的实际值为 40°。

将具体数值代入公式中,计算出此时的 F1 和 F2。

F1=2.01 N,F2=2.24 N,F1+F2=4.25 N。

可见,计算值与实际值的误差较小。

综上所述,实验结果验证了戴维南定理的正确性。

电路实验 验证戴维南定理

电路实验   验证戴维南定理

实验三 戴维南定理一、实验目的1.通过实验来验证戴维南定理,并加深对等效电路的理解; 2.学习用实验方法求含源一端口网络的等效电路; 3.灵活运用等效电源定理来简化复杂线性电路的分析; 4.进一步学习使用常用直流仪器仪表的方法。

二、实验原理1.任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源的二端网络(或称为含源一端口网络)。

根据戴维南定理:对任一线性含源一端口电阻网络(见图 3.1(a)),就其端口而言总可以用一个电压源串联电阻来等效,如图3.1(b)所示,其电压源的电压为原网络端口a 、b 两端的开路电压U oc , 电阻为原网络将内部电源化零以后从端口看进去的等效电阻R i 。

这里所谓的等效是指含源一端口网络被等效电路替代后,对原一端口网络的外电路没有影响,也就是外电路的电流和电压保持替代前后不变。

(a)(b)图 3.1 一端口网络及其等效电路2.含源一端口网络输入电阻R i 的实验测定法(1)测量含源一端口网络的开路电压U oc 和短路电流I sc ,则输入电阻为scoci I U R =(2)将含源一端口网络内所有电压源的电压和电流源的电流变成零,即含源一端口网络化为无源一端口网络。

然后在这无源一端口网络的端口处,外加一个电压U s ,测量端口的电流I ,则入端电阻为IU R Si =三、实验内容将原网络改接一根线的等效法。

(1) 用数字万用表测量R1 ~R3 电阻元件的参数取100~300Ω之间,将直流稳压电源接入电路,令u=20V,实验中调好后保持不变。

(2) 按图3.2(a)接线,调节R从0~∞,测量出U AB 和I R 的数值,特别要注意测出R=0及R=∞时的电压、电流值,将电压表和电流表的读数填入表4-1中。

(3) 将图3.2 (b) 的CD连线断开,连接CE,此时由R3与R1并联再与R2串联的电阻值(即AE间的电阻),由实验原理可知即为等效电阻,再将原先20V的电源改为由实验内容(2)测得的等效电压源U OC,也就是内容(2)将电流表断开时的电压表指示值,然后重复内容(2)的测量,并将测得结果填入表3.1中。

实验报告戴维南定理(3篇)

实验报告戴维南定理(3篇)

第1篇一、实验目的1. 深入理解并掌握戴维南定理的基本原理。

2. 通过实验验证戴维南定理的正确性。

3. 学习并掌握测量线性有源一端口网络等效电路参数的方法。

4. 提高使用Multisim软件进行电路仿真和分析的能力。

二、实验原理戴维南定理指出:任何一个线性有源一端口网络,对于外电路而言,都可以用一个理想电压源和电阻的串联形式来等效代替。

理想电压源的电压等于原一端口网络的开路电压Uoc,其电阻(又称等效内阻)等于网络中所有独立源置零时的入端等效电阻Req。

三、实验仪器与材料1. Multisim软件2. 电路仿真实验板3. 直流稳压电源4. 电压表5. 电流表6. 可调电阻7. 连接线四、实验步骤1. 搭建实验电路根据实验原理,搭建如图1所示的实验电路。

电路包括一个线性有源一端口网络、电压表、电流表和可调电阻。

图1 实验电路图2. 测量开路电压Uoc断开可调电阻,用电压表测量一端口网络的开路电压Uoc。

3. 测量等效内阻Req将可调电阻接入电路,调节其阻值,记录不同阻值下的电压和电流值。

根据公式Req = Uoc / I,计算等效内阻Req。

4. 搭建等效电路根据戴维南定理,搭建等效电路,如图2所示。

其中,理想电压源的电压等于Uoc,等效内阻为Req。

图2 等效电路图5. 测量等效电路的外特性在等效电路中,接入电压表和电流表,调节可调电阻的阻值,记录不同阻值下的电压和电流值。

6. 比较实验结果比较原电路和等效电路的实验结果,验证戴维南定理的正确性。

五、实验结果与分析1. 测量数据表1 实验数据| 阻值RΩ | 电压V | 电流A | ReqΩ || ------ | ----- | ----- | ---- || 10 | 2.5 | 0.25 | 10 || 20 | 1.25 | 0.125 | 10 || 30 | 0.833 | 0.083 | 10 |2. 分析从实验数据可以看出,随着负载电阻的增大,原电路和等效电路的电压和电流值逐渐接近。

