诱导公式基本公式基础练习题

合集下载

诱导公式专题(精选,家教已用)

诱导公式专题(精选,家教已用)

诱导公式练习1.诱导公式可用十个字概括为“奇变偶不变,符号看象限”。

诱导公式一:sin(2)sin k απα+=,cos(2)cos k απα+=,其中k Z ∈诱导公式二: sin(180)α+=sin α-; cos(180)α+=-cos α诱导公式三: sin()sin αα-=-; cos()cos αα-=诱导公式四:sin(180)sin αα-=; cos(180)cos αα-=-诱导公式五:sin(360)sin αα-=-; cos(360)cos αα-=(2)将较大的角减去π2的整数倍(3)然后将角化成形式为απ+2k(k 为常整数);(4) 然后根据“奇变偶不变,符号看象限”化为最简角;例1.(2001全国文,1)tan300°+0405sin 405cos 的值是( ) A .1+3B .1-3C .-1-3D .-1+3例2.化简:(1)sin(180)sin()tan(360)tan(180)cos()cos(180)αααααα-++--+++-+-;(2)sin()sin()()sin()cos()n n n Z n n απαπαπαπ++-∈+-。

做一做1、下列各式不正确的是 ( )A . sin (α+180°)=-sin αB .cos (-α+β)=-cos (α-β)C . sin (-α-360°)=-sin αD .cos (-α-β)=cos (α+β) 2、若sin (π+α)+sin (-α)=-m ,则sin (3π+α)+2sin (2π-α)等于( ) A .-23 m B .-32 m C .23 m D .32 m3、⎪⎭⎫⎝⎛-π619sin 的值等于( ) A .21B . 21-C .23D . 23-步步登高 4.sin34π·cos 625π·tan 45π的值是A .-43B .43C .-43D .435..设,1234tan a =︒那么)206cos()206sin(︒-+︒-的值为( )A .211aa ++ B .-211aa ++ C .211aa +- D .211aa +-6..若)cos()2sin(απαπ-=+,则α的取值集合为( )A .}42|{Z k k ∈+=ππαα B .}42|{Z k k ∈-=ππααC .}|{Z k k ∈=πααD .}2|{Z k k ∈+=ππαα知难而上7. 已知 3)tan(=+απ, 求)2sin()cos(4)sin(3)cos(2a a a a -+-+--πππ的值8. 若cos α=23,α是第四象限角,求sin(2)sin(3)cos(3)cos()cos()cos(4)απαπαππαπααπ-+--------的值9.课后练习:一、选择题1、下列各式不正确的是 ( )A . sin (α+180°)=-sin αB .cos (-α+β)=-cos (α-β)C . sin (-α-360°)=-sin αD .cos (-α-β)=cos (α+β) 2、若sin (π+α)+sin (-α)=-m ,则sin (3π+α)+2sin (2π-α)等于( ) A .-23 m B .-32 m C .23 m D .32 m3、⎪⎭⎫⎝⎛-π619sin 的值等于( ) A .21B . 21-C .23D . 23- 4、如果).cos(|cos |π+-=x x 则x 的取值范围是( C )A .)(]22,22[Z k k k ∈++-ππππB .)()223,22(Z k k k ∈++ππππC .)(]223,22[Z k k k ∈++ππππD .)()2,2(Z k k k ∈++-ππππ5.已知函数1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值为 ( )A .5B .-5C .6D .-66、sin34π·cos 625π·tan 45π的值是A .-43B .43C .-43D .437.设,1234tan a =︒那么)206cos()206sin(︒-+︒-的值为( )A .211aa ++ B .-211aa ++ C .211aa +- D .211aa +-8.若)cos()2sin(απαπ-=+,则α的取值集合为( )A .}42|{Z k k ∈+=ππαα B .}42|{Z k k ∈-=ππααC .}|{Z k k ∈=πααD .}2|{Z k k ∈+=ππαα二、填空题1、求值:sin160°cos160°(tan340°+cot340°)= .2、若sin (125°-α)= 1213,则sin (α+55°)=.3、cos π7 +cos 2π7 +cos 3π7 +cos 4π7 +cos 5π7 +cos 6π7 = .4、已知,1)sin(=+βα则=+++)32sin()2sin(βαβα . 三、解答题1、已知 3)tan(=+απ, 求)2sin()cos(4)sin(3)cos(2a a a a -+-+--πππ的值.2、若cos α=23,α是第四象限角,求sin(2)sin(3)cos(3)cos()cos()cos(4)απαπαππαπααπ-+--------的值.3、设sin ,(0)()(1)1,(0)x x f x f x x π<⎧=⎨-+≥⎩和1cos ,()2()1(1)1,()2x x g x g x x π⎧<⎪⎪=⎨⎪-+≥⎪⎩求)43()65()31()41(f g f g +++的值.4.设)(x f 满足)2|(|cos sin 4)(sin 3)sin (π≤⋅=+-x xx x f x f ,(1) 求)(x f 的表达式;(2)求)(x f 的最大值.任意角的三角函数及诱导公式测试题一、选择题1. (2010·南昌模拟)已知△ABC 中,5tan 12A =-,则cos A =( ) (A)1213 (B) 513 (C) 513- (D) 1213- 2.(2010·石家庄模拟)o 585sin 的值为( )(A) -3.(2010·镇江模拟)下列关系式中正确的是( )A .000sin11cos10sin168<<B .000sin168sin11cos10<<C .000sin11sin168cos10<<D .000sin168cos10sin11<< 4.(2010·秦皇岛模拟)已知为第三象限角,则所在的象限是( )A .第一或第二象限 B.第二或第三象限 C.第一或第三象限 D.第二或第四象限 5.(2010·保定模拟)已知,那么角是( )A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第一或第四象限角6.(2010·大连模拟)已知,则( )A. B.C. D.7.(2010·江门模拟)若α是第二象限的角,且32sin =α,则αcos =( ) A .31B .31-C .35 D .35- 8.若k =︒-)100cos(,则︒80tan 等于( )α2α0tan cos <⋅θθθtan 2θ=22sin sin cos 2cos θθθθ+-=43-5434-45A .kk 21-B .k k 21--C .kk 21+D .kk 21+-9.函数式)2cos()2sin(21+-+ππ化简的结果是( ) A .2cos 2sin -B .)2cos 2(sin -±C .2sin 2cos -D .以上结论都不对10.已知αsin 是方程06752=--x x 的根,则)cot()2cos()2cos()2(tan )23sin()23sin(2απαπαπαπαππα-+-----的值( )A .43B .43-C .43或43-D .53-12.()()()570cos 420sin 675cos 1140sin ----的值等于( ) A .426+ B .436- C .436+ D .436-二、填空题1.若θ是锐角,21cos sin =-θθ,则__________cos sin 33=-θθ. 2.已知函数)321sin(2π-=x y ,则周期T= 3.求函数142sin 2+⎪⎭⎫⎝⎛+=πx y 的单调递减区间 4.不等式21sin >x 的解集是 . 三、解答题1.已知角α终边上一点A 的坐标为()13-,,(1)化简下列式子并求其值:()()()())tan(3tan cos )sin(tan 2sin πααπαπααπαπ-----+-;(2)求角α的集合.2.化简:︒--︒︒︒-170cos 110cos 10cos 10sin 2123.设)cos()(cos 223)2sin()2(sin cos 2)(223θθπθπθπθθ-+++-++-+=f 求)3(πf 的值。

