集合及其运算易错点
第02讲 集合的运算(7大考点13种解题方法)(解析版)

第02讲集合的运算(7大考点13种解题方法)考点考向集合之间的基本运算如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U 表示;集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }1.由所有属于集合A 或属于集合B 的元素组成的集合叫A 与B 的并集,记作A ∪B ;符号表示为A ∪B ={x |x ∈A 或x ∈B }2.并集的性质A ∪B =B ∪A ,A ∪A =A ,A ∪∅=A ,A ⊆A ∪B .3.对于两个给定的集合A 、B ,由所有属于集合A 且属于集合B 的元素组成的集合叫A 与B 的交集,记作A ∩B。
符号为A ∩B ={x |x ∈A 且x ∈B }。
4.交集的性质A ∩B =B ∩A ,A ∩A =A ,A ∩∅=∅,A ∩B ⊆A .5、对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,记作∁U A 。
符号语言:∁U A ={x |x ∈U ,且x ∉A }。
【要点注意】1.A ⊆B ⇔A ∩B =A ⇔A ∪B =B ()()UUA B A B U ⇔=∅⇔=痧.2.德▪摩根定律:①并集的补集等于补集的交集,即()=()()U UU A B A B 痧;②交集的补集等于补集的并集,即()=()()U UU AB A B 痧.方法技巧1.求集合并集的两种基本方法:(1)定义法:若集合是用列举法表示的,可以直接利用并集的定义求解;(2)数形结合法:若集合是用描述法表示的由实数组成的数集,则可以借助数轴求解.2.求集合交集的方法为:(1)定义法,(2)数形结合法.(3)若A ,B 是无限连续的数集,多利用数轴来求解.但要注意,利用数轴表示不等式时,含有端点的值用实点表示,不含有端点的值用空心点表示.3.集合基本运算的求解规律(1)离散型数集或抽象集合间的运算,常借用Venn 图求解.(2)集合中的元素若是连续的实数,常借助数轴求解,但是要注意端点值能否取到的情况.(3)根据集合运算求参数,先把符号语言译成文字语言,然后灵活应用数形结合求解.考点精讲考点一:交集题型一:交集的概念及运算1.(2022·浙江衢州·高一阶段练习)已知集合{1,2,3}A =,{2,3,4}B =,则A B =()A .{1,2,3,4}B .{2,3}C .{1,2}D .∅【答案】B【分析】根据交集的定义可求A B .【详解】{}2,3AB =,故选:B.2.(2022·全国·高一)已知集合{}22A x x =-<<,{}2,0,1,2B =-,则A B =()A .{}1,0,1-B .{}0,1C .{}2,0,1,2-D .{}1,0,1,2-【答案】B【分析】根据集合的交集运算,即可得答案.【详解】因为{}22A x x =-<<,{}2,0,1,2B =-,所以{0,1}A B =,故选:B .题型二:根据交集的结果求集合或参数3.(2017·浙江·长兴县教育研究中心高一期中)已知集合{}2,3,4,5A =,{}1,B a =,若{}5A B =,则=a ()A .2B .3C .4D .5【答案】D【分析】根据集合的交运算结果,即可求得参数值.【详解】因为{}5A B =,故可得{}51,a ∈,则5a =.故选:D.4.(2021·湖北·车城高中高一阶段练习)若集合{}322P x x =<≤,非空集合{}2135Q x a x a =+≤<-,则能使()Q PQ ⊆成立的所有实数a 的取值范围为()A .(1,9)B .[1,9]C .[6,9)D .(6,9]【答案】D【分析】由()Q P Q ⊆知Q P ⊆,据此列出不等式组即可求解.【详解】∵()Q P Q ⊆,∴P Q Q ⋂=,Q P ⊆,∴21352133522a a a a +<-⎧⎪+>⎨⎪-≤⎩,解得69a <≤,故选:D.题型三:根据交集的结果求集合元素个数5.(2021·河南·襄城县实验高级中学高一阶段练习)已知集合()1,A x y y x ⎧⎫==⎨⎬⎩⎭,(){},B x y y x ==,则AB 中元素的个数为()A .0B .1C .2D .3【答案】C【分析】联立方程解得11x y =⎧⎨=⎩或11x y =-⎧⎨=-⎩,得到答案.【详解】1y x y x⎧=⎪⎨⎪=⎩,解得11x y =⎧⎨=⎩或11x y =-⎧⎨=-⎩,故A B 中有两个元素.故选:C.6.(2022·江苏·高一)若集合{}1,2,3,4A B =,{}1,2A B =,集合B 中有3个元素,则A中元素个数为()A .1B .2C .3D .不确定【答案】C【分析】根据条件得到{}1,2,3B =或{}1,2,4B =,进而可得集合A 中元素个数.【详解】{}1,2AB =,则集合B 中必有元素1,2当{}1,2,3B =时,{}1,2,4A =,当{}1,2,4B =时,{}1,2,3A =,故集合A 中元素个数为3.故选:C.考点二:并集题型四:并集的概念及运算1.(多选)(2021·福建·晋江市磁灶中学高一阶段练习)已知集合{|2}A x x =<,{|320}B x x =->,则()A .32AB x x ⎧⎫⋂=<⎨⎬⎩⎭B .A B =∅C .{}2A B x x ⋃=<D .A B R=【答案】AC【分析】先求得集合B ,由此确定正确选项.