重庆市育才中学初2019级七(下)期末考试数学试题
重庆市2019-2020七年级下学期期末考试数学试题

重庆市2019-2020七年级下学期期末考试数学试题一、选择题:(本大题共12小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在下列方框内.1.2﹣2的值是()A.﹣4 B.4 C.D.﹣2.下列图形是轴对称图形的是()A.B.C.D.3.下列各组数是勾股数的是()A.3,4,5 B.7,8,9 C.9,41,47 D.52,122,1324.计算(a3b)2的结果是()A.a6b B.a6b2 C.a5b2 D.a3b25.下列事件为确定事件的是()A.明天要下雨B.水中捞月C.守株待兔D.任意掷一枚图钉,落地后针尖朝上6.如图,直线AB、CD相交于点E,DF∥AB.若∠D=70°,则∠CEB等于()A.70° B.80° C.90° D.110°7.如图所示,转盘被等分成4个扇形,并在上面一次写上数字1,2,3,5,若自1转动转盘当它停止转动时,指针指向奇数区的概率是()A.B.C.D.8.如图,在△ABC中,若AB=10,AC=16,AC边上的中线BD=6,则BC等于()A.8 B.10 C.11 D.129.为了缓解交通压力,改变堵车现状,我市决定对机场路机械改造,施工队在工作了一段时间后,因暴雨被迫停了几天,不过施工队加快了进度,按时完成某路段的改造.下面能反映该工程尚未改造的道路里程y(公里)与时间x(天)的变化情况的大致图象是()A.B.C.D.10.如图,一只蚂蚁从长宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是()A.(3+8)cm B.10cm C.14cm D.无法确定11.用同样大小的黑色五角星按如图所示的方式摆图案,按照这样的规律摆下去,第7个图案需要的黑色五角星的个数是()A.10 B.11 C.12 D.1312.关于多项式﹣2x2+8x+5的说法正确的是()A.有最大值13 B.有最小值﹣3 C.有最大值37 D.有最小值1二、填空题:(本大题共6小题,每小题4分,共24分)请将正确答案填在下列方框内. 13.台湾新北市八仙水上乐园6月27日晚间疑似粉尘爆炸,目前已造成逾200多人灼伤,据了解,此次引起粉尘爆炸的粉末爆炸的粉尘成分主要是玉米粉,玉米粉的爆炸下限为每立方米45000000微克,把数45000000用科学记数法表示为.14.计算:(π﹣2015)0﹣|2|=.15.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)间有下面的关系:x 0 1 2 3 4 5y 10 10.5 11 11.5 12 12.5则y关于x的关系式为.16.如图,在△ABC中,∠C=90°,AB的中垂线交AB于点D,交BC于点E,连接AE,若∠BED=70°,则∠CAE的度数为.17.已知m2﹣5m﹣1=0,则=.18.已知如图,在矩形ABCD中,点E是AD的中点,连结BE,将△ABE沿着BE翻折得到△FBE,EF交BC于点H,延长BF、DC相交于点G,若DG=16,BC=24,则FH=.三、解答题:(本题共8个小题,共78分)解答时每小题必须给出必要的演算过程或推理步骤.19.作图题:(要求:在下列空白处尺规作图,保留作图痕迹,不写作法,要作答.)已知:∠α,线段c,求作:△ABC,时∠A=∠α,AB=2c,BC=3c.20.(10分)(2015春•重庆校级期末)计算:(1)(a﹣b)2+b(2a+b);(2)[(2x﹣y)(y﹣4x)+(3x+y)2]+x.21.如图,∠A=90°,∠D=90°,AC与BD相交于点E,BE=EC.求证:△ABC≌△DCB.22.(10分)(2015春•重庆校级期末)为规范学生的在校表现,我校某班实行了操行评分制,根据学生的操行分高低分为A、B、C、D四个等级,现对该班本学期的操行等级进行了统计,并绘制了不完整的两种统计图,请根据图象回答问题:(1)该班的总人数为人,得到等级A的学生人数占总人数的百分比为;(2)补全条形统计图;(3)据统计获得等级A的学生中有2名男生,其余全为女生,现班主任打算从操行等级为A的学生中任意抽取一名为代表,参加下学期开学的“国旗下的讲话”演讲活动,请求出抽到女生的概率.23.(10分)(2015春•重庆校级期末)读一读:式子“1×2×3×4×5×^×100”表示从1开始的100个连续自然数的积,由于上述式子比较长,书写也不方便,物理简便起见,我们可以将“1×2×3×4×5×^×100”表示为n,这里“π”是求积符号.例如:1×35×7×9×^×99,即从1开始的100以内的连续奇数的积,可表示为(2n﹣1),又如13×23×33×43×53×63×73×83×93×103可表示为n3,通过对以上材料的阅读,请解答下列问题:(1)2×4×6×8×10×…×100(即从2开始的100以内的连续偶数的积)用求积符号可表示为;(2)1×××…×用求积符号可表示为;(3)计算:(1﹣).24.(10分)(2015春•重庆校级期末)如图,△ABC中,∠ABC=90°,D为BC上一点,且BD=AB,连接AD,E是AC上一点,∠ABE=∠BDE且∠C+2∠EBC=90°.(1)求证:DE2+BE2=DB2;(2)已知DE=2,求BE的长.25.(12分)(2015春•重庆校级期末)2015年5月中旬,中国和俄罗斯海军在地中海海域举行了代号为“海上联合﹣2015(1)”的联合军事演习,这是中国第一次地中海举行军事演习,也是这个海军距本土最远的一次军演,某天,“临沂舰”、“潍坊舰”两舰同时从A、B两个港口出发,均沿直线匀速驶向演习目标地海岛C,两舰艇都到达C岛后演习第一阶段结束,已知B刚位于A港、C港之间,且A、B、C在一条直线上,如图所示,l临、l潍分别表示“临沂舰”、“潍坊舰”离B港的距离行驶时间x(h)变化的图象.(1)A港与C岛之间的距离为;(2)分别求出“临沂舰”、“潍坊舰”的航速即相遇时行驶的时间;(3)若“临沂舰”、“潍坊舰”之间的距离不超过2km时就属于最佳通讯距离,求出两舰艇在演习第一阶段处于最佳通讯距离时的x的取值范围.26.(12分)(2015春•重庆校级期末)已知在四边形ABCD中,∠ABC+∠ADC=180°,∠BAD+∠BCD=180°,AB=BC.(1)如图1,连接BD,若∠BAD=90°,AD=7,求DC的长度;(2)如图2,点P、Q分别在线段AD、DC上,满足PQ=AP+CQ,求证:∠PBQ=∠ABP+∠QBC;(3)若点Q在DC的延长线上,点P在DA的延长线上,如图3所示,仍然满足PQ=AP+CQ,请写出∠PBQ与∠ADC的数量关系,并给出证明过程.七年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共12小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在下列方框内.1.2﹣2的值是()A.﹣4 B.4 C.D.﹣考点:负整数指数幂.分析:根据有理数的负整数指数次幂等于正整数指数次幂的倒数计算.解答:解:2﹣2==.故选C.点评:本题主要考查了负整数指数幂的运算,是基础题,需要熟练掌握.2.下列图形是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:A、不是轴对称图形,故错误;B、是轴对称图形,故正确;C、不是轴对称图形,故错误;D、不是轴对称图形,故错误.故选B.点评:本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.下列各组数是勾股数的是()A.3,4,5 B.7,8,9 C.9,41,47 D.52,122,132考点:勾股数.分析:根据勾股定理的逆定理进行分析,从而得到答案.解答:解:A、是,因为32+42=52;B、不是,因为72+82≠92;C、不是,因为92+412≠472;D、不是,因为(52)2+(122)2≠(132)2.故选:A.