诱导公式练习题及参考答案

诱导公式练习题及参考答案

《诱导公式》练习一、选择题1、下列各式不正确的是 ( B )A . sin (α+180°)=-sin αB .cos (-α+β)=-cos (α-β)C . sin (-α-360°)=-sin αD .cos (-α-β)=cos (α+β) 2、若sin (π+α)+sin (-α)=-m ,则sin (3π+α)+2sin (2π-α)等于( ) A .-23 m B .-32 m C .23 m D .32 m3、⎪⎭⎫⎝⎛-π619sin 的值等于( ) A .21B . 21-C .23 D . 23-4、如果).cos(|cos |π+-=x x 则x 的取值范围是( C )A .)(]22,22[Z k k k ∈++-ππππB .)()223,22(Z k k k ∈++ππππC .)(]223,22[Z k k k ∈++ππππD .)()2,2(Z k k k ∈++-ππππ5.已知函数1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值为 ( )A .5B .-5C .6D .-66、sin34π·cos 625π·tan 45π的值是A .-43B .43C .-43D .437.设,1234tan a =︒那么)206cos()206sin(︒-+︒-的值为 ( )A .211aa ++ B .-211aa ++ C .211aa +-D .211aa +-8.若)cos()2sin(απαπ-=+,则α的取值集合为( )A .}42|{Z k k ∈+=ππαα B .}42|{Z k k ∈-=ππααC .}|{Z k k ∈=πααD .}2|{Z k k ∈+=ππαα二、填空题1、求值:sin160°cos160°(tan340°+cot340°)= .2、若sin (125°-α)=1213,则sin (α+55°)= .3、cos π7 +cos 2π7 +cos 3π7 +cos 4π7 +cos 5π7 +cos 6π7 = .4、已知,1)sin(=+βα则=+++)32sin()2sin(βαβα .三、解答题1、已知 3)tan(=+απ, 求)2sin()cos(4)sin(3)cos(2a a a a -+-+--πππ的值.2、若cos α=23,α是第四象限角,求sin(2)sin(3)cos(3)cos()cos()cos(4)απαπαππαπααπ-+--------的值.3、设sin ,(0)()(1)1,(0)x x f x f x x π<⎧=⎨-+≥⎩和1cos ,()2()1(1)1,()2x x g x g x x π⎧<⎪⎪=⎨⎪-+≥⎪⎩求)43()65()31()41(f g f g +++的值.4.设)(x f 满足)2|(|cos sin 4)(sin 3)sin (π≤⋅=+-x xx x f x f ,(1) 求)(x f 的表达式;(2)求)(x f 的最大值.《诱导公式》参考答案一、选择题ABAC BABC二、填空题1、1.2、1312. 3、0. 4、0三、解答题1、7.2、25.3、22)41(=g ,512()1,()sin()1,633g f π=+=-+ 1)4sin()43(+-=πf , 故原式=3.4、解析:(1)由已知等式(sin )3(sin )4sin cos f x f x x x -+=⋅ ①得x x x f x f cos sin 4)sin (3)(sin -=-+ ② 由3⨯①-②,得8x x x f cos sin 16)(sin ⋅=,故212)(x x x f -=.(2)对01x ≤≤,将函数212)(x x x f -=的解析式变形,得()f x ==当2x =时,max 1.f =七年级英语期末考试质量分析一、试卷分析:本次试卷的难易程度定位在面向大多数学生。

高一数学 知识点 三角函数 诱导公式 常考题 经典题 50道 含答案和解析

高一数学 知识点 三角函数  诱导公式 常考题 经典题 50道 含答案和解析

高一数学三角函数诱导公式50道常考题经典题一、单选题1.若角的终边上有一点(-4,a),则a的值是()A. B. C. D.【答案】A【考点】任意角的三角函数的定义,诱导公式一【解析】【解答】由三角函数的定义知:,所以,因为角的终边在第三象限,所以<0,所以的值是。

【分析】三角函数是用终边上一点的坐标来定义的,和点的位置没有关系。

属于基础题型。

================================================================================2.若,则的值是( )A. B. C. D.【答案】C【解析】【解答】即,所以,,=,故选C。

【分析】简单题,此类题解的思路是:先化简已知条件,再将所求用已知表示。

================================================================================3.若,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系【解析】【解答】,故选C.================================================================================4.函数图像的一条对称轴方程是()A. B. C. D.【答案】A【考点】诱导公式一,余弦函数的图象,余弦函数的对称性【解析】【分析】,由y=cosx的对称轴可知,所求函数图像的对称轴满足即,当k=-1时,,故选A.================================================================================5.已知,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系,弦切互化【解析】【解答】因为,所以,可得,故C符合题意.故答案为:C .【分析】利用诱导公式将已知条件化简可求出tan,将中分子分母同时除以cos.================================================================================6.函数()A. 是奇函数B. 是偶函数C. 既是奇函数,又是偶函数D. 是非奇非偶函数【答案】A【考点】奇函数,诱导公式一【解析】【解答】∵,∴,∴是奇函数.故答案为:A【分析】首先利用诱导公式整理化简f(x) 的解析式,再根据奇函数的定义即可得证出结果。