【详解】3{|320}{|}2B x x B x x =->==<,所以32A B x x ⎧⎫⋂=<⎨⎬⎩⎭,{}2A B x x ⋃=<.故选:AC2.(多选)(2021·福建省同安第一中学高一阶段练习)已知集合{|2}A x x =<,{|320}B x x =->,则()A .32AB x x ⎧⎫⋂=<⎨⎬⎩⎭B .A B =∅C .A B R=D .{}A B 2x x ⋃=<【答案】AD【解析】先化简集合B ,再由交集和并集的概念,即可得出结果.【详解】因为集合{|2}A x x =<,{}33202B x x x x ⎧⎫=->=<⎨⎬⎩⎭,因此32A B x x ⎧⎫⋂=<⎨⎬⎩⎭,{}A B 2x x ⋃=<.故选:AD.题型五:根据并集的结果求集合或参数3.(多选)(2022·湖北武汉·二模)已知集合{}{}1,4,,1,2,3A a B ==,若{}1,2,3,4A B =,则a 的取值可以是()A .2B .3C .4D .5【答案】AB【分析】根据并集的结果可得{}1,4,a {}1,2,3,4,即可得到a 的取值;【详解】解:因为{}1,2,3,4A B =,所以{}1,4,a {}1,2,3,4,所以2a =或3a =;故选:AB4.(多选)(2021·湖南·高一期中)已知集合{}1,4,M x =,{}2,3N =,若{}1,2,3,4M N =U ,则x 的可能取值为()A .1B .2C .3D .4【答案】BC【分析】根据题意,结合集合中元素的互异性及两个集合的并集的定义,即可求解.【详解】由题意,集合{}1,4,M x =,{}2,3N =,且{}1,2,3,4M N =U 根据集合中元素的互异性及两个集合的并集的定义,可得2x =或3x =.故选:BC.题型六:根据并集的结果求集合元素个数5.(多选)(2021·广东揭阳·高一期末)若集合{}0,1,2,A x =,2{1,}B x =,A B A ⋃=则满足条件的实数x 为()A .0B .1C .D .【答案】CD【分析】由A B A ⋃=说明B 是A 的子集,然后利用子集的概念分类讨论x 的取值.【详解】解:由A B A ⋃=,所以B A ⊆.又{}0,1,2,A x =,2{1,}B x =,所以20x =,或22x =,或2x x =.20x =时,集合A 违背集合元素的互异性,所以20x ≠.22x =时,x =或x =2x x =时,得0x =或1x =,集合A 均违背集合元素互异性,所以2x x ≠.所以满足条件的实数x 的个数有2个.故选CD .【点睛】本题考查了并集及其运算,考查了子集的概念,考查了集合中元素的特性,解答的关键是要考虑集合中元素的互异性,是基本的概念题,也是易错题.考点三:补集、全集题型七:补集的概念及运算1.(2022·广东汕尾·高一期末)全集U =R ,集合{}3A x x =≤-,则 U A =ð______.【答案】{}3x x >-【分析】直接利用补集的定义求解【详解】因为全集U =R ,集合{}3A x x =≤-,所以 U A =ð{}3x x >-,故答案为:{}3x x >-2.(2022·江苏·高一单元测试)若全集S ={2,3,4},集合A ={4,3},则S A ð=____;若全集S ={三角形},集合B ={锐角三角形},则S B ð=______;若全集S ={1,2,4,8},A =∅,则S A ð=_______;若全集U ={1,3,a 2+2a +1},集合A ={1,3},U A ð={4},则a =_______;已知U 是全集,集合A ={0,2,4},U A ð={-1,1},U B ð={-1,0,2},则B =_____.【答案】{2}{直角三角形或钝角三角形}{1,2,4,8}1或-3{1,4}【分析】利用补集的定义,依次分析即得解【详解】若全集S ={2,3,4},集合A ={4,3},由补集的定义可得S A ð={2};若全集S ={三角形},集合B ={锐角三角形},由于三角形分为锐角、直角、钝角三角形,故S B ð={直角三角形或钝角三角形};若全集S ={1,2,4,8},A =∅,由补集的定义S A ð={1,2,4,8};若全集U ={1,3,a 2+2a +1},集合A ={1,3},U A ð={4},故{1,3,4}U U A A =⋃=ð即2214a a ++=,即223(1)(30a a a a +-=-+=),解得=a 1或-3;已知U 是全集,集合A ={0,2,4},U A ð={-1,1},故{1,0,1,2,4}U U A A =⋃=-ð,U B ð={-1,0,2},故B ={1,4}。
集合与常用逻辑用语(5大易错点分析+解题模板+举一反三+易错题通关)-备战24年高考数学(原卷版)

专题01集合与常用逻辑用语易错点一:对集合表示方法的理解存在偏差(集合运算问题两种解题方法)方法一:列举法列举法就是通过枚举集合中的所有元素,然后根据集合基本运算的定义求解的方法。
其解题具体步骤如下:第一步定元素:确定已知集合中的所有元素,利用列举法或画数轴写出所有元素或范围;第二步定运算:利用常见不等式或等式解未知集合;第三步:定结果。
方法二:赋值法高考对集合的基本运算的考查以选择题为主,所以我们可以利用特值法解题,即根据选项之间的明显差异,选择一些特殊元素进行检验排除,从而得到正确选项.其解题具体步骤如下:第一步:辨差异:分析各选项,辨别各选项的差异;第二步:定特殊:根据选项的差异,选定一些特殊的元素;第三步:验排除:将特殊的元素代入进行验证,排除干扰项;第四步:定结果:根据排除的结果确定正确的选项。