点评:考查了勾股数,解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.4.计算(a3b)2的结果是()A.a6b B.a6b2 C.a5b2 D.a3b2考点:幂的乘方与积的乘方.分析:根据幂的乘方与积的乘方法则进行计算即可.解答:解:原式=a6b2.故选B.点评:本题考查的是幂的乘方与积的乘方法则,熟知幂的乘方法则是底数不变,指数相乘是解答此题的关键.5.下列事件为确定事件的是()A.明天要下雨B.水中捞月C.守株待兔D.任意掷一枚图钉,落地后针尖朝上考点:随机事件.分析:确定事件就是一定发生或一定不发生的事件,依据定义即可判断.解答:解:A、明天要下雨,是随机事件,选项错误;B、水中捞月是不可能事件,是确定事件,选项正确;C、守株待兔是随机事件,选项错误;D、任意掷一枚图钉,落地后针尖朝上是随机事件,选项错误.故选B.点评:本题考查了确定事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.如图,直线AB、CD相交于点E,DF∥AB.若∠D=70°,则∠CEB等于()A.70° B.80° C.90° D.110°考点:平行线的性质.专题:压轴题.分析:由DF∥AB,根据两直线平行,内错角相等,即可求得∠BED的度数,又由邻补角的定义,即可求得答案.解答:解:∵DF∥AB,∴∠BED=∠D=70°,∵∠BED+∠BEC=180°,∴∠CEB=180°﹣70°=110°.故选D.点评:此题考查了平行线的性质.注意两直线平行,内错角相等,注意数形结合思想的应用.7.如图所示,转盘被等分成4个扇形,并在上面一次写上数字1,2,3,5,若自1转动转盘当它停止转动时,指针指向奇数区的概率是()A.B.C.D.考点:几何概率.分析:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数;二者的比值就是其发生的概率的大小.解答:解:根据题意可得:转盘被等分成四个扇形,并在上面依次写上数字1、2、3、5,有3个扇形上是奇数,故自由转动转盘,当它停止转动时,指针指向奇数区的概率是.故选C.点评:本题主要考查了概率的求法,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.如图,在△ABC中,若AB=10,AC=16,AC边上的中线BD=6,则BC等于()A.8 B.10 C.11 D.12考点:勾股定理.分析:由AB=10,AD=8,BD=6,可知BD⊥AC,根据勾股定理可求出BC.解答:解:∵AB=10,AD=8,BD=6,∴AB2=AD2+BD2,∴BD⊥AC∴BC2=BD2+DC2=100,BC=10故选:B.点评:本题考查了勾股定理和逆定理,属于基础题,关键在于定理的掌握和运用.9.为了缓解交通压力,改变堵车现状,我市决定对机场路机械改造,施工队在工作了一段时间后,因暴雨被迫停了几天,不过施工队加快了进度,按时完成某路段的改造.下面能反映该工程尚未改造的道路里程y(公里)与时间x(天)的变化情况的大致图象是()A.B.C.D.考点:函数的图象.分析:根据y随x的增大而减小,即可判断选项A错误;根据施工队在工作了一段时间后,因暴雨被迫停工几天,即可判断选项B错误;根据施工队随后加快了施工进度得出y随x的增大减小得比开始的快,即可判断选项C、D的正误.解答:解:∵y随x的增大而减小,∴选项A错误;∵施工队在工作了一段时间后,因暴雨被迫停工几天,∴选项B错误;∵施工队随后加快了施工进度,∴y随x的增大减小得比开始的快,∴选项C错误;选项D正确;故选D点评:本题主要考查对函数图象的理解和掌握,能根据实际问题所反映的内容来观察与理解图象是解答此题的关键.10.如图,一只蚂蚁从长宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是()A.(3+8)cm B.10cm C.14cm D.无法确定考点:平面展开-最短路径问题.分析:根据”两点之间线段最短”,将点A和点B所在的两个面进行展开,展开为矩形,则AB为矩形的对角线,即蚂蚁所行的最短路线为AB.解答:解:将点A和点B所在的两个面展开,则矩形的长和宽分别为6和8,故矩形对角线长AB==10,即蚂蚁所行的最短路线长是10.故选B.点评:本题的关键是将点A和点B所在的面展开,运用勾股定理求出矩形的对角线.11.用同样大小的黑色五角星按如图所示的方式摆图案,按照这样的规律摆下去,第7个图案需要的黑色五角星的个数是()A.10 B.11 C.12 D.13考点:规律型:图形的变化类.分析:对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律,再把7代入即可求出答案.解答:解:当n为奇数时:通过观察发现每一个图形的每一行有,故共有3()个,当n为偶数时,中间一行有+1个,故共有+1个,则当n=13时,共有3×()=12;故选C.点评:此题考查了图形的变化类,通过分析、归纳、总结得出规律是本题的关键,培养了学生的观察能力和空间想象能力.12.关于多项式﹣2x2+8x+5的说法正确的是()A.有最大值13 B.有最小值﹣3 C.有最大值37 D.有最小值1考点:配方法的应用;非负数的性质:偶次方.分析:利用配方法将已知多项式转化为﹣2(x﹣2)2+13的形式,然后利用非负数的性质进行解答.解答:解:﹣2x2+8x+5=﹣2(x﹣2)2+13,∵(x﹣2)2≥0,∴﹣2(x﹣2)2+13≤13,即多项式﹣2x2+8x+5的最大值为13,没有最小值.故选:A.点评:本题考查了非负数的性质和配方法的应用.解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.二、填空题:(本大题共6小题,每小题4分,共24分)请将正确答案填在下列方框内. 13.台湾新北市八仙水上乐园6月27日晚间疑似粉尘爆炸,目前已造成逾200多人灼伤,据了解,此次引起粉尘爆炸的粉末爆炸的粉尘成分主要是玉米粉,玉米粉的爆炸下限为每立方米45000000微克,把数45000000用科学记数法表示为 4.5×107.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:45000000=4.5×107,故答案为:4.5×107.点评:本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.计算:(π﹣2015)0﹣|2|=﹣1.考点:实数的运算;零指数幂.分析:根据零指数幂,绝对值进行计算即可.解答:解:原式=1﹣2=﹣1,故答案为﹣1.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、绝对值等考点的运算.15.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)间有下面的关系:x 0 1 2 3 4 5y 10 10.5 11 11.5 12 12.5则y关于x的关系式为y=0.5x+10.考点:函数关系式.分析:根据题意可知,弹簧总长度y(cm)与所挂物体质量x(kg)之间符合一次函数关系,可设y=kx+10.代入求解.解答:解:设弹簧总长度y(cm)与所挂物体质量x(kg)之间符合一次函数关系为y=kx+10.由题意得10.5=k+10,解得k=0.5,∴该一次函数解析式为y=0.5x+10,故答案为y=0.5x+10点评:主要考查了用待定系数法求函数的解析式,关键是根据弹簧总长度y(cm)与所挂物体质量x(kg)之间符合一次函数关系.16.如图,在△ABC中,∠C=90°,AB的中垂线交AB于点D,交BC于点E,连接AE,若∠BED=70°,则∠CAE的度数为50°.考点:线段垂直平分线的性质.分析:根据直角三角形的性质求出∠B和∠BAC的度数,根据线段的垂直平分线的性质求出∠EAD的度数,计算得到答案.解答:解:在直角△BDE中,∠BED=70°,则∠B=20°,∴∠BAC=70°,∵ED是AB的中垂线,∴EA=EB,∴∠EAD=∠B=20°,∴∠CAE=∠BAC﹣∠EAD=50°,故答案为:50°.