诱导公式基本公式基础练习题

诱导公式基本公式基础练习题

诱导公式及基本公式学校:___________姓名:___________班级:___________考号:___________一、选择题(题型注释)1.已知角α的终边过点(8,3)P m ,且4cos 5α=-,则m 的值为( )A .12-B .12C ..2.tan 690的值为( )A .-. 3.若角600的终边上有一点(4,)a -,则a 的值是( )A ..-.±.04 )A .2±.2 C .2- D .125.已知角α的终边过点()m m P 34,-()0m <,则ααcos sin 2+的值是( ) A .1 B .52 C .52- D .-16.已知()P y 为角β的终边上的一点,且sin 13β=,则y 的值为( ) A .12±B .12C .12- D .2± 7.已知3cos 25πα⎛⎫+= ⎪⎝⎭,且3,22ππα⎛⎫∈ ⎪⎝⎭,则tan α=( ) A .43 B .43- C .34± D .348.已知一个扇形的周长是6cm ,该扇形的中心角是1弧度,则该扇形的面积为( )2cm .A .2B .4C .6D .7 9.在单位圆中,面积为1的扇形所对的圆心角的弧度数为( ) A.1 B.2 C.3 D.4二、填空题(题型注释)10.已知扇形的圆心角为60,其弧长为2π,则此扇形的面积为 .三、解答题(题型注释) 11.已知3tan 2α=-,α为第二象限角. (1)求3sin()cos()tan()22tan()sin()παπαπααππα--+-----的值; (212.已知α为第三象限角,()3sin()cos()tan()22tan()sin()f ππααπαααπαπ-+-=----. (1)化简()fα;(2)若31cos()25πα-=,求()f α的值. 13.3sin(3)cos(2)sin()2()cos()sin()f αππααπαπαπα---+=----. (1)化简()f α; (2)若313απ=-,求()f α的值. 14.已知3sin 5x =,其中02x π≤≤.(1)求cos x ,tan x 的值;(2)求sin()cos()cos(2)2x x x ππ--+-的值.15.根据条件计算(Ⅰ)已知第二象限角α满足1sin 3α=,求cos α的值; (Ⅱ)已知tan 2α=,求4cos sin 3cos 2sin αααα+-的值。

