人教版数学必修三3.1.1《随机事件的概率》导学案

合集下载

3.1.1《随机事件的概率》教案(新人教版必修3)完美版

3.1.1《随机事件的概率》教案(新人教版必修3)完美版

高一数学必修3导学案(教师版) 编号3.1.1随机事件的概率周次上课时间月日周课型-新授课主备人使用人课题 3.1.1随机事件的概率教学目标<1.了解随机事件、必然事件、不可能事件的概念;2.正确理解事件A出现的频率的意义;3.正确理解概率的概念和意义,明确事件A发生的频率f n(A)与事件A发生的概率P(A)的区别与联系;教学重点事件的分类;概率的定义以及和频率的区别与联系;教学难点随机事件发生存在的统计规律性.课前准备多媒体课件,硬币数枚》一、〖创设情境〗日常生活中,有些问题是能够准确回答的.例如,明天太阳一定从东方升起吗明天上午第一节课一定是八点钟上课吗等等,这些事情的发生都是必然的.同时也有许多问题是很难给予准确回答的.例如,你明天什么时间来到学校明天中午12:10有多少人在学校食堂用餐你购买的本期福利彩票是否能中奖等等,这些问题的结果都具有偶然性和不确定性二、〖新知探究〗(一)必然事件、不可能事件和随机事件—思考1:考察下列事件:(1)导体通电时发热;(2)向上抛出的石头会下落;(3)在标准大气压下水温升高到100°C会沸腾.这些事件就其发生与否有什么共同特点思考2:我们把上述事件叫做必然事件,你指出必然事件的一般含义吗在条件S下,一定会发生的事件,叫做相对于条件S的必然事件.让学生列举一些必然事件的实例#思考3:考察下列事件:(1)在没有水分的真空中种子发芽;(2)在常温常压下钢铁融化;(3)服用一种药物使人永远年轻.这些事件就其发生与否有什么共同特点思考4:我们把上述事件叫做不可能事件,你指出不可能事件的一般含义吗在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件让学生列举一些不可能事件的实例~思考5:考察下列事件:(1)某人射击一次命中目标;(2)马林能夺取北京奥运会男子乒乓球单打冠军;(3)抛掷一个骰字出现的点数为偶数. 这些事件就其发生与否有什么共同特点思考6:我们把上述事件叫做随机事件,你指出随机事件的一般含义吗在条件S下,可能发生也可能不发生的事件,叫做相对于条件S的随机事件.让学生列举一些随机事件的实例思考7:必然事件和不可能事件统称为确定事件,确定事件和随机事件统称为>事件,一般用大写字母A,B,C,…表示.对于事件A,能否通过改变条件,使事件A 在这个条件下是确定事件,在另一条件下是随机事件你能举例说明吗(二):事件A发生的频率与概率物体的大小常用质量、体积等来度量,学习水平的高低常用考试分数来衡量.对于随机事件,它发生的可能性有多大,我们也希望用一个数量来反映.思考1:在相同的条件S下重复n次试验,若某一事件A出现的次数为nA,则称nA为(事件A出现的频数,那么事件A出现的频率fn(A)等于什么频率的取值范围是什么思考2:历史上曾有人作过抛掷硬币的大量重复试验,结果如下表所示:抛掷次数正面向上次数;频率0.502048106104040204812000@601924000120123000014984,7208836124在上述抛掷硬币的试验中,正面向上发生的频率的稳定值为多少思考3:某农科所对某种油菜籽在相同条件下的发芽情况进行了大量重复试验,每批粒数?2510701303107001500]20003000发芽的粒数24960116~2826391339180627150发芽的频数1、()[0,1]Annf An}在上述油菜籽发芽的试验中,每批油菜籽发芽的频率的稳定值为多少思考4:上述试验表明,随机事件A在每次试验中是否发生是不能预知的,但是在大量重复试验后,随着试验次数的增加,事件A发生的频率呈现出一定的规律性,这个规律性是如何体现出来的事件A发生的频率较稳定,在某个常数附近摆动.思考5:既然随机事件A在大量重复试验中发生的频率fn(A)趋于稳定,在某个常数附近摆动,那我们就可以用这个常数来度量事件A发生的可能性的大小,并把这个常数叫做事件A发生的概率,记作P(A).那么在上述抛掷硬币的试验中,正面向上发生的概率是多少在上述油菜籽发芽的试验中,油菜籽发芽的概率是多少思考6:在实际问题中,随机事件A发生的概率往往是未知的(如在一定条件下射击命中目标的概率),你如何得到事件A发生的概率。