点评:本题主要考查线段的垂直平分线的性质等几何知识,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.已知m2﹣5m﹣1=0,则=28.考点:完全平方公式.分析:由已知条件可以得到m﹣=5,根据完全平方公式求出m2+的值是27,把所求多项式整理成m2﹣5m+m2+,然后代入数据计算即可.解答:解:∵m2﹣5m﹣1=0,两边同时除以m得,m﹣=5,两边平方,得:m2﹣2m•+=25,∴m2+=27,∵2m2﹣5m+=m2﹣5m+m2+,=1+27,=28.故答案为:28.点评:本题主要考查完全平方公式,巧妙运用乘积二倍项不含字母点的特点,把多项式整理成已知条件和完全平方式的平方项是解本题的关键,要求同学们在平时的学习中要多动脑,多观察,多总结.18.已知如图,在矩形ABCD中,点E是AD的中点,连结BE,将△ABE沿着BE翻折得到△FBE,EF交BC于点H,延长BF、DC相交于点G,若DG=16,BC=24,则FH=.考点:翻折变换(折叠问题).分析:连结GE,根据折叠的性质和矩形的性质可得△EFG与△EDG是直角三角形,DE=AE=FE,再根据HL即可证明△EFG≌△EDG.根据全等三角形的性质可得DG=FG=16,可设AB=BF=DC=x,在Rt△BCG中,根据勾股定理可求BF的长,再在Rt△BFH中,根据勾股定理可求FH=BH的长.解答:解:连结GE.∵E是边AD的中点,∴DE=AE=FE,又∵四边形ABCD是矩形,∴∠D=∠A=∠BFE=90°,∴∠D=∠EFG=90°.在Rt△EFG与Rt△EDG中,,∴Rt△EFG≌Rt△EDG(HL);∴DG=FG=16,设DG=x,则CG=16﹣x,BG=x+16在Rt△BCG中,BG2=BC2+CG2,即(x+16)2=(16﹣x)2+242,解得x=9,∵AD∥BC,∴∠AEB=∠CBE,∵∠AEB=∠FEB,∴∠CBE=∠FEB,∴BH=EH,设BH=EH=y,则FH=12﹣y,在Rt△BFH中,BH2=BF2+FH2,即y2=92+(12﹣y)2,解得y=,∴12﹣y=12﹣=.故答案为:.点评:考查了翻折变换(折叠问题),涉及的知识点有:折叠的性质,矩形的性质,全等三角形的判定和性质以及勾股定理,综合性较强,有一定的难度,关键是作出辅助线构造全等三角形.三、解答题:(本题共8个小题,共78分)解答时每小题必须给出必要的演算过程或推理步骤.19.作图题:(要求:在下列空白处尺规作图,保留作图痕迹,不写作法,要作答.)已知:∠α,线段c,求作:△ABC,时∠A=∠α,AB=2c,BC=3c.考点:作图—复杂作图.分析:首先根据作一个角等于已知角的方法作∠A=∠α,∠A的两边上截取AB=2c,AC=3c,然后连接BC即可.解答:解:如图所示:.点评:此题主要考查了复杂作图,关键是掌握作一个角等于已知角的方法.20.(10分)(2015春•重庆校级期末)计算:(1)(a﹣b)2+b(2a+b);(2)[(2x﹣y)(y﹣4x)+(3x+y)2]+x.考点:整式的混合运算.分析:(1)根据整式的混合运算顺序,首先计算乘方和乘法,然后计算加法,求出算式的值是多少即可.(2)根据整式的混合运算顺序,首先计算中括号里面的乘方和乘法,再计算加法,求出中括号里面的算式的值是多少;然后用所得的结果加上x,求出算式[(2x﹣y)(y﹣4x)+(3x+y)2]+x的值是多少即可.解答:解:(1)(a﹣b)2+b(2a+b)=a2+b2﹣2ab+2ab+b2=a2+2b2(2)[(2x﹣y)(y﹣4x)+(3x+y)2]+x=[2xy﹣y2﹣8x2+4xy+9x2+6xy+y2]+x=[x2+12xy]+x=x2+12xy+x点评:此题主要考查了整式的混合运算,要熟练掌握,解答此题的关键是要明确:有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.21.如图,∠A=90°,∠D=90°,AC与BD相交于点E,BE=EC.求证:△ABC≌△DCB.考点:全等三角形的判定.专题:证明题.分析:先由等腰三角形的性质得出∠ACB=∠DBC,再由AAS证明△ABC≌△DCB即可.解答:证明:∵BE=EC,∴∠ACB=∠DBC,在△ABC和△DCB中,,∴△ABC≌△DCB(AAS).点评:本题考查了等腰三角形的性质、全等三角形的判定与性质,熟练掌握等腰三角形的性质和三角形全等的判定方法是解决问题的关键.22.(10分)(2015春•重庆校级期末)为规范学生的在校表现,我校某班实行了操行评分制,根据学生的操行分高低分为A、B、C、D四个等级,现对该班本学期的操行等级进行了统计,并绘制了不完整的两种统计图,请根据图象回答问题:(1)该班的总人数为60人,得到等级A的学生人数占总人数的百分比为36°;(2)补全条形统计图;(3)据统计获得等级A的学生中有2名男生,其余全为女生,现班主任打算从操行等级为A的学生中任意抽取一名为代表,参加下学期开学的“国旗下的讲话”演讲活动,请求出抽到女生的概率.考点:条形统计图;扇形统计图;概率公式.分析:(1)该班的总人数=D级人数÷对应的百分比,得到等级A的学生人数在扇形统计图中的圆心角度数=×360°,(2)利用A,C能的人数补全条形统计图;(3)一共有6种情况,抽到的代表中是女生的有4种情况,即可得出P.解答:解:(1)该班的总人数为8÷=60(人),得到等级A的学生人数为60﹣28﹣8﹣60×30%=6(人)得到等级A的学生人数在扇形统计图中的圆心角度数是×360°=36°,故答案为:60,36°.(2)如图,(3)得A的总人数为6人,其中2男4女,任意抽取一名为代表,抽到女生的概率为=,点评:本题主要考查了条形统计图,圆形统计图,解题的关键是读懂条形统计图,从统计图中获得准确的信息.23.(10分)(2015春•重庆校级期末)读一读:式子“1×2×3×4×5×^×100”表示从1开始的100个连续自然数的积,由于上述式子比较长,书写也不方便,物理简便起见,我们可以将“1×2×3×4×5×^×100”表示为n,这里“π”是求积符号.例如:1×35×7×9×^×99,即从1开始的100以内的连续奇数的积,可表示为(2n﹣1),又如13×23×33×43×53×63×73×83×93×103可表示为n3,通过对以上材料的阅读,请解答下列问题:(1)2×4×6×8×10×…×100(即从2开始的100以内的连续偶数的积)用求积符号可表示为;(2)1×××…×用求积符号可表示为;(3)计算:(1﹣).考点:有理数的乘法.专题:阅读型;新定义.分析:(1)2×4×6×8×10×…×100(即从2开始的100以内的连续偶数的积),由新定义可得公式;(2)由新定义可得结果;(3)由新定义可知:(1﹣)表示××××…×的乘积.解答:解:(1)2×4×6×8×10×…×100(即从2开始的100以内的连续偶数的积)用求积符号可表示为,故答案为:;(2)1×××…×用求积符号可表示为,故答案为:;(3)(1﹣)=××××…×=.点评:此题主要考查了有理数的乘法,理解新定义是解答此题的关键.24.(10分)(2015春•重庆校级期末)如图,△ABC中,∠ABC=90°,D为BC上一点,且BD=AB,连接AD,E是AC上一点,∠ABE=∠BDE且∠C+2∠EBC=90°.(1)求证:DE2+BE2=DB2;(2)已知DE=2,求BE的长.考点:全等三角形的判定与性质;等腰三角形的判定与性质;勾股定理;等腰直角三角形.分析:(1)利用等量代换得出∠BDE=90°,利用勾股定理得出结论;(2)作∠BAC的平分线交BE于点H,证得BH=EH=BE,RT△ABE≌RT△BDE,进一步得出结论即可.解答:(1)证明:∵∠ABC=90°,∴∠ABE+∠EBC=90°,∵∠ABE=∠BDE,∴∠BDE+∠EBC=90°,∴∠BDE=90°,∴DE2+BE2=DB2.