诱导公式练习题

诱导公式练习题

诱导公式练习题一、基本概念题1. 写出三角函数的诱导公式:正弦、余弦、正切函数的周期性公式。

2. 利用诱导公式,将sin(π α)转换为基本三角函数的形式。

3. 将cos(3π/2 + β)用基本三角函数表示。

4. 利用诱导公式,将tan(2π + γ)简化。

5. 已知sinθ = 1/2,求cos(π/2 θ)的值。

二、化简题6. 化简表达式:sin(π + α) cos(π/2 α)。

7. 化简表达式:tan(2π β) + tan(π + β)。

8. 化简表达式:sin^2(π/2 γ) + cos^2(π/2 γ)。

9. 化简表达式:cos(2π 2θ) sin(2π + 2θ)。

10. 化简表达式:tan(π 3α) tan(π + 3α)。

三、应用题11. 已知sinα = 3/5,求cos(π/2 α)的值。

12. 已知cosβ = 4/5,求sin(π β)的值。

13. 已知tanγ = 1,求tan(π + γ)的值。

14. 已知sinθ = √3/2,求cos(2π + θ)的值。

15. 已知cosφ = √2/2,求sin(π/2 φ)的值。

四、综合题16. 已知sinα + cosα = 1,求sin(π/2 α)的值。

17. 已知sinβ cosβ = 0,求cos(π β)的值。

18. 已知tanγ = tan(π/4 γ),求sin(2π + γ)的值。

19. 已知sinθ = cos(π/2 θ),求tan(2π θ)的值。

20. 已知cosφ = sin(π/2 φ),求sin(π + φ)的值。

五、拓展题21. 利用诱导公式证明:sin^2α + cos^2α = 1。

22. 利用诱导公式证明:tan(π + α) = tanα。

23. 利用诱导公式证明:sin(π 2α) = sin2α。

24. 利用诱导公式证明:cos(2π 2β) = cos2β。

25. 利用诱导公式证明:tan(π/2 γ) = cotγ。

诱导公式练习题含答案

诱导公式练习题含答案

诱导公式练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 已知tan(x+π2)=5,则1sin x cos x=()A.265B.−265C.±265D.−5262. cos390∘=( )A.1 2B.√32C.−12D.−√323. cos23π6=()A.1 2B.−12C.√32D.−√324. 已知sin(α2−π4)=√210,则sinα=()A.−1225B.1225C.−2425D.24255. 已知tanα=3,则2sin a+cosα2cos a−3sinα的值是()A.5 3B.1C.−1D.−536. 已知sin(α−π4)=13,则cos(α+π4)的值等于()A.−13B.13C.−2√23D.2√237. 若cosα=−45,且α是第三象限角,则tanα=()A.−34B.34C.43D.−438. 若tanα=√3,且α为第三象限角,则cosα−sinα的值为( )A.−1+√32B.√3−12C.1−√32D.1+√329. 已知f(α)=sin (π−α)cos (2π−α)cos (3π2−α)cos (π2−α)sin (−π−α).(1)化简f(α);(2)若α是第三象限角,且sin (α−π)=15,求f(α)的值.10. 在△ABC 中,∠A,∠C 均为锐角,且|12−sin A|+(cos C −√22)2=0,求∠B 的度数.11. 已知sin (30∘+α)=35,60∘<α<150∘,求cos α的值.12. 已知f(x)=sin (π2+x)−2cos (π+x)sin (π−x)+cos (−x).(1)求f (π4)的值;(2)若f(α)=2,α是第三象限角,求tan α及sin α的值.13. 已知f (α)=sin (α−π)cos (3π2+α)cos (−α−π)sin (5π+α)sin (α−2π).(1)化简f (α);(2)若sin (α+π2)=−25√6,求f (α+π)的值;(3)若α=2021π3,求f (α)的值.14. 已知f(α)=sin (α−π2)cos (3π2−α)tan (π+α)cos (π2+α)sin (2π−α)tan (−α−π)sin (−α−π).(1)化简f(α);(2)若α是第三象限角,且cos(α−3π2)=15,求f(α)的值.15. 已知sin(x+π3)=13,求sin(4π3+x)+cos2(−x+5π3)的值.16. 已知函数f(x)=2cos x(sin x+cos x)−1.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在[0, π]上的单调递增区间.参考答案与试题解析诱导公式练习题含答案一、选择题(本题共计 8 小题,每题 5 分,共计40分)1.【答案】B【考点】同角三角函数间的基本关系【解析】本题考查同角三角函数间的基本关系.【解答】解:因为tan(x+π2)=sin(x+π2)cos(x+π2)=cos x−sin x =−1tan x=5,所以tan x=−15,所以1sin x cos x =sin2x+cos2xsin x cos x=tan2x+1tan x =−265.故选B.2.【答案】B【考点】运用诱导公式化简求值【解析】利用诱导公式化简即可得解.【解答】解:cos390∘=cos(360∘+30∘)=cos30∘=√32.故选B.3.【答案】C【考点】运用诱导公式化简求值【解析】由题意,直接利用诱导公式和特殊角的三角函数值进行化简求值即可. 【解答】解:已知cos23π6=cos(23π6−4π)=cos(−π6)=cosπ6=√32.故选C.4.【考点】两角和与差的三角函数【解析】两边同时平方,然后结合二倍角正弦公式即可求解.【解答】∵sin(α2−π4)=√210,∴√22(sin12α−cos12α)=√210,即sin12α−cos12α=15,两边同时平方可得,1+2sin12αcos12α=125,则sinα=−2425.5.【答案】C【考点】运用诱导公式化简求值【解析】此题暂无解析【解答】此题暂无解答6.【答案】A【考点】运用诱导公式化简求值【解析】运用诱导公式即可化简求值.【解答】解:∵sin(α−π4)=13,∴cos(α+π4)=sin[π2−(π4+α)]=sin(π4−α)=−sin(α−π4 )=−13.故选A.7.【考点】同角三角函数间的基本关系 【解析】由cos α的值,及α为第三象限角,利用同角三角函数间的基本关系求出sin α的值,即可确定出tan α的值即可. 【解答】解:∵ cos α=−45,且α是第三象限角, ∴ sin α=−√1−cos 2α=−35, 则tan α=sin αcos α=34. 故选B . 8.【答案】 B【考点】同角三角函数基本关系的运用 运用诱导公式化简求值 【解析】由tan α=2,即sin αcos α=2,sin 2α+cos 2α=1,且α是第三象限角,即可求解sin α,cos α.从而求解cos α−sin α的值. 【解答】解:∵ tan α=√3,α为第三象限角, ∴ sin α=√3cos α,sin α<0,cos α<0, 由sin 2α+cos 2α=1, 则(√3cos α)2+cos 2α=1, 解得cos α=−12,sin α=−√32. 则cos α−sin α=−12−(−√32) =−12+√32=√3−12. 故选B .二、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 ) 9.【答案】f(α)=sin (π−α)cos (2π−α)cos (3π2−α)cos (π2−α)sin (−π−α) =sin αcos α(−sin α)sin αsin α=−cos α.∵ α是第三象限角,且sin (α−π)=15,∴ sin α=−15,∴ cos α=−√1−sin 2α=−√1−125=−2√65, ∴ f(α)=−cos α=2√65. 【考点】运用诱导公式化简求值 【解析】(1)利用诱导公式化简即可得到结果;(2)由α是第三象限角及sin α的值,利用同角三角函数间的基本关系求出cos α的值,所求式子利用诱导公式化简后,代入计算即可求出值; 【解答】f(α)=sin (π−α)cos (2π−α)cos (3π2−α)cos (π2−α)sin (−π−α)=sin αcos α(−sin α)sin αsin α=−cos α. ∵ α是第三象限角,且sin (α−π)=15,∴ sin α=−15,∴ cos α=−√1−sin 2α=−√1−125=−2√65, ∴ f(α)=−cos α=2√65. 10. 【答案】解:因为|12−sin A|+(cos C −√22)2=0,所以12−sin A =0,cos C −√22=0,所以sin A =12,cos C =√22. 因为∠A,∠C 均为锐角,所以∠A =30∘,∠C =45∘,所以∠B =180∘−30∘−45∘=105∘. 【考点】运用诱导公式化简求值 【解析】 此题暂无解析 【解答】解:因为|12−sin A|+(cos C −√22)2=0,所以12−sin A =0,cos C −√22=0,所以sin A =12,cos C =√22. 因为∠A,∠C 均为锐角,所以∠A =30∘,∠C =45∘,所以∠B =180∘−30∘−45∘=105∘. 11. 【答案】已知sin (30∘+α)=35,60∘<α<150∘, 所以90∘<30∘+α<180∘ 所以cos (30+α)=−45,则:cos α=cos [(30∘+α)−30∘]=cos (30∘+α)cos 30∘+sin (30∘+α)sin 30∘=−45×√32+35×12=3−4√310. 【考点】两角和与差的三角函数 【解析】直接利用三角函数关系式的应用求出结果. 【解答】已知sin (30∘+α)=35,60∘<α<150∘, 所以90∘<30∘+α<180∘ 所以cos (30+α)=−45,则:cos α=cos [(30∘+α)−30∘]=cos (30∘+α)cos 30∘+sin (30∘+α)sin 30∘=−45×√32+35×12=3−4√310. 12. 【答案】 解:(1)∵ f(x)=sin (π2+x)−2cos (π+x)sin (π−x)+cos (−x)=cos x +2cos xsin x +cos x=3tan x+1,∴ f (π4)=3tan π4+1=31+1=32.(2)∵ 已知f(α)=3tan α+1=2, ∴ tan α=sin αcos α=12,又sin2α+cos2α=1,α是第三象限角,∴ 解得:sinα=−√55.【考点】运用诱导公式化简求值同角三角函数间的基本关系【解析】此题暂无解析【解答】解:(1)∵f(x)=sin(π2+x)−2cos(π+x) sin(π−x)+cos(−x)=cos x+2cos x sin x+cos x=3tan x+1,∴f(π4)=3tanπ4+1=31+1=32.(2)∵已知f(α)=3tanα+1=2, ∴tanα=sinαcosα=12,又sin2α+cos2α=1,α是第三象限角,∴ 解得:sinα=−√55.13.【答案】解:(1)f(α)=−sinαsinα(−cosα)−sinαsinα=−cosα(α≠kπ,k∈Z).(2)∵sin(α+π2)=cosα=−2√65,∴ f(α+π)=−cos(α+π)=cosα=−2√65.(3)∵ α=2021π3=674π−π3,∴ f(α)=−cosα=−cos(674π−π3 )=−cosπ3=−12.【考点】运用诱导公式化简求值【解析】(1)由条件利用诱导公式化简所给式子的值,可得f(α)的解析式.(2)由条件利用诱导公式化简可得cosα=−2√65,从而求得f(α)=−cosα的值;(3)α=2021π3=674π−π3,利用诱导公式求得f(α)的值.【解答】解:(1)f(α)=−sinαsinα(−cosα)−sinαsinα=−cosα(α≠kπ,k∈Z).(2)∵sin(α+π2)=cosα=−2√65,∴ f(α+π)=−cos(α+π)=cosα=−2√65.(3)∵ α=2021π3=674π−π3,∴ f(α)=−cosα=−cos(674π−π3 )=−cosπ3=−12.14.【答案】解:(1)由题意知f(α)=−sin(π2−α)(−sinα)tanα(−sinα) sin(−α)(−tanα)[−sin(π+α)]=−cosα(−sinα)tanα(−sinα)−sinα(−tanα)sinα=−cosα.(2)∵cos(α−3π2)=cos(3π2−α)=−sinα=15,∴sinα=−15,又α为第三象限角,∴cosα=−√1−sin2α=−2√65, ∴ f(α)=−cosα=2√65. 【考点】运用诱导公式化简求值【解析】此题暂无解析【解答】解:(1)由题意知f(α)=−sin(π2−α)(−sinα)tanα(−sinα) sin(−α)(−tanα)[−sin(π+α)]=−cosα(−sinα)tanα(−sinα)−sinα(−tanα)sinα=−cosα.(2)∵ cos (α−3π2)=cos (3π2−α)=−sin α=15, ∴ sin α=−15,又α为第三象限角,∴ cos α=−√1−sin 2α=−2√65, ∴ f(α)=−cos α=2√65. 15.【答案】解:∵ sin 2(x +π3)+cos 2(x +π3)=1, 又sin (x +π3)=13,∴ cos 2(x +π3)=1−sin 2(x +π3)=89, ∴ 原式=sin (π+π3+x)+cos 2[2π−(x +π3)]=−sin (π3+x)+cos 2(x +π3) =−13+89=59. 【考点】运用诱导公式化简求值【解析】直接利用诱导公式化简即可.【解答】解:∵ sin 2(x +π3)+cos 2(x +π3)=1, 又sin (x +π3)=13, ∴ cos 2(x +π3)=1−sin 2(x +π3)=89, ∴ 原式=sin (π+π3+x)+cos 2[2π−(x +π3)]=−sin (π3+x)+cos 2(x +π3) =−13+89=59.16.【答案】(Ⅰ)f(x)=2sin x cos x+2cos2x−1=sin2x+cos2x=√2sin(2x+π4).∴f(x)的最小正周期为T=2π2=π;(Ⅱ)由−π2+2kπ≤2x+π4≤π2+2kπ(k∈Z),得−3π8+kπ≤x≤π8+kπ(k∈Z).当x∈[0, π]时,单调递增区间为[0,π8brack和[5π8,πbrack.【考点】运用诱导公式化简求值【解析】(Ⅰ)利用倍角公式降幂,再由辅助角公式化积,由周期公式求周期;(Ⅱ)利用复合函数的单调性求出增区间,进一步得到f(x)在[0, π]上的单调递增区间.【解答】(Ⅰ)f(x)=2sin x cos x+2cos2x−1=sin2x+cos2x=√2sin(2x+π4).∴f(x)的最小正周期为T=2π2=π;(Ⅱ)由−π2+2kπ≤2x+π4≤π2+2kπ(k∈Z),得−3π8+kπ≤x≤π8+kπ(k∈Z).当x∈[0, π]时,单调递增区间为[0,π8brack和[5π8,πbrack.。