高一数学(人教版)必修3导学案设计:3.1.1随机事件的概率(无答案)

高一数学(人教版)必修3导学案设计:3.1.1随机事件的概率(无答案)

3.1.1 随机事件的概率学习目标:1、 了解随机事件、必然事件、不可能事件的概念;正确理解事件A 出现的频率的意义;2、 正确理解概率的概念,明确事件A 发生的频率f n (A)与事件A 发生的概率P (A )的区别与联系;教学重点:事件的分类;概率的定义以及概率和频率的区别与联系. 教学难点:随机事件及其概率,概率与频率的区别和联系. 一、课题引入:开奖游戏:双色球是我国福利彩票,彩票由7个号码组成,先从“红色球号码区”的1-33个号码中选择6个号码,从“蓝色球号码区”的1-16个号码中选择1个号码组成一注进行投注。

7个号码相符(6个红色球号码和1个蓝色球号码,红色球号码顺序不限)则中头奖。

(1)请同学们每个人选取一组号码,看看你会不会中头奖。

(2)请问,你有机会中头奖吗? 二、新课导学自学教材P 108-P 112,并对相关概念进行勾画。

新知1:事件的概念及分类① 必然事件: ② 不可能事件: ; ③ 确定事件: ④ 随机事件: 例题1:指出下列事件是必然事件、不可能事件还是随机事件。

(1)如果,a b 都是实数,a b b a +=+; (2)没有水分,种子发芽;(3)从分别标有1,2,3,4,5,6的6张号签中任取一张,得到4号签. (4)在标准大气压下且温度低于0°C 时,冰融化; (5)在常温下,铁熔化; (6)导体通电时,发热; (7)抛一石块,下落;(8)函数log (0,1)a y x a a =>≠是增函数。

做实验:每个同学拿出一个硬币,认真完成课本P 109页的抛掷硬币的实验,并完成课本P 109的三个表格及后面的两个思考题。

:新知2:随机事件的概率 1、频数与频率: 2、概率: 3、概率的取值范围: 。

特别地,必然事件的概率为: ,不可能事件的概率为 .4、频率与概率的区别与联系:练习1:某人进行打靶练习,共射击10次,其中有2次中10环,有3次环中9环,有4次中8环,有1次未中靶,试计算此人中靶的频率,假设此人射击1次,试问中靶的频率约为多大?中10环的概率约为多大?练习2①计算表中优等品的频率; ②该厂生产的电视机优等品的频率是多少?三、归纳小结,本课学习的主要内容是什么?它们之间有怎样的区别和联系?Note:对于概率的统计定义,应注意以下几点: ①求一个事件的概率的基本方法是通过大量的重复试验。

山东省高中数学《3.1.1 随机事件的概率》导学案 新人教A版必修3

山东省高中数学《3.1.1 随机事件的概率》导学案 新人教A版必修3
2.已知随机事件A发生的频率是0.02,事件A出现了10次,那么可能共进行了次试验.
3.课本p127 练习1 2 3
作业
布置
1.习题3-1 1,2
2. 教辅资料
3. 预习下一节内容
学习小结/教学
反思
3.思考:
(1)如果随机事件A在n次试验中发生了m次,则事件A的概率一定是 ?
(2)如何用频率来研究事件发生的概率?
(3)回答教材p124的“思考交流”
精讲互动
例1.判断下列事件哪些是必然事件,哪些是不肯能事件,哪些是随机事件?
(1)掷一枚骰子两次,所得点数之和大于12.
(2)如果 ,那么 ;
(3)掷一枚硬币,出现正面向上;
(3)随机事件:有些事件我们事先无法肯定其会不会发生;
2.随机事件的的记法:通常用来表示随机事件,随机事件简称为.
3. 思考:(1)如何判定一个事件是必然事件、不可能事件还是随机事件?
(2)随机事件说法中“同样的条件下”能否去掉?请举例说明
探索新知:
1.随机事件的有关概念的频率:
(1)频率是一个变化的量,但是在试验时,它又具有,——在一个附近摆动;
(4)从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签;
(5)某电话机在1分钟内接到2次呼叫;
(6)没有水分,种子能发芽.
例2.下列说法正确的是 ( ).
①频数和频率都反映一个对象在实验总次数中出现的频繁程度;
②每个实验结果出现的频数之和等于实验的总次数;
③每个实验结果出现的频率之和不一定等于1;
④概率就是频率.
A. ① B.①②④ C. ①② D,,10是的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:

人教版高中数学高一必修三导学案第一课时 随机事件的概率

人教版高中数学高一必修三导学案第一课时 随机事件的概率

高中数学-打印版精校版第一课时 3.1.1 随机事件的概率 一、情境引入:来看看这样一个游戏:小军和小明玩骰子的游戏,他们约定:两颗骰子掷出去,如果朝上的两个数的和是5,那么小军获胜,如果朝上的两个数的和是7,那么小明获胜。

这样的游戏公平吗?二、新课学习:1、基本概念:②在条件S ;件叫 ;在条件S 下可能发生也可能不发生的事件叫 。

③必然事件和不可能事件统称为 ,确定事件和随机事件统称为 ,一般用大写字母A ,B ,C …,表示。

④(1)抛掷一颗骰子,出现6点是 事件;(2)某人投篮2次,投中3次是 事件。

⑤下列事件中,随机事件的个数为( )(1)2010年5月1日下雨;(2)手电筒电池没电,灯泡发亮;(3)某信息台在每天的某段时间受到信息咨询的请求次数超过32次;(4)方程2310x x --=有两个不相等的实根。

A 、1 B 、2 C 、3 D 、4 ⑥频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例f n (A)=An n为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。

⑦频率与概率的区别与联系:随机事件的频率,指此事件发生的次数n A 与试验总次数n 的比值An n,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。