易错提醒:对集合表示法的理解先观察研究对象(丨前),研究对象是点集还是数集,故要对本质进行剖析,需要明确集合中的代表元素类型及代表元素的含义.例已知集合{}A x x π=<,(){},2B x y y =>,则集合A B = ()A .∅B .()2,πC .(),2-∞D .(),π-∞变式1:已知集合()(){}{}21402A x x x B y y x =--<==-,,则A B = ()A .∅B .{}14x x <<C .{}12x x <≤D .{}24x x ≤<变式2:已知集合{}22(,)1,,A x y x y x y =+=∈R ∣,{1,,}B x x y x y =+=∈R ∣,则()A .{0,1}AB = B .{(0,1),(1,0)}A B ⋂=C .A B=D .A B ⋂=∅变式3:已知集合(){}2|log 10A x x =-<,{||2|2}B x x =-<,则A B = ()A .{|12}x x <<B .{|14}x x <<C .{|04}x x <<D .{|4}x x <1.集合(){},32A x y y x ==-,(){},4B x y y x ==+,则A B = ()A .{}3,7B .(){}3,7C .{}7,3D .{}3,7x y ==2.已知集合{}220|A x x x =-<,集合(){}22log 2|B y y x ==-,则A B = ()A .(]0,1B .(,1)-∞C .(,2)-∞D .()0,23.设全集U =R ,集合{|3,10}P y y x x ==-<<,|02x Q x x ⎧⎫=≥⎨⎬+⎩⎭,则U P Q ⋂ð等于()A .()2,0-B .[)2,0-C .()3,2--D .(]3,2--4.已知集合{}N 14A x x =∈-≤<,(){}2lg 23B x y x x ==-++,则A B = ()A .{}1,2B .{}0,1,2C .[)1,3-D .()1,3-5.已知集合{|12},{|ln }M x x N x y x =-≤≤==,则M N ⋂=()A .{|12}x x -≤≤B .{|12}x x -<≤C .{|02}x x <≤D .{|1x x <-或2}x ≥1.利用两个集合之间的关系确定参数的取值范围解题时务必注意:由于∅是任意集合的子集,若已知非空集合B,集合A满足A⊆B或A⊂B,则对集合A分两种情中的含参问题况讨论:(1)当A=∅时,若集合A是以不等式为载体的集合,则该不等式无解;(2)当A≠∅时,要利用子集的概念把子集关系转化为两个集合对应区间的端点值的大小关系,从而构造关于参数的不等式(组)求解.2.利用两集合的运算求参数的值或取值范围解决此类问题的步骤一般为:第一步:化简所给集合;第二步:用数轴表示所给集合;第三步:根据集合端点间关系列出不等式(组);(4)解不等式(组);第四步:检验,通过返回代入验证端点是否能够取到.第五步:解决此类问题多利用数形结合的方法,结合数轴或Venn图进行求解.易错提醒:勿忘空集和集合本身.由于∅是任意集合的子集,是任何集合的真子集,任何集合的本身是该集合的子集,所以在进行列举时千万不要忘记。
集合与常用逻辑用语(3个易错点+10个易错核心题型)(学生版) 2025年高考数学大一轮复习新高考版

易错01 集合与常用逻辑用语(3个易错点错因分析与分类讲解+10个易错核心题型强化训练)易错点1 忽视对空集的讨论而致误【例1】. [湖南师大附中2023第三次月考]已知集合{}14A x x =-<£,()(){}221B x x a x a =---.若A B=ÆI ,则实数a 的取值范围为(){}.2A a a >{}.2B a a ³{}.12C a a a =³或{}.1D a a ³【变式】.[江西景德镇乐平中学2022月考]设集合{}37,M x x =-<<{}221,N x t x t t R =-<<+Î.若M N M =U , 实数t 的取值范围为( )().3,A +¥().,3B -¥(].,3C -¥[).3,D +¥易错点2 忽略集合中元素的互异性而致误【例2】. [湖南邵阳二中2023第五次月考]已知,a b R Î,若{}2,,1,,0b a a a b a ìü=+íýîþ,则20222022a b +的值为().1A -.0B.1C.1D ±【变式】. [福建龙岩一中2022月考]已知,a R b R ÎÎ,若集合{}2,,1,,0b a a a b a ìü=+íýîþ,则20212021a b +().2A -.1B -.1C.2D 易错点3 没有正确理解充分不必要条件的意义而致误【例3】. [河南驻马店二中2023第二次培优考]已知:120p x x --£,()()():1200q x m x m m +-+£>éùëû.若p 是q 的充分不必要条件,则实数m 的取值范围是 .【变式】. [湖南名校2022第二次联考]已知“21a x a ££+”是“25x -££”的充分不必要条件,则实数的取值范围是()[).2,A -+¥[].2,2B -(].2,2C -().2,2D -【易错核心题型强化训练】一.元素与集合关系的判断(共1小题)1.