(2)解:如图,作∠BAC的平分线交BE于点H,则∠BAC=2∠BAH,∵∠ABC=90°,∴∠BAC+∠C=90°,∵∠C+2∠EBC=90°,∴∠EBC=∠BAH,∵∠EBC+∠ABE=∠ABC=90°,∴∠BAH+∠ABE=90°,∴∠AHB=90°=∠BED,BH=EH=BE,在RT△ABH与RT△BDE中,,∴RT△ABE≌RT△BDE,∴BH=DE=2,∴BE=2BH=4.点评:此题考查全等三角形的判定与性质,勾股定理,搞清角与边之间的数量关系解决问题.25.(12分)(2015春•重庆校级期末)2015年5月中旬,中国和俄罗斯海军在地中海海域举行了代号为“海上联合﹣2015(1)”的联合军事演习,这是中国第一次地中海举行军事演习,也是这个海军距本土最远的一次军演,某天,“临沂舰”、“潍坊舰”两舰同时从A、B两个港口出发,均沿直线匀速驶向演习目标地海岛C,两舰艇都到达C岛后演习第一阶段结束,已知B刚位于A港、C港之间,且A、B、C在一条直线上,如图所示,l临、l潍分别表示“临沂舰”、“潍坊舰”离B港的距离行驶时间x(h)变化的图象.(1)A港与C岛之间的距离为200km;(2)分别求出“临沂舰”、“潍坊舰”的航速即相遇时行驶的时间;(3)若“临沂舰”、“潍坊舰”之间的距离不超过2km时就属于最佳通讯距离,求出两舰艇在演习第一阶段处于最佳通讯距离时的x的取值范围.考点:一次函数的应用.分析:(1)从图象可以看出A港与C岛之间的距离为A、B间的距离+B、C间的距离就可以求出结论;(2)根据A、B之间的距离和行驶时间可以求出其速度,就可以求出从B到C的时间,从而求出a,根据图象求出l临、l潍的解析式,然后由其解析式构成方程组求出其解就可以得出“临沂舰”、“潍坊舰”的航速即相遇时行驶的时间;(2)分两种情况列出方程求出其解就可以得出答案.解答:解:(1)由图象,得A港与C岛之间的距离为:200km;故答案为:200km;(2)“临沂舰”的航速:40÷0.5=80(km/h),“潍坊舰”的航速:160÷2=60(km/h),a=0.5+160÷80=2.5,设l潍的解析式为y2=k2x,l临的解析式为y1=k1x+b1,由图象得,160=3k2,,解得:k2=60,,∴y2=60x,y1=80x﹣40,当y1=y2时,60x=80x﹣40,x=2,∴相遇时行驶的时间为2h;(3)当y2﹣y1=2时,则60x﹣(80x﹣40)=2,解得x=,当y1﹣y2=2时,则(80x﹣40)﹣60x=2,解得x=∴处于最佳通讯距离时的x的取值范围为≤x≤.点评:本题考查了一次函数的应用,待定系数法求函数的解析式以及函数的解析式与一元一次方程的运用,在解答时求出函数的解析式是关键.26.(12分)(2015春•重庆校级期末)已知在四边形ABCD中,∠ABC+∠ADC=180°,∠BAD+∠BCD=180°,AB=BC.(1)如图1,连接BD,若∠BAD=90°,AD=7,求DC的长度;(2)如图2,点P、Q分别在线段AD、DC上,满足PQ=AP+CQ,求证:∠PBQ=∠ABP+∠QBC;(3)若点Q在DC的延长线上,点P在DA的延长线上,如图3所示,仍然满足PQ=AP+CQ,请写出∠PBQ与∠ADC的数量关系,并给出证明过程.考点:全等三角形的判定与性质.分析:(1)如图1,利用HL证得两个直角三角形全等:Rt△BAD≌Rt△BCD,则其对应边相等:AD=DC=2;(2)如图2,延长DC,在上面找一点K,使得CK=AP,连接BK,通过证△BPA≌△BCK (SAS)得到:∠1=∠2,BP=BK.然后由全等三角形△PBQ≌△BKQ求得∠PBQ=∠ABC,结合已知条件“∠ABC+∠ADC=180°”即可得到结论;(3)如图3,在CD延长线上找一点K,使得KC=AP,连接BK,构建全等三角形:△BPA≌△BCK(SAS),由该全等三角形的性质和全等三角形的判定定理SSS证得:△PBQ≌△BKQ,则其对应角相等:∠PBQ=∠KBQ,结合四边形的内角和是360度可以推得:∠PBQ=90°+∠ADC.解答:(1)解:如图1,∵∠ABC+∠ADC=180°,∠BAD=90°,∴∠BCD=90°,在Rt△BAD和Rt△BCD中,,∴Rt△BAD≌Rt△BCD(HL),∴AD=DC=7,∴DC=7;(2)如图2,延长DC,在上面找一点K,使得CK=AP,连接BK,∠PBQ=∠ABP+∠QBC;∵∠ABC+∠ADC=180°,∴∠BAD+∠BCD=180°.∵∠BCD+∠BCK=180°,∴∠BAD=∠BCK,在△BPA和△BCK中,,∴△BPA≌△BCK(SAS),∴∠1=∠2,BP=BK.∵PQ=AP+CQ,∴PQ=QK,∵在△PBQ和△BKQ中,,∴△PBQ≌△BKQ(SSS),∴∠PBQ=∠KBQ,∴∠PBQ=∠2+∠CBQ=∠1+∠CBQ,∴∠PBQ=∠ABP+∠QBC;(3)∠PBQ=90°+∠ADC.如图3,在CD延长线上找一点K,使得KC=AP,连接BK,∵∠ABC+∠ADC=180°,∴∠BAD+∠BCD=180°.∵∠BAD+∠PAB=180°,∴∠PAB=∠BCK.在△BPA和△BCK中,,∴△BPA≌△BCK(SAS),∴∠ABP=∠CBK,BP=BK,∴∠PBK=∠ABC.∵PQ=AP+CQ,∴PQ=QK,在△PBQ和△BKQ中,,∴△PBQ≌△BKQ(SSS),∴∠PBQ=∠KBQ,∴2∠PBQ+∠PBK=2∠PBQ+∠ABC=360°,∴2∠PBQ+(180°﹣∠ADC)=360°,∴∠PBQ=90°+∠ADC.点评:本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.。
2019年重庆市七年级数学下期末试卷含答案

2019年重庆市七年级数学下期末试卷含答案一、选择题1.下列各式中计算正确的是( ) A .93=±B .2(3)3-=-C .33(3)3-=±D .3273=2.将一块直角三角板ABC 按如图方式放置,其中∠ABC =30°,A 、B 两点分别落在直线m 、n 上,∠1=20°,添加下列哪一个条件可使直线m ∥n( )A .∠2=20°B .∠2=30°C .∠2=45°D .∠2=50°3.下面不等式一定成立的是( ) A .2a a < B .a a -<C .若a b >,c d =,则ac bd >D .若1a b >>,则22a b >4.已知方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,则k 的值是( )A .k=-5B .k=5C .k=-10D .k=105.《九章算术》中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x 人,买鸡的钱数为y ,依题意可列方程组为( )A .8374x y x y +=⎧⎨+=⎩B .8374x yx y -=⎧⎨-=⎩C .8374x y x y +=⎧⎨-=⎩D .8374x y x y -=⎧⎨+=⎩6.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( ) A .﹣3 B .﹣5 C .1或﹣3 D .1或﹣5 7.已知关于x 的方程2x+a-9=0的解是x=2,则a 的值为 A .2B .3C .4D .58.若|321|20x y x y --++-=,则x ,y 的值为( )A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩9.在实数0,-π34中,最小的数是( )A .0B .-πC 3D .-410.下列命题中,是真命题的是()A.在同一平面内,垂直于同一直线的两条直线平行B.相等的角是对顶角C.两条直线被第三条直线所截,同旁内角互补D.过一点有且只有一条直线与已知直线平行11.关于x,y的方程组2,226x y ax y a+=⎧⎨+=-⎩的解满足0x y+=,则a的值为()A.8B.6C.4D.212.某中学计划租用若干辆汽车运送七年级学生外出进行社会实践活动,如果一辆车乘坐45人,那么有35名学生没有车坐;如果一辆车乘坐60人,那么有一辆车只坐了35人,并且还空出一辆车.设计划租用x辆车,共有y名学生.