诱导公式基础练习题(含详细答案)

诱导公式基础练习题(含详细答案)

数学诱导公式作业1.3,2παπ⎛⎫∈ ⎪⎝⎭,sin 10α=-,tan α=______. 2.已知点()1,2P -为角θ终边上一点,则2sin cos sin cos θθθθ-=+______. 3.已知1sin cos 3αα+=,则sin cos αα的值为________. 4.若3sin cos 0αα+=,则21cos sin 2αα+的值为_ 5.已知02πα-<<,且5cos 13α=.则2cos()3sin()4cos()sin(2)παπααπα--+-+-的值为_____. 6.已知1tan()2πα-=-,则cos()+22cos sin cos παααα+-的值是______. 7.已知3sin 25πα⎛⎫-= ⎪⎝⎭,则cos()πα+的值为________. 8.sin 315=________.9.计算:1125sin tan 33ππ⎛⎫+-= ⎪⎝⎭________ 10.sin 30︒=__________,11cos4π=_________.11.已知角α终边上有一点()1,P y,且sin α=(1)求tan α的值; (2)求()()sin sin 2sin cos 2ππαααπα⎛⎫-++ ⎪⎝⎭--的值.12.已知()()()π3π=cos cos 2πsin 223πsin πsin 2f a ααααα⎛⎫⎛⎫+⋅-⋅-+ ⎪ ⎪⎝⎭⎝⎭⎛⎫--⋅+ ⎪⎝⎭. (1)化简()f a ;(2)若α 是第三象限角,且31cos 25πα⎛⎫-= ⎪⎝⎭,求()f a 的值.13.已知02πα<<,且513sin α=. ()1求tan α的值;()2求()222222sin sin sin cos sin απααπαα--⎛⎫++ ⎪⎝⎭的值.14.化简或求值: (1)sin()cos()sin()cos()222cos()sin()πππααπααπαπα+--++++; (2)6sin(90)3sin08sin 27012cos180-+-+.15.已知角α的终边与单位圆交于点P(45,35).(1)写出sin αααtan ,cos ,值; (2)求)cos(2)2sin(2)sin(απαπαπ--++的值.16.已知角α的终边经过点P (m ,4),且35cos α=-, (1)求m 的值; (2)求()()()2sin sin cos sin παπααπα⎛⎫-++ ⎪⎝⎭-+-的值. 17.已知sin α=α是第一象限角. (1)求cos α的值. (2)求()()3sin 2tan cos πααππα⎛⎫- ⎪⎝⎭++-的值. 18.已知sin 1sin cos ααα=-- (1)求tan α的值,(2)求222sin 2sin cos 3sin cos ααααα++的值.参考答案1.13【解析】【分析】先计算cos α=,再根据sin tan cos ααα=计算得到答案. 【详解】3,2παπ⎛⎫∈ ⎪⎝⎭,sin 1sin cos tan cos 3ααααα==== 故答案为:13【点睛】 本题考查了同角三角函数关系,意在考查学生的计算能力.2.5【解析】【分析】首先求tan θ,再化简2sin cos 2tan 1sin cos tan 1θθθθθθ--=++,求值. 【详解】 由题意可知2tan 21θ==-- 2sin cos 2tan 15sin cos tan 1θθθθθθ--==++ . 故答案为:5【点睛】本题考查三角函数的定义和关于sin ,cos θθ的齐次分式求值,意在考查基本化简和计算. 3.49- 【解析】 ∵1sin cos 3αα+=, ∴2221(sin cos )sin cos 2sin cos 12sin cos 9αααααααα+=++=+=,解得4sin cos 9αα=-。