(2024•泸县校级开学)设集合1{(A x =,2x ,3x ,4x ,5)|{1i x x Î-,0,1},1i =,2,3,4,5},那么集合A 中满足条件123451||||||||||3x x x x x ++++……的元素的个数为( )A .60B .100C .120D .130二.集合的确定性、互异性、无序性(共1小题)2.(2024•扬中市校级开学)设集合{2A =,1a -,22}a a -+,若4A Î,则(a = )A .3-或1-或2B .3-或1-C .3-或2D .1-或2三.集合的包含关系判断及应用(共1小题)3.(2024•浦东新区校级模拟)函数()x x Pf x xx MÎì=í-Îî,其中P 、M 为实数集R 的两个非空子集,又规定(){|()f P y y f x ==,}x P Î,(){|()f M y y f x ==,}x M Î.给出下列四个判断,其中正确判断有( )①若P M =ÆI ,则()()f P f M =ÆI ;②若P M ¹ÆI ,则()()f P f M ¹ÆI ;③若P M R =U ,则()()f P f M R =U ;④若P M R ¹U ,则()()f P f M R ¹U .A .1个B .2个C .3个D .4个四.并集及其运算(共1小题)4.(2024•浙江学业考试)已知集合{0A =,1,2},集合{0B =,2,4},则(A B =U )A .{0}B .{2}C .{0,2,4}D .{0,1,2,4}五.交集及其运算(共4小题)5.(2024•沙依巴克区校级模拟)已知集合{|24}A x x =……,{|3}B x a x a =-<+…,若A B A =I ,则a 取值范围是( )A .2a >-B .1a -…C .1a …D .2a >6.(2024•北京学业考试)已知集合{1A =-,0,1},{1B =,2},则A B I 等于( )A .{1-,0,1}B .{0,1}C .{1}D .{1,2}7.(2024•让胡路区校级开学)设全集U R =,集合2{|20}A x x x =--…,{|0}B x lgx =>,则(A B =I )A .{|12}x x -……B .{|12}x x <…C .{|12}x x <<D .{|1}x x -…8.(2024•平江县校级开学)已知集合{|2x A y y ==-,[2x Î,3]},22{|330}B x x x a a =+-->.(1)当4a =时,求A B I ;(2)若命题“x A Δ是命题“x B Δ的充分不必要条件,求实数a 的取值范围.六.交、并、补集的混合运算(共1小题)9.(2024•合江县校级开学)设全集{1U =,2,3,4,5},集合{1A =,3,5},集合{3B =,4},则()(U A B =I ð )A .{3}B .{4}C .{3,4}D .{2,3,4}七.充分条件与必要条件(共2小题)10.(2024•东坡区校级开学)设x ,y R Î,下列说法中错误的是( )A .“1x >”是“21x >”的充分不必要条件B .“0xy =”是“220x y +=”的必要不充分条件C .“1x >,1y >”是“2x y +>,1xy >”的充要条件D .“x y >”是“22x y >”的既不充分也不必要条件11.(2024春•顺德区校级月考)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件八.全称量词和全称命题(共1小题)12.(2023秋•昆明期末)已知[0x "Î,2],p x >;0[0x $Î,2],0q x >.那么p ,q 的取值范围分别为( )A .(0,)p Î+¥,(0,)q Î+¥B .(0,)p Î+¥,(2,)q Î+¥C .(2,)p Î+¥,(0,)q Î+¥D .(2,)p Î+¥,(2,)q Î+¥九.存在量词和特称命题(共1小题)13.(2024•开福区校级模拟)若命题“0a $<,1a b a+>”是假命题,则实数b 的取值范围为 .一十.命题的真假判断与应用(共9小题)14.(2024•红谷滩区校级模拟)已知m ,n 表示两条直线,a ,b ,g 表示三个平面,则下列是真命题的有( )个.①若m a g =I ,n b g =I ,//m n ,则//a b ;②若m ,n 相交且都在a ,b 外,//m a ,//m b ,//n a ,//n b ,则//a b ;③若//m a ,//m b ,则//a b ;④//m a ,//n b ,//m n ,则//a b .A .1B .2C .3D .415.(2024春•宝山区校级月考)函数()f x xlnx =,正确的命题是( )A .值域为RB .在(1,)+¥上是增函数C .()f x 有两个不同零点D .过(1,0)点的切线有两条16.(2024春•普陀区校级月考)对于全集R 的子集A ,定义函数1()()0()A R x A f x x C A Îì=íÎî为A 的特征函数.设A ,B 为全集R 的子集,下列结论中错误的是( )A .若A B Í,()()A B f x f x …B .()1()R A A f x f x =-ðC .()()()A B ABf x f x f x =×I D .()()()A B ABf x f x f x =+U17.(2024•绥中县校级开学)下列命题中是真命题的有( )A .有A ,B ,C 三种个体按3:1:2的比例分层抽样调查,如果抽取的A 个体数为9,则样本容量为30B .