则根据题意列方程组为()A.453560(2)35x yx y-=⎧⎨-=-⎩B.453560(2)35x yx y=-⎧⎨-+=⎩C.453560(1)35x yx y+=⎧⎨-+=⎩D.453560(2)35x yy x=+⎧⎨--=⎩二、填空题13.如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE <15°,∠C的度数为整数,则∠C的度数为_____.14.如图,已知AB,CD,EF互相平行,且∠ABE=70°,∠ECD=150°,则∠BEC=________°.15.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问安排______名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.16.对一个实数x技如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到判断结果是否大于190?“为一次操作,如果操作恰好进行三次才停止,那么x的取值范围是__________.17.关于x的不等式组352223x xx a-≤-⎧⎨+>⎩有且仅有4个整数解,则a的整数值是______________.18.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.如表记录了4个参赛者的得分情况.在此次竞赛中,有一位参赛者答对13道题,答错7道题,则他的得分是_____.参赛者答对题数答错题数得分A191112B182104C17396D10104019.若关于x的不等式组532x mx+<⎧⎨-⎩无解,则m的取值范围是_____.20.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是________________________三、解答题21.(1)同题情境:如图1,AB∥CD,∠P AB=130°,∠PCD=120°.求∠APC的度数.小明想到一种方法,但是没有解答完:如图2,过P作PE∥AB,∴∠APE+∠P AB=180°.∴∠APE=180°-∠P AB=180°-130°=50°.∵AB∥C D.∴PE∥C D.…………请你帮助小明完成剩余的解答.(2)问题迁移:请你依据小明的思路,解答下面的问题:如图3,AD∥BC,点P在射线OM上运动,∠ADP=∠α,∠BCP=∠β.①当点P在A、B两点之间时,∠CPD,∠α,∠β之间有何数量关系?请说明理由.②当点P在A、B两点外侧时(点P与点O不重合),请直接写出∠CPD,∠α,∠β之间的数量关系.22.已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c 是13的整数部分. (1)求a ,b ,c 的值;(2)求3a b c -+的平方根. 23.已知:如图,∠1=∠2,∠3=∠E .求证:AD ∥BE .24.如图,已知在ABC ∆中,FG EB ,23∠∠=,说明180EDB DBC ∠+∠=︒的理由.解:∵FG EB (已知),∴_________=_____________(____________________). ∵23∠∠=(已知),∴_________=_____________(____________________). ∴DE BC ∥(___________________).∴180EDB DBC ∠+∠=︒(_________________________).25.已知:方程组713x y ax y a +=--⎧⎨-=+⎩的解x 为非正数,y 为负数.(1)求a 的取值范围; (2)化简|a -3|+|a +2|;(3)在a 的取值范围中,当a 为何整数时,不等式2ax +x >2a +1的解为x <1.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】直接利用算术平方根、平方根以及立方根的定义分别化简求出答案. 【详解】A 3=,此选项错误错误,不符合题意;B 3=,此选项错误错误,不符合题意;C 3=-,此选项错误错误,不符合题意;D 3=,此选项正确,符合题意; 故选:D . 【点睛】本题主要考查了算术平方根、平方根、立方根的概念,正确理解和灵活运用相关知识是解题关键.2.D解析:D 【解析】 【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论. 【详解】 ∵直线EF ∥GH ,∴∠2=∠ABC+∠1=30°+20°=50°, 故选D . 【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.3.D解析:D 【解析】 【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案. 【详解】A. 当0a ≤时,2aa ≥,故A 不一定成立,故本选项错误; B. 当0a ≤时,a a -≥,故B 不一定成立,故本选项错误;C. 若a b >,当0c d =≤时,则ac bd ≤,故C 不一定成立,故本选项错误;D. 若1a b >>,则必有22a b >,正确; 故选D . 【点睛】主要考查了不等式的基本性质.“0”是很特殊的数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.4.A解析:A【解析】【分析】根据方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,可得方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值,再代入4x-3y+k=0即可求得k的值.【详解】∵方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,∴5320x yx y-=⎧⎨-=⎩,解得,1015xy=-⎧⎨=-⎩;把1015xy=-⎧⎨=-⎩代入4x-3y+k=0得,-40+45+k=0,∴k=-5.故选A.【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值是解决问题的关键.5.D解析:D【解析】【分析】一方面买鸡的钱数=8人出的总钱数-3钱,另一方面买鸡的钱数=7人出的总钱数+4钱,据此即可列出方程组.【详解】解:设有x人,买鸡的钱数为y,根据题意,得:8374x y x y-=⎧⎨+=⎩.【点睛】本题考查的是二元一次方程组的应用,正确理解题意、根据买鸡的总钱数不变列出方程组是解题关键.6.A【解析】分析:根据点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,得到4=|2a +2|,即可解答.详解:∵点A (a +2,4)和B (3,2a +2)到x 轴的距离相等, ∴4=|2a +2|,a +2≠3, 解得:a =−3, 故选A .点睛:考查点的坐标的相关知识;用到的知识点为:到x 轴和y 轴的距离相等的点的横纵坐标相等或互为相反数.7.D解析:D 【解析】∵方程2x +a ﹣9=0的解是x =2,∴2×2+a ﹣9=0, 解得a =5.故选D .8.D解析:D 【解析】分析:先根据非负数的性质列出关于x 、y 的二元一次方程组,再利用加减消元法求出x 的值,利用代入消元法求出y 的值即可.详解:∵3210x y --=, ∴321020x y x y --⎧⎨+-⎩==将方程组变形为32=1=2x y x y -⎧⎨+⎩①②,①+②×2得,5x=5,解得x=1, 把x=1代入①得,3-2y=1,解得y=1,∴方程组的解为11x y =⎧⎨=⎩.故选:D .点睛:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.9.D解析:D 【解析】 【分析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.∵正数大于0和一切负数, ∴只需比较-π和-4的大小, ∵|-π|<|-4|, ∴最小的数是-4. 