我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。

频率在大量重复试验的前提下可以近似地作为这个事件的概率。

2、应用举例:分析:(1)略 (2)用频率的稳定值估计概率。

三、方法点拨:注意频率与概率的区别和联系。

四、达标练习:1、在数轴上(0,2)的区间内投点,若点落入区间(0,1)内属于 事件。

人教版高中数学-必修3导学案 随机事件的概率

人教版高中数学-必修3导学案  随机事件的概率

3.1.1 随机事件的概率导学案周;使用时间17 年 月 日 ;使用班级 ;姓名(配合配套课件、限时练使用效果更佳)【学习目标】1.了解随机事件、必然事件、不可能事件的概念;2.理解概率的含义以及频率与概率的区别与联系;3.能列举一些简单试验的所有可能结果.【检查预习】预习相应课本,完成导学案“自主学习”部分,准备上课回答. 【自主学习】 知识点一 随机事件思考 抛掷一粒骰子,下列事件,在发生与否上有什么特点? (1)向上一面的点数小于7; (2)向上一面的点数为7; (3)向上一面的点数为6.事件⎩⎪⎨⎪⎧确定事件⎩⎪⎨⎪⎧不可能事件:在条件S 下,一定不会发生的 事件,叫做相对于条件S 的不可能事件.必然事件:在条件S 下,一定会发生的事件, 叫做相对于条件S 的必然事件.随机事件:在条件S 下,可能发生也可能不发生的事件,叫做相对于条件S 的随机事件.知识点二 频数与频率思考 抛掷一枚硬币10次,正面向上出现了3次,则在这10次试验中,正面向上的频数与频率分别是多少?在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中 为事件A 出现的频数,称事件A 出现的比例f n (A )=n An 为事件A 出现的频率.知识点三 概率思考 一枚质地均匀的硬币,抛掷10次,100次,1 000次,正面向上的频率与0.5相比,有什么变化?(1)含义:概率是度量随机事件发生的 的量.(2)与频率联系:对于给定的随机事件A ,事件A 发生的 随着试验次数的增加稳定于 ,因此可以用 来估计 .【合作探究】类型一 必然事件、不可能事件和随机事件的判定例1 在下列事件中,哪些是必然事件?哪些是不可能事件?哪些是随机事件? (1)如果a ,b 都是实数,那么a +b =b +a ;(2)从分别标有1,2,3,4,5,6的6张号签中任取一张,得到4号签; (3)铁球浮在水中;(4)某电话总机在60秒内接到至少15次传呼; (5)在标准大气压下,水的温度达到50 ℃时沸腾; (6)同性电荷,相互排斥.跟踪训练1 指出下列事件是必然事件、不可能事件还是随机事件. (1)中国体操运动员将在下次奥运会上获得全能冠军; (2)出租车司机小李驾车通过几个十字路口都将遇到绿灯; (3)若x ∈R ,则x 2+1≥1;(4)抛一枚骰子两次,朝上面的数字之和大于12.类型二 列举试验结果例2 某人做试验,从一个装有标号为1,2,3,4的小球的盒子中,无放回地取两个小球,每次取一个,先取的小球的标号为x ,后取的小球的标号为y ,这样构成有序实数对(x ,y ).(1)写出这个试验的所有结果;(2)写出“第一次取出的小球上的标号为2”这一事件.跟踪训练2袋中装有大小相同的红、白、黄、黑4个球,分别写出以下随机试验的条件和结果.(1)从中任取1球;(2)从中任取2球.类型三用频率估计概率例3李老师在某大学连续3年主讲经济学院的高等数学,下表是李老师这门课3年来的考试成绩分布:用已有的信息估计她得以下分数的概率(结果保留到小数点后三位).(1)90分以上;(2)60分~69分;(3)60分以上.跟踪训练3某射手在同一条件下进行射击,结果如下表所示:射击次数n 10 20 50 100 200 500 击中靶心次数m 8 19 44 92 178 455 击中靶心的频率mn(1)(2)这个射手射击一次,击中靶心的概率约是多少?【学生展示】探究点一二【教师点评】探究点三及【学生展示】出现的问题 【当堂检测】1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( ) A.必然事件 B.随机事件 C.不可能事件D.无法确定2.下列说法正确的是( ) A.任一事件的概率总在(0,1)内 B.不可能事件的概率不一定为0 C.必然事件的概率一定为1 D.以上均不对3.给出关于满足AB 的非空集合A ,B 的四个命题:①若任取x ∈A ,则x ∈B 是必然事件; ②若任取x ∉A ,则x ∈B 是不可能事件; ③若任取x ∈B ,则x ∈A 是随机事件; ④若任取x ∉B ,则x ∉A 是必然事件. 其中正确的命题是( )A.①③B.①③④C.①②④D.①④4.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A ,则事件A 出现的频率为( ) A.48 B.52 C.0.48 D.0.525.设某厂产品的次品率为2%,则该厂8 000件产品中合格品的件数约为( ) A.160 B.1 600 C.784 D.7 840【小结作业】小结:1.辨析随机事件、必然事件、不可能事件时要注意看清条件,在给定的条件下判断是一定发生(必然事件),还是不一定发生(随机事件),还是一定不发生(不可能事件).2.随机事件在一次试验中是否发生虽然不能事先确定,但是在大量重复试验的情况下,随机事件的发生呈现一定的规律性,因而,可以从统计的角度,通过计算事件发生的频率去估算概率.3.写试验结果时,要按顺序写,特别要注意题目中的有关字眼,如“先后”“依次”“顺序”“放回”“不放回”等.作业:本节限时练。

高中数学人教A版必修3《随机事件的概率》导学案

高中数学人教A版必修3《随机事件的概率》导学案

3.1.1 《随机事件的概率》导学案一、学习目标:1.通过实例理解确定性现象与随机现象的含义和随机事件、必然事件、不可能事件的概念及其意义;2.根据定义判断给定事件的类型,明确事件发生的条件是判断事件的类型的关键;3.理解随机事件的频率定义及概率的统计定义,知道根据概率的统计定义计算概率的方法, 理解频率和概率的区别和联系;4.通过对概率的学习,使学生对对立统一的辨证规律有进一步的认识.二、学习重、难点:重点:根据随机事件、必然事件、不可能事件的概念判断给定事件的类型,并能用概率来刻画实际生活中发生的随机现象, 理解频率和概率的区别和联系.难点:理解随机事件的频率定义及概率的统计定义及计算概率的方法, 理解频率和概率的区别和联系.三、使用说明及学法指导:1.要求学生先阅读教材118—120页,然后仔细审题,认真思考、小组配合规范作答。