一组数据1,2,3,3,4,5的平均数、众数、中位数相同C .若甲组数据的方差为5,乙组数据为5,6,9,10,5,则这两组数据中较稳定的是甲D .某一组样本数据为125,120,122,105,130,114,116,95,120,134,则样本数据落在区间[114.5,124.5]内的频率为0.418.(2024春•芝罘区校级月考)如图,点E 是正方体1111ABCD A B C D -的棱1DD 的中点,点M 在线段1BD 上运动,则下列结论正确的是( )A .直线AD 与直线1C M 始终是异面直线B .存在点M ,使得1B M AE ^C .四面体EMAC 的体积为定值D .当12D M MB =时,平面EAC ^平面MAC19.(2024春•璧山区校级月考)为了评估某治疗新冠肺炎药物的疗效,现有关部门对该药物在人体血管中的药物浓度进行测量.已知该药物在人体血管中药物浓度c 随时间t 的变化而变化,甲、乙两人服用该药物后,血管中药物浓度随时间t 变化的关系如图所示.则下列结论正确的是( )A .在1t 时刻,甲、乙两人血管中的药物浓度相同B .在2t 时刻,甲、乙两人血管中药物浓度的瞬时变化率相同C .在2[t ,3]t 这个时间段内,甲、乙两人血管中药物浓度的平均变化率相同D .在1[t ,2]t 和2[t ,3]t 两个时间段内,甲血管中药物浓度的平均变化率相同20.(2024春•沙坪坝区校级月考)设函数()sin()(0)6f x x pw w =->,已知()f x 在[0,]p 有且仅有3个零点,下列结论正确的是( )A .在(0,)p 上存在1x ,2x ,满足12()()2f x f x -=B .()f x 在(0,)p 有且仅有1个最小值点C .()f x 在(0,)2p单调递增D .w 的取值范围是1319[,6621.(2024春•沙坪坝区校级月考)已知2()(0)f x ax bx c a =++¹,且关于x 的方程()f x x =无实数根,现有下列说法,其中说法正确的是( )A .若0a >,则不等式(()f f x )x >对一切x R Î恒成立B .若0a <,则必然存在实数0x 使不等式00(())f f x x >成立C .关于x 的方程(())f f x x =一定没有实数根D .若0a b c ++=,则不等式(()f f x )x <对一切x R Î恒成立22.(2024•平罗县校级一模)设函数()3sin()(0,)22f x x ppw j w j =+>-<<的图象关于直线23x p=对称,它的周期是p ,有下列说法:①()f x 的函数图象过点3(0,2;②()f x 在2[,123p p上是减函数;③()f x 的一个对称中心是5(,0)12p;④将()f x 的图象向右平移||j 个单位长度得到函数3sin y x w =的图象.其中正确的序号是 .(正确的序号全填上)。
高中数学易错知识点整理

高中数学易错知识点整理高中数学是我们学数学以来一个更高的阶段,难度有很大的提升。
下面是小编为大家整理的关于高中数学易错知识点整理,希望对您有所帮助。
欢迎大家阅读参考学习!高中数学易错知识点整理一.集合与函数1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否定形式”的区别.6.求解与函数有关的问题易忽略定义域优先的原则.7.判断函数奇偶性时,易忽略检验函数定义域是否关于__对称.8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。
若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?二.不等式18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.19.绝对值不等式的解法及其几何意义是什么?20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a<0.三.数列24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
分类解析集合运算中的易错题

2013-11方法交流学生在求解集合问题时,考虑问题不全面的现象屡见不鲜,现把一些主要错误分析一下。
一、忽视集合中代表元素的属性集合一般采用{x|x满足条件P}这种形式来描述,其中x表示集合中的代表元素,P表示集合中元素所满足的公共属性,其中的x有一定的意义,在解决集合相关问题时,第一步应该优先考虑集合代表元素是指什么?而不少部分学生解题时容易忽略这一点,以致造成错解。
例1.设A={y|y=x2+1,x∈R},B={y|y=x,x∈R},则A与B的关系是()A.A⊆B B.A BC.A∪B=ΦD.以上都不对错解:联立y=x2+1与y=x,得x2-x+1=0,因方程无解,故选C。
错因剖析:错解没有注意集合的代表元素是什么,误认为集合A与B的代表元素指“点”。
认真分析集合A与B,易知集合A中的y是指函数y=x2+1的函数值,集合B中的y是指函数y=x的函数值。
正解:由题化简得,A={y|y≥1},B=R,故有A⊆B。
因此,答案选A。
点评:对于集合中代表元素的属性,学生比较容易混淆。