戴维南定理的验证

戴维南定理的验证

实验二 戴维南定理的验证一.实验目的1.验证戴维南定理、诺顿定理的正确性,加深对该定理的理解。

2.掌握测量有源二端网络等效参数的一般方法。

二.实验原理1.戴维南定理和诺顿定理戴维南定理指出:任何一个有源二端网络如图6-1(a ),总可以用一个电压源U S 和一个电阻R S 串联组成的实际电压源来代替如图6-1(b ),其中:电压源U S 等于这个有源二端网络的开路电压U OC , 内阻R S 等于该网络中所有独立电源均置零(电压源短接,电流源开路)后的等效电阻R O 。

诺顿定理指出:任何一个有源二端网络如图6-1(a ),总可以用一个电流源I S 和一个电阻R S 并联组成的实际电流源来代替如图6-1(c ),其中:电流源I S 等于这个有源二端网络的短路电源I SC , 内阻R S 等于该网络中所有独立电源均置零(电压源短接,电流源开路)后的等效电阻R O 。

U S 、R S 和I S 、R S 称为有源二端网络的等效参数。

LR图 6-1LR(a〕(b〕LR (c)2.有源二端网络等效参数的测量方法(1)开路电压、短路电流法 在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压U OC , 然后再将其输出端短路,测其短路电流I S C,且内阻为:SCOCS I U R =。

若有源二端网络的内阻值很低时,则不宜测其短路电流。

(2)伏安法一种方法是用电压表、电流表测出有源二端网络的外特性曲线,如图6-2所示。

开路电压为U OC ,根据外特性曲线求出斜率tg φ,则内阻为:IU R ∆∆==φtg S。

另一种方法是测量有源二端网络的开路电压U OC ,以及额定电流I N 和对应的输出端额定电压U N ,如图6U SC N U 图 6-2-1所示,则内阻为:NNOC S I U U R -=。

三.实验设备1.直流数字电压表、直流数字电流表; 2.恒压源(双路0~30V 可调); 3.恒源流(0~200mA 可调); 4.MEEL -06组件。

戴维南和诺顿定理的验证实验报告

戴维南和诺顿定理的验证实验报告

戴维南和诺顿定理的验证实验报告实验目的:验证戴维南和诺顿定理。

实验原理:戴维南和诺顿定理是电路理论中的基本定理之一。

它表示任何包含电压源和电流源的线性电路可以用其电压源和电流源的代数和来等效为一个独立电压源和电流源的并联电路。

实验装置:- 直流电源- 滑动变阻器- 电阻器- 电压表- 电流表- 连接线实验步骤:1. 将实验装置按照电路图连接好,确保电路没有接错。

2. 设置直流电压源的电压值为一定值,例如5V。

3. 测量并记录电路中各个元件的电压和电流数值。

4. 更改电路中的滑动变阻器的阻值,测量并记录电路中各个元件的电压和电流数值。

5. 使用戴维南和诺顿定理,将实验得到的电压和电流数据进行计算,验证定理的成立。

实验结果:表格1:电路1的各个元件的电压和电流数据元件电压(V)电流(A)电压源 5.0 0.5电流源0.0 1.0电阻器R1 2.5 0.5电阻器R2 2.5 0.5总电阻(R1+R2) 5.0 1.0表格2:电路2的各个元件的电压和电流数据元件电压(V)电流(A)电压源 5.0 0.5电流源0.0 1.0电阻器R1 2.0 0.4电阻器R2 3.0 0.6总电阻(R1+R2) 5.0 1.0根据戴维南和诺顿定理,两个电路的电压源和电流源的代数和应该相等。