故选D . 【点睛】此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.10.A解析:A【解析】分析:根据平行线的判定与性质,对顶角的性质,平行线的作图,逐一判断即可. 详解:根据平行公理的推论,可知:在同一平面内,垂直于同一直线的两条直线平行,故正确;根据对顶角的定义,可知相等的角不一定是对顶角,故不正确; 根据两条平行的直线被第三条直线所截,同旁内角互补,故不正确;根据平行公理,可知过直线外一点有且只有一条直线与已知直线平行,故不正确. 故选:A.点睛:此题主要考查了平行线的判定与性质,关键是熟记公理的内容和特点,找到反例说明即可.11.D解析:D 【解析】 【分析】两式相加得,即可利用a 表示出x y +的值,从而得到一个关于a 的方程,解方程从而求得a 的值. 【详解】两式相加得:3336x y a +=-; 即3()36,x y a +=-得2x y a +=- 即20,2a a -== 故选:D. 【点睛】此题考查二元一次方程组的解,解题关键在于掌握二元一次方程的解析.12.B解析:B 【解析】 根据题意,易得B.二、填空题13.36°或37°【解析】分析:先过E作EG∥AB根据平行线的性质可得∠AEF=∠BA E+∠DFE再设∠CEF=x则∠AEC=2x根据6°<∠BAE<15°即可得到6°<3x-60°<15°解得22°<解析:36°或37°.【解析】分析:先过E作EG∥AB,根据平行线的性质可得∠AEF=∠BAE+∠DFE,再设∠CEF=x,则∠AEC=2x,根据6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x <25°,进而得到∠C的度数.详解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度数为整数,∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案为:36°或37°.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.14.40【解析】根据平行线的性质先求出∠BEF和∠CEF的度数再求出它们的差就可以了解:∵AB∥EF∴∠BEF=∠ABE=70°;又∵EF∥CD∴∠CEF=180°-∠ECD=180°-150°=30°解析:40【解析】根据平行线的性质,先求出∠BEF和∠CEF的度数,再求出它们的差就可以了.解:∵AB∥EF,∴∠BEF=∠ABE=70°;又∵EF∥CD,∴∠CEF=180°-∠ECD=180°-150°=30°, ∴∠BEC=∠BEF -∠CEF=40°; 故应填40.“点睛”本题主要利用两直线平行,同旁内角互补以及两直线平行,内错角相等进行解题.15.25【解析】【分析】【详解】设需安排x 名工人加工大齿轮安排y 名工人加工小齿轮由题意得:解得:即安排25名工人加工大齿轮才能使每天加工的大小齿轮刚好配套故答案为25【点睛】本题考查理解题意能力关键是能解析:25 【解析】 【分析】 【详解】设需安排x 名工人加工大齿轮,安排y 名工人加工小齿轮,由题意得:85316210x y x y +=⎧⎨⨯=⨯⎩,解得:2560x y =⎧⎨=⎩. 即安排25名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套. 故答案为25. 【点睛】本题考查理解题意能力,关键是能准确得知2个大齿轮和3个小齿轮配成一套,根据此正确列出方程.16.【解析】【分析】表示出第一次第二次第三次的输出结果再由第三次输出结果可得出不等式解出即可【详解】解:第一次的结果为:3x-2没有输出则3x-2≤190解得:x≤64;第二次的结果为:3(3x-2)- 解析:822x <≤【解析】 【分析】表示出第一次、第二次、第三次的输出结果,再由第三次输出结果可得出不等式,解出即可. 【详解】解:第一次的结果为:3x-2,没有输出,则3x-2≤190, 解得:x≤64;第二次的结果为:3(3x-2)-2=9x-8,没有输出,则9x-8≤190, 解得:x≤22;第三次的结果为:3(9x-8)-2=27x-26,输出,则27x-26>190, 解得:x >8; 综上可得:8<x≤22. 故答案为:8<x≤22. 【点睛】本题考查了一元一次方程组的应用,解答本题的关键是读懂题意,根据结果是否可以输出,得出不等式.17.12【解析】【分析】求出每个不等式的解集根据已知得出不等式组的解集根据不等式组的整数解即可得出关于a 的不等式组求出即可【详解】解不等式3x-5≤2x -2得:x≤3解不能等式2x+3>a 得:x >∵不等解析:1,2【解析】【分析】求出每个不等式的解集,根据已知得出不等式组的解集,根据不等式组的整数解即可得出关于a 的不等式组,求出即可.【详解】解不等式3x-5≤2x -2,得:x≤3,解不能等式2x+3>a ,得:x >32a -, ∵不等式组有且仅有4个整数解,∴-1≤32a -<0, 解得:1≤a <3,∴整数a 的值为1和2,故答案为:1,2.【点睛】本题考查了一元一次不等式组的整数解,解答本题的关键应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.18.【解析】【分析】设答对1道题得x 分答错1道题得y 分根据图表列出关于x 和y 的二元一次方程组解之即可【详解】解:设答对1道题得x 分答错1道题得y 分根据题意得:解得:答对13道题打错7道题得分为:13×6 解析:【解析】【分析】设答对1道题得x 分,答错1道题得y 分,根据图表,列出关于x 和y 的二元一次方程组,解之即可.【详解】解:设答对1道题得x 分,答错1道题得y 分,根据题意得:19112182104x y x y +=⎧⎨+=⎩, 解得:62x y =⎧⎨=-⎩, 答对13道题,打错7道题,得分为:13×6+(﹣2)×7=78﹣14=64(分),故答案为:64.【点睛】本题考查了二元一次方程组的应用,正确找出等量关系,列出二元一次方程组是解题的关键.19.m≥﹣1【解析】【分析】分别表示出不等式组中两不等式的解集根据不等式组无解即可确定出m的范围【详解】解不等式x+m<0得:x<﹣m解不等式5﹣3x≤2得:x≥1∵不等式组无解∴﹣m≤1则m≥﹣1故答解析:m≥﹣1【解析】【分析】分别表示出不等式组中两不等式的解集,根据不等式组无解,即可确定出m的范围.【详解】解不等式x+m<0,得:x<﹣m,解不等式5﹣3x≤2,得:x≥1,∵不等式组无解,∴﹣m≤1,则m≥﹣1,故答案为:m≥﹣1.【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.20.【解析】【分析】设绳索长为x尺竿子长为y尺根据索比竿子长一托折回索子却量竿却比竿子短一托即可得出关于xy的二元一次方程组【详解】解:根据题意得:故答案为:【点睛】本题考查了二元一次方程组的应用找准等解析:5 15 2x yx y+⎧⎪⎨-⎪⎩==【解析】【分析】设绳索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】解:根据题意得:515 2x yx y+⎧⎪⎨-⎪⎩==.故答案为:515 2x yx y+⎧⎪⎨-⎪⎩==.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.三、解答题21.(1)110°;(2) 详见解析 【解析】分析:(1)根据平行线的判定与性质补充即可;(2)①过P 作PE ∥AD 交CD 于E ,推出AD ∥PE ∥BC ,根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出答案;②画出图形(分两种情况(i )点P 在BA 的延长线上,(ii )点P 在AB 的延长线上),根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出答案.