诱导公式专题训练含详解

诱导公式专题训练含详解

诱导公式专题训练1.求下列各值. (1)271sin6π;(2)1101cos 4π;(3)6133tan 6π;(4)13sin 6π⎛⎫- ⎪⎝⎭;(5)9cos 4π⎛⎫- ⎪⎝⎭;(6)7tan 3π⎛⎫- ⎪⎝⎭. 2.计算下列各式的值: (1)()()()cos tan 7πsin πααα-++;(2)()()sin 420cos330sin 690cos 660+--. 3.已知角α终边上有一点(3,m)P -,且sin ,(0)5mm α=<. (1)求m 的值,并求cos α与tan α的值;(2)化简并求cos()cos()sin()25cos()sin()sin()2ππαααππαπαα++---+的值.4.如图,角α的终边与单位圆交于点P x ⎛ ⎝⎭,且0x <.(1)求tan α;(2)求()()cos cos 32sin sin 2πααππαα⎛⎫--+ ⎪⎝⎭⎛⎫++- ⎪⎝⎭.5.化简:23sin ()cos()cos(2)tan()sin sin(2)2αππααπππαααπ+⋅+⋅--⎛⎫+⋅+⋅-- ⎪⎝⎭ 6.化简:()()()()cos sin 2sin cos παπαπαπα++----7.求值:sin(1320)cos1110cos(1020)sin 750tan 495-+-+8.化简:9sin(4)cos tan(5)211sin cos(2)sin(3)sin 22ππααπαππαπαπαα⎛⎫-+ ⎪-⎝⎭-⎛⎫⎛⎫+--- ⎪ ⎪⎝⎭⎝⎭.9.利用单位圆分别写出符合下列条件的角α的集合: (1)1sin 2α=; (2)cos α= (3)tan α=10.在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合: (1)3sin α; (2)1cos 2α-. 11.已知sin x =(1)当,22x ππ⎡⎤∈-⎢⎥⎣⎦时,求x 的取值集合;(2)当[0,2]x π时,求x 的取值集合;(3)当x ∈R 时,求x 的取值集合.12.已知角α终边在第四象限,与单位圆的交点A的坐标为0y ⎫⎪⎭,且终边上有一点P(1)求0y 的值和P 点的坐标;(2)求()()3tan 3cos cos 2παππαα⎛⎫--+-⎪⎝⎭的值.参考答案:1.(1)12-;(2)(3(4)12-;(5(6)【解析】利用诱导公式结合特殊角的三角函数值可计算出(1)(2)(3)(4)(5)(6)中各式的值. 【详解】 (1)2711sinsin 45sin sin 66662ππππππ⎛⎫⎛⎫=+=+=-=- ⎪ ⎪⎝⎭⎝⎭; (2)1101coscos 275cos cos 44442ππππππ⎛⎫⎛⎫=+=+=-=- ⎪ ⎪⎝⎭⎝⎭ (3)6133tantan 1022tan 666ππππ⎛⎫=+== ⎪⎝⎭; (4)131sin sin 2sin sin 66662πππππ⎛⎫⎛⎫⎛⎫-=--=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(5)9cos cos 2cos cos 44442πππππ⎛⎫⎛⎫⎛⎫-=--=-==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (6)7tan tan 2tan tan 3333πππππ⎛⎫⎛⎫⎛⎫-=--=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【点睛】本题考查利用诱导公式求值,考查计算能力,属于基础题. 2.(1)1-; (2)1. 【解析】 【分析】(1)利用诱导公式以及同角三角函数基本关系化简即可求解; (2)利用诱导公式以及特殊角的三角函数值即可求解. (1)()()()sin cos cos tan 7πcos tan cos 1sin πsin sin αααααααααα⋅-+===-+--. (2)()()sin 420cos330sin 690cos 660+--()()()()sin 36060cos 36030sin 360230cos 360260=+-+-⨯+-⨯+sin 60cos30sin30cos60=+11122=⨯=. 3.(1)m =-4;3cos 5α=-,4tan 3α=.(2)43 【解析】 【分析】(1)利用三角函数的定义分别求出m 的值和cos α与tan α的值; (2)先化简,再求值. (1)由角α终边上有一点(3,m)P -,且sin ,(0)5mm α=<由三角函数的定义可得:sin ,(0)5mm α==<,解得:m =-4. 所以3cos 5α=-,4tan 3α=.(2)()()cos()cos()sin()cos sin sin 42tan 5cos sin cos 3cos()sin()sin()2ππαααααααπαααπαπαα++----===---+4.(1)3-; (2)12-.【解析】 【分析】(1)根据三角函数的定义,平方关系以及点P 的位置可求出sin ,cos αα,再由商数关系即可求出tan α;(2)利用诱导公式即可求出. (1)由三角函数定义知sin α=,所以221cos 1sin 10αα=-=,因为cos 0x α=<,所以cos α=,所以sin tan 3cos ααα==-. (2)原式sin cos tan 11cos sin 1tan 2αααααα++===---.5.1【解析】 【分析】利用诱导公式先化简再求值. 【详解】原式222322sin (cos )cos sin cos 1tan cos (sin )sin cos αααααααααα⋅-⋅===⋅⋅-. 6.1 【解析】 【分析】利用诱导公式化简并约分即得解. 【详解】 原式()cos sin 1sin cos αααα-==-.7.0 【解析】 【分析】利用诱导公式求解即可. 【详解】sin(1320)cos1110cos(1020)sin 750tan 495-+-+ sin120cos30cos60sin30tan135=+︒+111022⨯-= 8.1 【解析】 【分析】利用题意结合同角三角函数基本关系和诱导公式进行化简求值即可求得三角函数式的值 【详解】sin(4)sin()sin πααα-=-=-,9cos cos 422ππαπα⎡⎤⎛⎫⎛⎫+=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ cos sin 2παα⎛⎫=+=- ⎪⎝⎭,1133sin sin 4sin 222πππαπαα⎡⎤⎛⎫⎛⎫⎛⎫+=++=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ sin sin cos 22πππααα⎡⎤⎛⎫⎛⎫=++=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,tan(5)tan()tan παπαα-=-=-, sin(3)sin()sin παπαα-=-=,∴原式222sin sin tan sin 1cos cos sin cos cos cos αααααααααα-=-=-+- 22221sin cos 1cos cos αααα-===. 【点睛】本题考查诱导公式的应用和同角三角函数基本关系,考查运算求解能力,求解时注意奇变偶不变,符号看象限这一口诀的应用,属于基础题.9.(1)|26k πααπ⎧=+⎨⎩或52,6k k Z παπ⎫=+∈⎬⎭;(2) 3|24k πααπ⎧=+⎨⎩或52,4k k Z παπ⎫=+∈⎬⎭;(3),3k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭.【解析】 【分析】(1)根据正弦线作图求解即可; (2)根据余弦线作图求解即可; (3)根据正切线作图求解即可. 【详解】解 (1) 作出如图所示的图形,则根据图形可得|26k πααπ⎧=+⎨⎩或52,6k k Z παπ⎫=+∈⎬⎭;(2)作出如图所示的图形,则根据图形可得3|24k πααπ⎧=+⎨⎩或52,4k k Z παπ⎫=+∈⎬⎭;(3)作出如图所示的图形,则根据图形可得 ,3k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭.10.(1)2|22,33k k k Z ππαπαπ⎧⎫++∈⎨⎬⎩⎭;(2)24|22,33k k k Z ππαπαπ⎧⎫++∈⎨⎬⎩⎭【解析】 【分析】(1)作直线y =A 、B 两点,OA 与OB 围成的区域(阴影部分)即为角α的终边的范围,在[0,2)π内的角的范围为[3π,2]3π,可得满足条件的角α的集合.(2)作直线12x =-交单位圆于C 、D 两点,OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围,在[0,2)π内的角的范围为2[3π,4]3π,可得满足条件的角α的集合.【详解】解:(1)作直线y =A 、B 两点,连接OA 、OB , 则OA 与OB 围成的区域(阴影部分)即为角α的终边的范围,故满足条件的角α的 集合为2|22,33k k k Z ππαπαπ⎧⎫++∈⎨⎬⎩⎭.(2)作直线12x =-交单位圆于C 、D 两点,连接OC 、OD , 则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围. 故满足条件的角α的集合为24|22,33k k k Z ππαπαπ⎧⎫++∈⎨⎬⎩⎭.【点睛】本题考查利用单位圆中的三角函数线来表示三角函数的值的方法,体现了数形结合的数学思想,属于基础题.11.(1)3π⎧⎫⎨⎬⎩⎭;(2)2,33ππ⎧⎫⎨⎬⎩⎭;(3){23x x k ππ=+或22,3x k k Z ππ⎫=+∈⎬⎭. 【解析】 【分析】(1)利用正弦函数的定义与性质,结合,22x ππ⎡⎤∈-⎢⎥⎣⎦,即可得出答案;(2)利用正弦函数的定义与性质,结合[0,2]x π,即可得出答案;(3)利用正弦函数的定义与性质,结合x ∈R ,即可得出答案; 【详解】(1)因为sin y x =在,22ππ⎡⎤-⎢⎥⎣⎦上是增函数,且sin 3π=,所以3x π=.所以x 的取值集合为3π⎧⎫⎨⎬⎩⎭.(2)因为sin 0x >,所以x 为第一、二象限的角,且sin sin 33πππ⎛⎫=-=⎪⎝⎭所以在[0,2]π上符合条件的角有3x π=或23x π=.所以x 的取值集合为2,33ππ⎧⎫⎨⎬⎩⎭.(3)当x ∈R 时,x 的取值集合为{23x x k ππ=+或22,3x k k Z ππ⎫=+∈⎬⎭.12.(1)0y =()1,2P -;(2. 【解析】 【分析】(1)由单位圆可利用A 到原点的距离为1计算0y .由A 算得的三角函数值计算P 的坐标即可. (2)先用诱导公式化简式子,再代入角α的三角函数值进行计算即可. 【详解】(1)20415y ⇒=,因为角α终边在第四象限,故0y =故sin αα==故())1,2P ⎛= ⎝-⎭(2) ()()3tan 3cos cos tan (cos )sin 2sin 2παππαααααα⎛⎫--+-=⋅--=-⎪⎝⎭【点睛】本题主要考查了三角函数的基本定义以及诱导公式的运用等,属于基础题型.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