2. 不会的,模棱两可的问题标记好。

四、知识链接:日常生活中,有些问题是能够准确回答的.例如,明天太阳一定从东方升起吗?明天上午第一节课一定是9:50上课吗?等等,这些事情的发生都是必然的.同时也有许多问题是很难给予准确回答的.例如明天中午13:30有多少人在学校食堂用餐?你购买的本期福利彩票是否能中奖?等等,这些问题的结果都具有偶然性和不确定性.五、教学过程:(结合生活实际并阅读教材P108-112,解决下列问题)知识点一:必然事件、不可能事件和随机事件1、(1)必然事件:一般地,___________________会发生的事件,叫相对于条件S的事件;(2)不可能事件:____________下,________会发生的事件,叫相对于条件S的事件;(3)确定事件:_ ___事件和_________事件统称为相对于条件S的事件;(4)随机事件:___________下,_____ ___发生的事件,叫相对于条件S的事件;(5)事件:和统称为事件,一般用表示.例1 判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?(1) “抛一石块,下落”; (2) “明天天晴”; (3) “某人射击一次,中靶”;(4) “如果a>b,那么a-b>0”; (5) “掷一枚硬币,出现正面”;(6) “木材燃烧后,发热”; (7) “手电筒的的电池没电,灯泡发亮”;(8)“某电话机在1分钟内收到2次呼叫”; (9)“没有水份,种子能发芽”;(10) “随机选取一个实数x,得|x|≥0”.必然事件有;不可能事件有;随机事件有知识点二:事件A发生的频率与概率2、(1)频数:在相同的条件S下重复n次试验,观察某一事件A是否出现,称(2)频率:称事件A出现的为事件A出现的频率;(3)必然事件出现的频率为 ;不可能事件出现的频率为 ;(4)频率的取值范围是_______历史上曾有人作过抛掷硬币的大量重复试验,结果如课本P112页表3-2所示。

人教版数学必修三3.1.1《随机事件的概率》实用教学教案设计

人教版数学必修三3.1.1《随机事件的概率》实用教学教案设计

3.1.1随机事件教学目标1、知识与技能目标(1)理解必然事件、不可能事件、随机事件的概念;(2)区分必然事件、不可能事件和随机事件;(3)在改变条件的情况下,必然事件、不可能事件和随机事件可以互相转化。

. 2、过程与方法目标经历活动、试验、猜测、收集、整理和分析试验结果、听故事等过程,会判断必然事件、不可能事件、随机事件。

3、情感与态度目标(1)学生通过亲身体验,亲自演示,感受数学就在身边,促进学生乐于亲近数学,喜欢数学;(2)让学生在与他人合作中增强互助、协作的精神;(3)培养学生的数学素养,体验数学与生活密切相关,激发学生学以致用的热情。

教学重难点重点:能对必然事件、不可能事件、随机事件的类型作出正确判断。

难点:必然事件、不可能事件、随机事件的区别与转化关系。

教法、学法和辅助手段教法分析情境引人,游戏探索,游戏体验,拓展新知。

学法分析参与活动,发现新知;探究合作,体验新知;抢答活动,巩固新知;听故事,拓展新知。

教学辅助手段红、白球若干,不透明盒子两个,透明杯子一个,签筒一个,笔签五支,骰子若干。

教学过程:一、创设情境,导入新课:师:同学们,你们买过彩票吗?中过奖吗?(学生有的说买过,绝大部分的同学说没有买过,没有中过奖)师:你们想买彩票吗?想中奖吗?生:想。

师:我们来模拟买彩票中大奖,请你们在纸上写出一个你认为幸运的三位数,老师立即开奖。

学生写好后,展示开奖结果。

师:有中奖的吗?请举手,我为中奖的同学准备了奖品。

(为个别中了奖的同学发奖品,安慰没有中奖的同学)师:买一注彩票一定能中奖还是可能中奖?生:可能中奖。

师:我们这个游戏中一定要中奖,你能算出至少要买多少注彩票吗?(少数同学在算,很多同学不知道怎样算)师:《概率初步》会告诉我们怎样计算。

我们今天就学习第一节《随机事件》。

请打开教材。

(多媒体展示课题)二、试验运气好坏,发现新知(摸出红球表示运气好)1、教师拿出事先准备好的一只装的全部是红球的不透明盒子,让坐在教室左边部分的三四位同学摸球,显然学生摸到的全是红球,摸到红球的学生个个惊叹自己运气好啊。

人教A版高二数学:必修三 3.1.1必修三3.1.1随机事件的概率教学系教学学案

人教A版高二数学:必修三 3.1.1必修三3.1.1随机事件的概率教学系教学学案

§ 3.1.1.随机事件的概率导学案1、知识与技能:(1)结合实例了解必然事件,不可能事件,随机事件的概念;(2)通过试验了解随机事件的发生在大量重复试验下,呈现规律性,从而理解频率的稳定性及概率的统计定义;(3)结合概率的统计定义理解频率与概率的区别和联系.2、过程与方法:通过在抛硬币的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高。