计算结果:对于电路1:电压源的代数和= 5.0V + 0.0V = 5.0V,电流源的代数和= 0.5A + 1.0A = 1.5A。

对于电路2:电压源的代数和= 5.0V + 0.0V = 5.0V,电流源的代数和= 0.5A + 1.0A = 1.5A。

实验结论:通过实验结果和计算可以看出,戴维南和诺顿定理在实际电路中成立,验证了定理的准确性。

实验三、四 戴维南定理的验证及最大功率传输定理的验证

实验三、四  戴维南定理的验证及最大功率传输定理的验证

实验三、四 戴维南定理的验证及最大功率传输定理的验证一、实验目的1. 验证戴维南定理的正确性,加深对该定理的理解。

2. 掌握测量有源二端网络等效参数的一般方法。

3. 掌握测量开路电压与等效内阻的方法。

4. 掌握最大功率传输定理。

二、实验原理1. 戴维南定理任何一个线性有源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为有源一端口网络)。

戴维南定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势U S 等于这个有源二端网络的开路电压U OC ,其等效内阻R 0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。

U OC (U S )和R 0称为有源二端网络的等效参数。

2. 有源二端网络等效电阻的测量方法 (1)开路电压、短路电流法测R 0在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压U OC ,然后再将其输出端短路,用电流表测其短路电流I SC ,则等效内阻为:SCOC0I U R =如果二端网络的内阻很小,若将其输出端口短路则易损坏其内部元件,因此不宜用此法。

(2)伏安法测R 0用电压表、电流表测出有源二端网络的外特性曲线,如图5-1所示。

根据外特性曲线求出斜率ϕtan ,则内阻:SCOC0I U ΔI ΔU tan R ===ϕU I图5-1 外特性曲线四、实验内容被测有源二端网络如图5-3(a )所示,电压源U S =12V 和恒流源IS =10A 。

Ω510Ω510Ω330Ω10U SI S电阻箱R LU OCU电阻箱R LIR 0被测有源网络(a )电路原理图 (b )等效电路图5-3 有源二端网络图5-4 Multisim 戴维南定理测开路电压仿真电路图5-5 Multisim 戴维南定理测短路电流仿真电路1. 用开路电压、短路电流法测量戴维南等效电路的U OC、R0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三 戴维南定理的验证
(一)实验内容:戴维南定理的验证 (二)实验目的: 1、学习有源二端网络的开路电压和入端等 效电阻的测量方法。 2、加深对戴维南定理的理解。 3、学会用直接测量法测开路电压。 (三)仪表与设备 1、直流稳压电源 1台 2、直流稳流电源 1台 3、直流电压表 1只 4、直流电流表 1只 5、直流电阻箱 1个 6、万用表 1块
直流稳流电源:DH1719A-5
输出电流 时需按下
旋到最大 旋到最小
(四)实验原理:戴维南定理 1、对任何一个线性含源二端网络,根 据戴维南定理,可以等效成一个电压源 和一个电阻串联的电路模型。其等效条 件是:Uoc是该网络的开路电压,Ri是 该网络去源后的输出电阻。 2、等效前后,两者外电路的伏安特性 相同。 3、等效电阻可根据测量办法求得:测 量含源二端网络的开路电压Uoc和短路 电流Isc,则Ri=Uoc/Isc。
0
500
1K 1.5K 2K 2.5K 开路
I/mA
U/V
(六)报告要求: 在同一张坐标纸上,画出线性含源 二端网络和其戴维南等效电路的伏安特 性曲线 。 分析并作出结论。
(五)实验电路与步骤:
E
330Ω 510Ω + Isc - 20mA
F
10Ω
C
+
A
IL
RL 1KΩ
500Ω Us
6V +
D
1K 1.5K 2K 2.5K 开路
G
RL/Ω I/mA U/V 0
500
Ri = Uoc / Isc =
(五)实验电路与步骤:
C
Ri
+ + Uoc -
RLБайду номын сангаас
V
-
+
A D
-
RL/Ω
相关文档
最新文档