诱导公式及基本公式学校:___________姓名:___________班级:___________考号:___________一、选择题(题型注释)1.已知角α的终边过点(8,3)P m ,且4cos 5α=-,则m 的值为( )A .12-B .12C ..2.tan 690的值为( )A .-. 3.若角600的终边上有一点(4,)a -,则a 的值是( )A ..-.±.04 )A .2±.2 C .2- D .125.已知角α的终边过点()m m P 34,-()0m <,则ααcos sin 2+的值是( ) A .1 B .52 C .52- D .-16.已知()P y 为角β的终边上的一点,且sin 13β=,则y 的值为( ) A .12±B .12C .12- D .2± 7.已知3cos 25πα⎛⎫+= ⎪⎝⎭,且3,22ππα⎛⎫∈ ⎪⎝⎭,则tan α=( ) A .43 B .43- C .34± D .348.已知一个扇形的周长是6cm ,该扇形的中心角是1弧度,则该扇形的面积为( )2cm .A .2B .4C .6D .7 9.在单位圆中,面积为1的扇形所对的圆心角的弧度数为( ) A.1 B.2 C.3 D.4二、填空题(题型注释)10.已知扇形的圆心角为60,其弧长为2π,则此扇形的面积为 .三、解答题(题型注释) 11.已知3tan 2α=-,α为第二象限角. (1)求3sin()cos()tan()22tan()sin()παπαπααππα--+-----的值; (212.已知α为第三象限角,()3sin()cos()tan()22tan()sin()f ππααπαααπαπ-+-=----. (1)化简()fα;(2)若31cos()25πα-=,求()f α的值. 13.3sin(3)cos(2)sin()2()cos()sin()f αππααπαπαπα---+=----. (1)化简()f α; (2)若313απ=-,求()f α的值. 14.已知3sin 5x =,其中02x π≤≤.(1)求cos x ,tan x 的值;(2)求sin()cos()cos(2)2x x x ππ--+-的值.15.根据条件计算(Ⅰ)已知第二象限角α满足1sin 3α=,求cos α的值; (Ⅱ)已知tan 2α=,求4cos sin 3cos 2sin αααα+-的值。