如,N={y|y=x2+1,x∈R}是指函数y=x2+1的函数值的取值范围,M={x|y= x2+1,x∈R}}是指函数y=x2+1的自变量的取值范围,P={(x,y)|y=x2+ 1,x∈R}是指函数y=x2+1图象上的点或方程y=x2+1的解构成的集合,这三者要加以对比区别。
二、忽视集合中元素特征对于一个给定的集合,集合中的元素具有确定性、互异性和无序性,统称集合中元素特征的三要素。
学生学习时对集合元素的特征理解不深,所以解题时常常出现错误,特别是对互异性和无序性理解不深刻,导致失误。
例2.已知A={1,2,3,a},B={3,a2},A∪B=A,求实数a的值。
错解:由题意知:a2=1或a2=2或a2=a,即a=±1,±2√,0。
错因剖析:解法错在没有理解集合元素的互异性,不注意检验,没将不合题意的结果舍去。
知识点-集合与常用逻辑用语

知识点——集合与常用逻辑用语【知识梳理】一、集合及其运算1.集合与元素(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于两种,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N*(或N+)Z Q R 2.集合间的基本关系关系自然语言符号语言Venn图子集集合A中所有元素都在集合B中(即若x∈A,则x∈B)A⊆B(或B⊇A)真子集集合A是集合B的子集,且集合B中至少有一个元素不在集合A中A⊊B(或B⊋A)集合相等集合A,B中的元素相同或集合A,B互为子集A=B3.集合的基本运算运算自然语言符号语言Venn图交集由属于集合A且属于集合B的所有元素组成的集合A∩B={x|x∈A且x∈B}并集由所有属于集合A或属于集合B的元素组成的集合A∪B={x|x∈A或x∈B}补集由全集U中不属于集合A的所有元素组成的集合∁U A={x|x∈U且x∉A}【知识拓展】1.若有限集A中有n个元素,则集合A的子集个数为2n,真子集的个数为2n-1. 2.A⊆B⇔A∩B=A⇔A∪B=B.3.A∩(∁U A)=∅;A∪(∁U A)=U;∁U(∁U A)=A.二、命题及其关系、充分条件与必要条件1.四种命题及相互关系2.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系. 3.充分条件与必要条件(1)如果p ⇒q ,则p 是q 的充分条件,同时q 是p 的必要条件; (2)如果p ⇒q ,但qp ,则p 是q 的充分不必要条件;(3)如果p ⇒q ,且q ⇒p ,则p 是q 的充要条件; (4)如果q ⇒p ,且p q ,则p 是q 的必要不充分条件; (5)如果p q ,且qp ,则p 是q 的既不充分也不必要条件.【知识拓展】1.两个命题互为逆否命题,它们具有相同的真假性. 2.若A ={x |p (x )},B ={x |q (x )},则 (1)若A ⊆B ,则p 是q 的充分条件; (2)若A ⊇B ,则p 是q 的必要条件; (3)若A =B ,则p 是q 的充要条件; (4)若A ⊊B ,则p 是q 的充分不必要条件; (5)若A ⊋B ,则p 是q 的必要不充分条件; (6)若A B 且A ⊉B ,则p 是q 的既不充分也不必要条件.【易错提醒】1.描述法表示集合时,一定要理解好集合的含义——抓住集合的代表元素.如:{x |y =lg x }——函数的定义域;{y |y =lg x }——函数的值域;{(x ,y )|y =lg x }——函数图象上的点集.2.易混淆0,∅,{0}:0是一个实数;∅是一个集合,它含有0个元素;{0}是以0为元素的单元素集合,但是0∉∅,而∅⊆{0}.3.集合的元素具有确定性、无序性和互异性,在解决有关集合的问题时,尤其要注意元素的互异性. 4.空集是任何集合的子集.由条件A ⊆B ,A ∩B =A ,A ∪B =B 求解集合A 时,务必分析研究A =∅的情况. 5.区分命题的否定与否命题,已知命题为“若p ,则q ”,则该命题的否定为“若p ,则q ⌝”,其否命题为“若p ⌝,则q ⌝”.6.对充分、必要条件问题,首先要弄清谁是条件,谁是结论.【必会习题】1.已知集合A={1,3,m},B={1,m},A∪B=A,则m等于()A.0或 3 B.0或3 C.1或 3 D.1或3答案 B解析∵A∪B=A,∴B⊆A,∴m∈{1,3,m},∴m=1或m=3或m=m,由集合中元素的互异性易知m=0或m=3.2.设集合A={x|1<x<2},B={x|x<a},若A⊆B,则a的取值范围是()A.{a|a≥2} B.{a|a≤1} C.{a|a≥1} D.{a|a≤2}答案 A解析若A⊆B,则a≥2,故选A.3.已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N等于()A.{x|-3<x<5} B.{x|-5<x<5} C.{x|x<-5或x>-3} D.{x|x<-3或x>5} 答案 C解析在数轴上表示集合M、N,则M∪N={x|x<-5或x>-3},故选C.4.满足条件{a}⊆A⊆{a,b,c}的所有集合A的个数是()A.1 B.2 C.3 D.4答案 D解析满足题意的集合A可以为{a},{a,b},{a,c},{a,b,c},共4个.5.已知集合U=R(R是实数集),A={x|-1≤x≤1},B={x|x2-2x<0},则A∪(∁U B)等于() A.[-1,0] B.[1,2] C.[0,1] D.(-∞,1]∪[2,+∞)答案 D解析B={x|x2-2x<0}=(0,2),A∪(∁U B)=[-1,1]∪(-∞,0]∪[2,+∞)=(-∞,1]∪[2,+∞),故选D.6.