详解:(1)剩余过程:∴∠CPE +∠PCD =1800,∴∠CPE =1800—1200=600,∴∠APC =500+600=1100.(2)①∠CPD =∠α+∠β.理由如下:过P 作PQ ∥AD .∵AD ∥BC ,∴PQ ∥BC ,∴1α∠=∠,同理,2β∠=∠,∴12CPD αβ∠=∠+∠=∠+∠;②(i )当P 在BA 延长线时,如图4,过P 作PE ∥AD 交CD 于E ,同①可知:∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠β﹣∠α;(ii )当P 在AB 延长线时,如图5, 同①可知:∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠α﹣∠β.点睛:本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,难度适中.22.(1)a =5,b =2,c =3 ;(2)±4.【解析】【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a 、b 、c 的值.(2)将a 、b 、c 的值代数式求出值后,进一步求得平方根即可.【详解】(1)∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2,∵c∴c=3,(2)∵a=5,b=2,c=3,∴3a-b+c=16,3a-b+c 的平方根是±4.【点睛】考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.23.证明见解析.【解析】【分析】由∠1=∠2,得BD∥CE,所以∠4=∠E,又∠3=∠E,所以∠3=∠4,可得AD∥BE.【详解】证明:∵∠1=∠2,又∵∠3=∠E,∴BD∥CE,∴∠3=∠4,∴∠4=∠E,∴AD∥BE.【点睛】本题考核知识点:平行线的判定.解题关键点:理解平行线的判定.24.1∠;2∠;两直线平行,同位角相等;1∠;3∠;等量代换;内错角相等,两直线平行;两直线平行,同旁内角互补【解析】【分析】先根据FG ∥EB 得出12∠=∠,进而推导出13∠=∠,证明DE ∥BC ,从而得出同旁内角互补.【详解】解:∵FG ∥EB (已知),∴12∠=∠(两直线平行,同位角相等).∵23∠∠=(已知),∴13∠=∠(等量代换).∴DE ∥BC (内错角相等,两直线平行).∴180EDB DBC ∠+∠=︒(两直线平行,同旁内角互补).【点睛】本题考查平行线的性质和证明,需要注意仅当两直线平行时才有:同位角相等、内错角相等、同旁内角互补.25.(1)-2<a≤3.(2)5;(3)a =-1.【解析】【分析】(1)求出不等式组的解集即可得出关于a的不等式组,求出不等式组的解集即可;(2)根据a的范围去掉绝对值符号,即可得出答案;(3)求出a<-12,根据a的范围即可得出答案.【详解】解:(1)713x y ax y a+=-⎧⎨-=+⎩①②∵①+②得:2x=-6+2a,x=-3+a,①-②得:2y=-8-4a,y=-4-2a,∵方程组713x y ax y a+=-⎧⎨-=+⎩的解x为非正数,y为负数,∴-3+a≤0且-4-2a<0,解得:-2<a≤3;(2)∵-2<a≤3,∴|a-3|+|a+2|=3-a+a+2=5;(3)2ax+x>2a+1,(2a+1)x>2a+1,∵不等式的解为x<1∴2a+1<0,∴a<-12,∵-2<a≤3,∴a的值是-1,∴当a为-1时,不等式2ax+x>2a+1的解为x<1.【点睛】本题考查了解方程组和解不等式组的应用,主要考查学生的理解能力和计算能力,题目比较好.。
重庆市2019版七年级下学期期末数学试题A卷

重庆市2019版七年级下学期期末数学试题A卷姓名:________ 班级:________ 成绩:________一、单选题1 . 如图是由圆和正方形组成的轴对称图形,对称轴的条数有()A.2条B.3条C.4条D.6条2 . 如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140°D.150°3 . 下列各组数中,是方程的解的是()A.B.C.D.4 . 如图,下列各组角中,是对顶角的一组是()A.∠1和∠2B.∠1和∠5C.∠3和∠4D.∠3和∠55 . 若a m=4,a n=3,则a m+n的值为()A.212B.7C.1D.126 . 已知,则代数式的值为()A.B.C.D.7 . 下列计算中,正确的是()A.B.C.D.8 . 小明记录了一星期天的最高气温如下表,则这个星期每天的最高气温的中位数是()星期一二三四五六日最高气温(℃)22242325242221A.22℃B.23℃C.24℃D.25℃9 . 因式分解的结果是()A.B.C.D.10 . 在“幻方拓展课程”探索中,小明在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各列及对角线上的三个数之和都相等,则=()A.2B.4C.6D.8二、填空题11 . 已知,则代数式的值是__________12 . 如图,等边△AOB中,点B在x轴正半轴上,点A坐标为(1,),将△AOB绕点O顺时针旋转15°,此时点A对应点A′的坐标是_____.13 . 已知ax=2,bx=3,则(ab)2x的值为__________.14 . 如果有理数a,b满足|3a+1|+(b-2)2=0,则ab等于___.15 . 若是一个完全平方式,则______.16 . 如图,点A、B、C在⊙O上,AB∥CO,∠B=22°,则∠A=_____度.17 . 方程︱a︱+︱b︱=2的自然数解是__________.18 . 计算:1232-124×122=______ .三、解答题19 . 规定一种新的运算:A★B=A×B−A−B+1,如3★4 =" 3×4−3−4+1" = 6.请比较(−3)★4与2★(−5)的大小.20 . 已知A=(3x-1)(2x+1)-x+1-6y2.(1)化简A;(2)当x、y满足方程组时,求A的值.21 . 先化简,再求值:(m-n)2-(m+n)(m-n),其中m=+1,n=.22 . 如图,∠ADE+∠BCF=180°,BE平分∠ABC,∠ABC=2∠A.(1)AD与BC平行吗?请说明理由;(2)AB与EF的位置关系如何?为什么?(3)若AF平分∠BAD,试说明:∠E+∠F=90°23 . 如图,点分别在直线和上,且,且.(1)请你判断与的位置关系,并说明理由;(2)若平分,,垂足为,,求度数.24 . 某校为表彰在美术展览活动中获奖的同学,老师决定购买一些水笔和颜料盒作为奖品,请你根据图中所给的信息,解答下列问题;(1)求出每个颜料盒,每支水笔各多少元?(2)若学校计划购买颜料盒和水笔的总数目为20,所用费用不超过340元,则颜料盒至多购买多少个?25 . 自1939年创办以来,重庆育才中学一直坚守文化底线,不断挑战自我极限,在沧桑文化中愈加根深叶茂.在今年,即将推出的本部改造计划不仅是文化审美层面的颠覆尝试,也是学校发展的巨大工程,其中三种style的民国大门各具特色,A磅礴大气,B清爽简约,C典雅古朴款,为调查民意学校让教职工进行投票呈现了四种结果,喜欢A款、喜欢B款、喜欢C款、都可以,现调查结果如下:(1)如图,喜欢C款的占20%,喜欢B款的占15%,则调查总人数为,扇形统计图中认为“都可以”的所占圆心角为度;根据题中信息补全条形统计图.(2)我们学校共有600名教职工,请根据上图估算喜欢A款的有多少人?26 . 分解因式:4x2-9y2.。
重庆市2019版七年级下学期期末数学试题(II)卷