3、情感态度与价值观:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)培养学生的辩证唯物主义观点,增强学生的科学意识。

:事件的分类;理解频率的稳定性及概率的统计定义。

:频率与概率的区别和联系;用概率的知识解释现实生活中的具体问题。

一、课题引入引例:“1个数学家=10个师”的故事。

二、自主学习问:下列事件是否发生?(1)“导体通电时,发热” ;(2)“在地球上抛一石块,下落” ;(3)“在标准大气压下且温度低于0o C时,冰融化”;(4)“在常温下,焊锡融化” ;(5)“某人射击一次,中靶” ;(6)“掷一枚硬币,出现正面”.事件的定义:(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的事件;(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的事件(3)确定事件:事件和事件统称为相对于条件S的确定事件(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的事件;(5)和统称为事件,一般用大写字母A,B,C,…表示.练习、指出下列事件哪些是必然事件、不可能事件、随机事件:(1)“某电话机在一分钟之内,收到三次呼叫”;(2) “当 x 是实数时,02x ”;(3)“没有水分,种子发芽”;(4)“打开电视,电视正在播放广告” .试一试:你能举出一些现实生活中的随机事件的实例吗?三、合作探究(1)试验目的:探究随机事件“抛掷一枚硬币,正面朝上”发生的可能性大小; (2)试验要求:①一枚均匀硬币; ②硬币竖直向下;③距离桌面30cm ; ④落在桌面上 (桌面上放一本书)(3)实验步骤:第一步:每6个人一个小组,每小组完成重复投币20次,将实验结果记录入下表;第二步:由数学科代表将各小组数据汇总到电脑上,形成“正面向上频率折线图” (4)思考实验数据,合作交流相关问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随机事件的概率导学案
【学习目标】
1、学生理解并记忆必然事件、不可能事件、随机事件的特点并会判断。

2、学生经历分析、归纳、总结,进而了解并体会和了解随机事件发生的概率。

【学习重点】1、根据实际情况能判断出必然事件,随机事件,不可能事件.
2、理解频率与概率与概率的关系.
【学习难点】理解频率与概率的关系.
问一问:
1.守株待兔这个故事给了你什么样的启示?
2.周杰伦投篮一次一定投中吗?
3.遵义地区一年四季交替吗?
4.小明高考数学想要考151分,可能么?
归纳总结:
1.在条件S下,一定会发生的事件,叫做______________,简称________.
2.在条件S下,一定不会发生的事件,叫做__________________,简称__________.
3.在条件S下可能发生也可能不发生的事件,叫做_______________,简称__________.
4.必然事件和不可能事件统称________;确定事件和随机事件统称为_____.一般用大写字母
A、B、C……表示。

试一试:
指出下列事件是必然事件,不可能事件,还是随机事件:
1、函数y=x2-2x在区间[1,+∞)上是增函数;
2、水中捞月。

3、掷一枚硬币,出现正面。

4、标准大气压下,把生鸡蛋在沸水中煮15分钟,蛋白会凝固。

5、从分别标有1、2、3、4、5的5张标签中任取一张得4号签。

做一做:
全班每人投掷硬币十次,每小组组长记录本组总的正反面出现次数。

定义:
(一)频数,频率的定义:在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数A n 为事件A 出现的____,称事件A 出现的比例______)(=A n f 为事件A 出现的频率。

问题1:频率的取值范围是什么?
(二)概率的定义:对于给定的随机事件A ,如果随着实验次数的增加,事件A 发生的频率)(A n f 稳定在某个常数上,把这个常数记作P(A),称为事件A 的_____,简称为A 的______。

问题2:概率的取值范围是什么? 问题3:频率和概率的区别是什么呢?
例1(1)给出一个概率很小的随机事件的例子;
(2)给出一个概率很大的随机事件的例子.
例2某射手在同一条件下进行射击,结果如下表所示:
(1)计算表中击中靶心的各个频率;
(2)这个射手射击一次,击中靶心的概率约是多少?
(3)这个射手击中靶心的概率是0.9,那么他射击10次,一定能击中靶心9次吗? (4)该射手射击次数越多,击中靶心的频率越接近0.9吗?
总结:
1.事件分为几类?每一类事件的概率范围为多少?
2.频率和概率有什么联系与区别?。

相关文档
最新文档