“x<0”是“ln(x+1)<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 B解析ln(x+1)<0,解得0<x+1<1,∴-1<x<0,所以“x<0”是“-1<x<0”的必要不充分条件.7.给出以下四个命题: ①若ab ≤0,则a ≤0或b ≤0; ②若a >b ,则am 2>bm 2;③在△ABC 中,若sin A =sin B ,则A =B ;④在一元二次方程ax 2+bx +c =0中,若b 2-4ac <0,则方程有实数根. 其中原命题、逆命题、否命题、逆否命题全都是真命题的是( ) A .① B .② C .③ D .④ 答案 C8.设U 为全集,对集合A ,B 定义运算“*”,A *B =∁U (A ∩B ),若X ,Y ,Z 为三个集合,则(X *Y )*Z 等于( )A .(X ∪Y )∩∁U ZB .(X ∩Y )∪∁U ZC .(∁U X ∪∁U Y )∩ZD .(∁U X ∩∁U Y )∪Z 答案 B解析 ∵X *Y =∁U (X ∩Y ),∴对于任意集合X ,Y ,Z , ( X *Y )*Z =∁U (X ∩Y )*Z =∁U [∁U (X ∩Y )∩Z ]=(X ∩Y )∪∁U Z .9.已知M 是不等式ax +10ax -25≤0的解集且5∉M ,则a 的取值范围是________________.答案 (-∞,-2)∪[5,+∞) 解析 若5∈M ,则5a +105a -25≤0,∴(a +2)(a -5)≤0且a ≠5,∴-2≤a <5, ∴5∉M 时,a <-2或a ≥5.10.设命题p :实数x 满足x 2-4ax +3a 2<0,其中a <0;命题q :实数x 满足x 2+2x -8>0,若q 是p 的必要不充分条件,则实数a 的取值范围是________. 答案 (-∞,-4]解析 由命题q :实数x 满足x 2+2x -8>0,得x <-4或x >2,由命题p :实数x 满足x 2-4ax +3a 2<0,其中a <0,得(x -3a )(x -a )<0,∵a <0,∴3a <x <a , ∵q 是p 的必要不充分条件,∴a ≤-4,∴a ∈(-∞,-4].11.已知命题p :⎪⎪⎪⎪1-x +12≤1,命题q :x 2-2x +1-m 2<0(m >0),若p 是q 的充分不必要条件,则实数m的取值范围是________. 答案 (2,+∞)解析 ∵⎪⎪⎪⎪⎪⎪1-x +12≤1⇔-1≤x +12-1≤1⇔0≤x +12≤2⇔-1≤x ≤3,∴p :-1≤x ≤3;∵x 2-2x +1-m 2<0(m >0)⇔[x -(1-m )][x -(1+m )]<0⇔1-m <x <1+m ,∴q :1-m <x <1+m . ∵p 是q 的充分不必要条件,∴[-1,3]是(1-m,1+m )的真子集,则⎩⎪⎨⎪⎧1-m <-1,1+m >3,解得m >2.。
集合的概念及运算中的易错点剖析

ʏ何 敏集合的概念与运算比较抽象,同学们初学很容易犯错㊂下面对集合中的易错点进行剖析,希望对同学们的学习有所帮助㊂易错点1:忽视集合元素的互异性与题设条件例1 若集合A ={-4,2a -1,a 2},B ={9,a -5,1-a },A ɘB ={9},则a 的值是( )㊂A.-3,3,5 B .-3,5C .3,5D .-3错解:由A ɘB ={9},可得2a -1=9或a 2=9,即a =ʃ3或a =5㊂应选A ㊂剖析:上述解法忽视了集合元素的互异性和已知条件㊂正解:由题意得a =ʃ3或a =5㊂当a =3时,A ={-4,5,9},B ={9,-2,-2},与集合中元素的互异性矛盾;当a =5时,A ɘB ={9,-4},与已知条件矛盾㊂所以a =-3,应选D ㊂提醒:解决含参数的集合问题时,不能忽视元素的互异性与题设条件,以免出现增解㊂易错点2:集合关系中忽略空集的讨论例2 已知集合A ={x |x 2-3x +2=0},B ={x |x 2-m x +2=0},且A ɘB =B ,求实数m 的取值范围㊂错解:由题意得A ={1,2}㊂由A ɘB =B ,可得B ⊆A ,所以1,2是方程x 2-m x +2=0的根,所以m =3㊂剖析:上述解法认为集合B ={x |x 2-m x +2=0}中有两个元素,忽略了B 为空集和两等根的情况㊂正解:由B ⊆A ,可对集合B 进行分类讨论,即B =⌀,B ={1}或B ={2},B ={1,2}㊂当B =⌀时,由Δ=m 2-8<0,可得-22<m <22;当B ={1}或B ={2}时,可得Δ=0,1-m +2=0或4-2m +2=0,此时m无解;当B ={1,2}时,由1+2=m ,1ˑ2=2,Δ>0可得m =3㊂综上所述,m =3或-22<m <22㊂提醒:解决有关A ɘB =⌀,A ɣB =⌀,A ⊆B 等问题时,容易忽视空集的情况而出现漏解,这就需要注意特殊情况下的探究㊂易错点3:忽视集合转化的等价性例3 已知集合A ={x |a x 2+2x +1=0}为一元集,求a 的值㊂错解:集合A 为一元集,即方程a x 2+2x +1=0有两个等根,由Δ=4-4a =0,可得a =1㊂剖析:上述解法认为所给方程为一元二次方程,忽视了对二次项系数的讨论㊂正解:当a ʂ0时,由Δ=4-4a =0,可得a =1;当a =0时,可得A =-12,符合题意㊂故a =1或a =0㊂提醒:在进行集合转化时,要注意转化的等价性,否则就会产生增解或漏解㊂易错点4:忽视补集思想的应用例4 设集合P =x a x +2>a ,3∉P ,那么实数a 的取值范围是㊂错解:初看本题,往往会感觉无从下手,不知道从其反面逆向思维,导致无法解决㊂剖析:从反面入手,利用元素和集合之间的关系切入,构建不等式求解㊂正解:由P ={x |a x +2>a },可得∁R P ={x |a x +2ɤa }㊂因为3∉P ,所以3ɪ∁RP ,所以3a +2ɤa ,所以a ɤ-1㊂故实数a 的取值范围是(-ɕ,-1]㊂提醒:这种在正向思维受阻后改用逆向思维的思想,就是数学上的补集思想㊂作者单位:陕西省洋县中学(责任编辑 郭正华)33易错题归类剖析高一数学 2023年9月Copyright ©博看网. All Rights Reserved.。
离散数学题型梳理-第1章

离散数学常考题型梳理第1章 集合及其运算一、题型分析本章主要介绍集合论的基本概念和结论,集合的运算及其性质,以及利用运算性质进行集合表达式的化简和集合恒等式的证明等内容.经常涉及到的题型有:1-1集合与集合之间的包含、元素与集合之间的属于关系1-2幂集的计算1-3集合之间的运算1-4利用集合运算性质证明集合恒等式因此,在本章学习过程中希望大家要清楚地知道:1.集合与集合之间存在一种包含关系,当两个集合A 和B 存在关系A 包含B ,用A ⊇B 表示,或存在关系B 被A 包含,用B ⊆A 表示,这时称B 为A 的子集.注意空集∅是任意一个集合的子集,集合A 也是自己的子集.当B ⊆A 且B ≠A ,也就是说,只有B ⊂A 或A ⊃B 成立,则称B 为A 的真子集.若B 不是A 的子集,即B ⊆A 不成立时,则称A 不包含B ,记作B ⊆A .然而,元素与集合之间存在一种从属关系,当a 是集合A 中的元素,则称a 属于A ,记作a∈A ;若a 不是集合A 中的元素,则称a 不属于A ,记作a ∉A .因此,这两种关系一定不要混淆.2.由集合A 的所有子集组成的集合,称为A 的幂集,记作P (A )或2A .若集合A 是由n 个元素所组成的集合,则A 的幂集由2n 元素组成.当n =3时,A 的幂集由23=8个元素组成.例如,设集合A = {0, 1, 2 },则A 的全部子集由以下子集组成:0元子集(即空集):∅;1元子集:{0},{1},{2};2元子集:{0, 1},{0, 2},{1, 2};3元子集(即集合A ):{0, 1, 2}.因此,计算集合A 的幂集时,首先要按照上述方法写出集合A 的全部子集,然后检验写出的子集个数是否等于2n 个,其中n 是集合A 的元素个数.3.集合之间的运算有并(⋃)、交(⋂)、差(-)、补(~)和对称差(⊕)等五种运算,在做集合运算的题目时,一定要按照它们的定义进行计算.(1) 集合A 和B 的并集A B x x A ⋃=∈{或 x B ∈} 特点:由集合A 和B 的所有元素组成的集合.见图1 图1 图2(2) 集合A 和B 的交集A B x x A ⋂=∈{ 且 x B ∈}特点:由集合A 和B 的公共元素组成的集合.见图2(3) 集合A 与B 的差集A B -=∈∉{}x x A x B 且 特点:由属于A ,而不属于B 的所有元素组成的集合.见图3(4) 集合A 的补集~A ={}x x E x A ∈∉且特点:由属于全集E 但不属于集合A 的元素组成的集合.见图4补集总相对于一个全集而言,可以看作是全集E 与集合A 的差集.(5) 集合A 与B 的对称差A ⊕B =(A -B )⋃(B -A )或 A ⊕B =(A ⋃B )-(A ⋂B )特点:由分别属于集合A 与B 的元素但不属于它们公共元素组成的集合.见图5(6) 把集合A ,B 合成集合A ×B 叫做笛卡儿积,规定A ×B ={<x , y >∣x ∈A 且y ∈B }注意:由于有序对<x , y >中x ,y 的位置是确定的,因此A ×B 的记法也是确定的,不能写成B ×A..笛卡儿积的运算一般不能交换..虽然,笛卡儿积的内容是第2章2.1.1目的内容,是二元关系的预备知识,但我们认为把它作为集合的一种运算考虑更好些。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合及其运算易错点
内容:
【易错点】
1.元素与集合的辨别
(1)若{,2x1}={0,1},则x=0,1.(×)
(2)含有n个元素的集合的子集个数是2n,真子集个数是2n-1,非空真子集的个数是2n-2.(√)
(3)若A={x|y=x2},B={(x,y)|y=x2},则A∩B={x|x∈R}.(×)
2.对集合基本运算的辨别
(4)对于任意两个集合A,B,关系(A∩B)⊆(A∪B)总成立.(√)
(5)设集合S={x|x>-2},T={x|x2+3x-4≤0},则(∁R S)∪T={x|-4≤x≤1}.(×)
(6)设全集为R,函数f(x)=1-x2的定义域为M,则∁R M={x|x>1,或x<-1}.(√)
剖析:
1.一点提醒求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.如第(3)题就是混淆了数集与点集.
2.两个防范一是忽视元素的互异性,如(1);
二是运算不准确,尤其是运用数轴图示法时要特别注意端点是实心还是空心,如(6).
3.集合的运算性质:①A∪B=B⇔A⊆B;②A∩B=A⇔A⊆B;③A∪(∁U A)=U;
④A∩(∁U A)=∅.。