参考答案1.A 【解析】试题分析:由题设549648cos 2-=+=m mα可得21±=m ,经检验21-=m 成立,应选A.考点:三角函数的定义. 2.C 【解析】试题分析:因=-=-=030tan )30720tan(690tan ,故应选C. 考点:诱导公式及运用. 3.B 【解析】试题分析:由题意得tan 6004tan 60434aa =-⇒=-=- B.考点:三角函数定义【方法点睛】利用三角函数的定义,求一个角的三角函数值,需确定三个量:角的终边上任意一个异于原点的点的横坐标x ,纵坐标y ,该点到原点的距离r.若题目中已知角的终边在一条直线上,此时注意在终边上任取一点有两种情况(点所在象限不同). 4.B 【解析】0sin120=2,选B.考点:特殊角三角函数值 5.C 【解析】试题分析:因m m m r 591622-=+=,故54cos ,53sin =-=αα,所以52cos sin 2-=+αα,故选C.考点:三角函数的定义. 6.B 【解析】试题分析:13133sin 2=+=y y β,解得21=y ,故选B. 考点:三角函数的定义7.D 【解析】试题分析:因为3cos sin 25παα⎛⎫+=-=⎪⎝⎭,所以3sin 5α=-;又3,22ππα⎛⎫∈ ⎪⎝⎭,所以4cos 5α==-,3sin 35tan 4cos 45ααα-===-.故选D.考点:三角函数的基本关系式. 8.A 【解析】试题分析:由题意r r l r +=+=226,解得2=r ,所以扇形的面积221212=⨯⨯=S .故选A.考点:扇形的面积公式. 9.B 【解析】试题分析:根据扇形面积公式212S r α=,1s r ==,可得2α=,选B . 考点:扇形的面积.【思路点晴】本题主要考查的是弧度制下扇形的面积公式的应用,属于容易题,本题利用弧度制下扇形的面积公式212S r α=确定已知中包含的条件有:1,1r S ==,将两者代入面积公式即可解出.在本题中要熟悉两个点:第一,单位圆中的半径为1;第二,弧度制下的扇形的面积公式:21122S lr r α==,做题过程中注意应用那个公式.10.6π【解析】试题分析:由题设可知扇形的半径632==ππr ,故其面积ππ62621=⨯⨯=S .故应填6π. 考点:扇形的弧长公式与面积公式的运用. 11.(1)13132;(2)2. 【解析】 试题分析:(1)借助题设条件运用诱导公式求解;(2)借助题设条件运用同角三角函数的关系求解.试题解析: 由3tan 2α=-,α为第二象限角,解得cos =α……………………2分(1)原式=(cos )sin (tan )cos (tan )sin αααααα--=--, 故原式=cos α-=…………………7分 (2)原式=1sin 1sin 112tan =2cos cos ααααα+--++=--- ……………………12分考点:同角三角函数的关系和诱导公式. 12.(1)αcos -;(2)562. 【解析】 试题分析:(1)借助题设直接运用诱导公式化简求解;(2)借助题设条件和诱导公式及同角关系求解. 试题解析: (1)(cos )(sin )(tan )()cos (tan )sin f ααααααα--==--;(2)∵31cos()25πα-=, ∴1sin 5α-=即1sin 5α=-,又α为第三象限角∴cos 5α==-, ∴()f α=562.考点:诱导公式同角三角函数的关系. 13.(1)()ααcos -=f ;(2)()21-=αf . 【解析】试题分析:(1)根据诱导公式化简,()()απαπαsin sin 3sin -=+=-,()ααπcos 2cos =-,ααπcos 23sin -=⎪⎭⎫⎝⎛-,()()ααπαπcos cos cos -=+=--,()()ααπαπsin sin sin =-=--,(2)直接带入(1)的结果,再用诱导公式化简.试题解析:(1)()()αααααααcos sin cos cos cos sin -=---=f ; (2)31311()cos()cos()cos(10)cos 33332f ππππαπ=--=-=-+=-=-.考点:诱导公式【易错点睛】本题主要考察了诱导公式,属于基础题型,诱导公式题型容易出错,诱导公式的原则是“奇变偶不变,符号看象限”,απαππαα±+2--,,,这类型的诱导公式等号两侧的三角函数名称不变,απαπ±±232,的诱导公式的左右两侧的三角函数名称改变,假设α为锐角,左边的三角函数的符号是什么右边三角函数前面就是什么符号,如果所给的形式不是标准的诱导公式,需要用两次变为标准形式,比如()()ααπαπsin sin sin =+-=--,或是()()()ααππαπαπsin sin 2sin sin =-=+--=--.14.(1)43cos ,tan 54x == (2)37- 【解析】试题分析:(1)由题为三角函数的求值问题,已知3sin 5x =,及02x π≤≤,可运用同角三角函数的平方关系及商数关系求值;注意:(角所在的象限与取值的正负)。

(2)由(1)题已知三角函数的值,可对所求的式子利用诱导公式进行化简,然后代入可得。

试题解析:(1)∵sinx=35,0≤x≤2π,∴cosx==45,sin 3tan cos 4x x x ==(2)∵sinx=35,cosx=45, ∴原式=sin sin cos x x x -+=353455-+=37-考点:(1)同角三角函数的求值。

(2)诱导公式化简求值。

15.(1)223- (2)-6 【解析】试题分析:(1)由题为三角函数的求值问题,已知1sin 3α=,及角所在的象限,可运用同角三角函数的平方关系求值;注意:(角所在的象限与取值的正负)。

(2)由题已知tan 2α=,可对所求的分式进行变形,即运用分式的性质,化弦为切代入可求出。

试题解析:(Ⅰ)221sin ,sin cos 13x x α=+= α第二象限角cos 0α∴< 2122cos 133α⎛⎫∴=--=- ⎪⎝⎭(Ⅱ)tan 2α=4cos sin (4cos sin )cos 4tan 63cos 2sin (3cos 2sin )cos 32tan αααααααααααα++÷+===---÷- 考点:(1)同角三角函数的求值。

(2)三角函数的化简求值。

相关文档
最新文档