重庆市2019版七年级下学期期末数学试题(II)卷姓名:________ 班级:________ 成绩:________一、单选题1 . 点P的横坐标是-3,且到x轴的距离为5,则P点的坐标是()A.(5,-3)或(-5,-3)B.(-3,5)或(-3,-5)C.(-3,5)D.(-3,-5)2 . 不等式3x≥﹣6的解集在数轴上表示为()A.B.C.D.3 . 如果,那么m的取值范围是()A.B.C.D.4 . 若,则的值为()A.-4B.4C.-2D.5 . 已知a,b,c均为实数,若a>b,c≠0.下列结论不一定正确的是()D.c﹣a<c﹣b A.a+c>b+c B.a2>abC.6 . 下列说法正确的是()A.有理数包括正有理数和负有理数B.﹣a2一定是负数C.34.37°=34°22′12″D.两个有理数的和一定大于每一个加数7 . 在下列调查中,适宜采用全面调查的是()A.了解我省中学生视力情况B.了解九(1)班学生校服的尺码情况C.检测一批电灯泡的使用寿命D.调查台州《600全民新闻》栏目的收视率8 . 七年级学生计划乘客车去春游,如果减少一辆客车,每辆车正好坐60人.如果增加一辆客车,每辆正好坐45人,则七年级共有学生()A.240人B.300人C.360人D.420人9 . 在平面直角坐标系中,把点A(3,5)向下平移3个单位长度,再向左平移2个单位长度后,得对应点A1的坐标是()A.(1,2)B.(2,1)C.(﹣1,2)D.(﹣1,﹣2)10 . 如图,AB∥CD,BC平分∠ABD,∠1=50°,则∠2的度数是()A.B.C.D.二、填空题11 . 如图,木工师傅在工件上作平行线时,只要用角尺画出工件(长方形ABCD)边缘的两条垂线即可,则a∥b,理由是_____________________.12 . 如图,AB∥CD,EP平分∠BEF,FP平分∠DFE,则∠P=______.13 . 如图,以边长为4+4的等边三角形AOB的顶点O为坐标原点,边OA所在直线为x轴建立平面直角坐标系,点B在第一象限,在边OB上有一点P为OB的黄金分割点(PO>PB),那么点P的坐标是__.14 . 如图,两个完全相同的正五边形ABCDE,AFGHM的边DE,MH在同一直线上,且有一个公共顶点A,若正五边形ABCDE绕点A旋转x度与正五边形AFGHM重合,则x的最小值为_____.15 . “如果两个角相等,那么这两个角是对顶角.”这个命题的条件_________________________________,结论是_________________________________.16 . 定义:是不为1的有理数,我们把称为的衍生数.如:2的衍生数是,的衍生数是.已知,是的衍生数,是的衍生数,是的衍生数,……,依此类推,则.17 . 若等腰三角形的两边长分别为 4 和 8,则周长为_________.18 . 若关于x的方程3x-2a=0和2x+3a-13=0的解相同,则a=_____.三、解答题19 . 先化简,再从不等式组的整数解中选一个合适的的值代入求值.20 . 如图,长方形ABCD中放置9个形状、大小都相同的小长方形,相关数据图中所示,则图中阴影部分的面积为多少.21 . 计算:﹣4sin60°﹣|3﹣2|22 . 如图所示,AB,CD相交于点O,OE平分∠AOD,∠AOC=120°,求∠BOD,∠AOE的度数.23 . 某市民营经济持续发展,2017年城镇民营企业就业人数突破20万.为了解城镇民营企业员工每月的收入状况,统计局对全市城镇民营企业员工2017年月平均收入随机抽样调查,将抽样的数据按“2000元以内”、“2000元~4000元”、“4000元~6000元”和“6000元以上”分为四组,进行整理,分别用A,B,C,D表示,得到下列两幅不完整的统计图.由图中所给出的信息解答下列问题:(1)本次抽样调查的员工有.人,在扇形统计图中x 的值为.,表示“月平均收入在2000元以内”的部分所对应扇形的圆心角的度数是.;(2)将不完整的条形图补充完整,并估计该市2017年城镇民营企业20万员工中,每月的收入在“2000元~4000元”的约多少人?24 . 用加减法解方程组其解题过程如下:,得,解得.把号代入①,得,解得.所以这个方程组的解为.上述解题过程是否正确?若不正确,请写出正确的解题过程.25 . 某书店老板去图书批发市场购买某种图书,第一次用500元购书若干本,很快售完由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用900元所购该书的数量比第一次的数量多了10本.(1)求第一次购书每本多少元?(2)如果这两次所购图书的售价相同,且全部售完后总利润不低于25%,那么每本图书的售价至少是多少元?26 . 某轮船由西向东航行,在A处测得小岛P的方位是北偏东75°,又继续航行7海里后,在B处测得小岛P的方位是北偏东60°,求:(1)此时轮船与小岛P的距离BP是多少海里;(2)小岛点P方圆3海里内有暗礁,如果轮船继续向东行使,请问轮船有没有触焦的危险?请说明理由.27 . 如图所示,在平面直角坐标系中有四边形ABCA.(1)写出四边形ABCD的顶点坐标;(2)求线段AB的长;(3)求四边形ABCD的面积.28 . 在如图所示的方格中,每个小正方形的边长为1,点在方格纸中小正方形的顶点上.(1)按下列要求画图;①过点画的平行线AD;②过点画的垂线;(2)计算的面积.。
重庆市2019年七年级下学期期末数学试题(II)卷

重庆市2019年七年级下学期期末数学试题(II)卷姓名:________ 班级:________ 成绩:________一、单选题1 . 今年我区有近8000名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.近8000名考生是总体C.每位考生的数学成绩是个体D.1000名学生是样本容量2 . 下列方程中,三元一次方程共有()(1)x + y + z = 3;(2) x · y · z = 3;(3) ;(4) .A.1个B.2个C.3个D.4个3 . 下列命题是真命题的是A.两个锐角的和一定是钝角B.两条平行线被第三条直线所截,同旁内角的平分线互相垂直C.两条直线被第三条直线所截,同旁内角互补D.直线外一点到这条直线的垂线段,叫做这点到该直线的距离4 . 在绘制频数分布直方图时,一个容量为80的样本最大值是143,最小值是50,取组距为10,则可以分成()组;A.10B.9C.8D.不能确定5 . 在3.14,,,﹣,2π,中,无理数有()个.A.1个 B. 2个 C. 3个 D. 4个6 . 下列各式中正确的是()A.若a>b,则a﹣1<b﹣1B.若a>b,则a2>b2C.若a>b,则ac>bcD.若>,则a>b7 . 将方程3x﹣y=1变形为用x的代数式表示y()A.3x=y+1C.y=1﹣3x D.y=3x﹣1B.x=8 . 如图,O为直线AB上一点,∠DOC为直角,OE平分∠AOC,OG平分∠BOC,OF平分∠BOD,下列结论错误的是()A.∠DOG与∠BOE互补B.∠AOE-∠DOF=45°C.∠EOD与∠COG互补D.∠AOE与∠DOF互余9 . 如果甲图上的点P(-2,4)经过平移变换之后Q(-2,2),则甲图上的点M(1,-2)经过这样平移后的对应点的坐标是()A.(1,-4)B.(-4,-4)C.(1,3)D.(3,-5)10 . 下列语句中,正确的个数有()①同位角相等,两直线平行;②若两个角的和为180°,则这两个角互补;③同旁内角相等,两直线平行;④内错角相等,两直线平行.A.4个B.3个C.2个D.1个二、填空题11 . 某班男、女生人数之比是3:2,制作扇形统计图是女生对应的扇形的圆心角是____________(度).12 . 已知关于x的不等式组有且只有1个整数解,则a的取值范围是________.13 . 4的平方根等于_____.14 . 的算术平方根是_______.15 . 已知点A(-1,0)和点B(1,2),将线段AB平移至A´B´与点A对应,若点A´的坐标为(1,-3),则点B´的坐标为___________________.16 . 如图,在平面直角坐标系中,直线l:与x轴交于点,以为边长作等边三角形,过点作平行于x轴,交直线l于点,以为边长作等边三角形,过点作平行于x轴,交直线l于点,以为边长作等边三角形,,则点的坐标是______.三、解答题17 . ,,为的角平分线.(1)如图1,若,则______;若,则______;猜想:与的数量关系为______(2)当绕点按逆时针旋转至图2的位置时,(1)的数量关系是否仍然成立?请说明理由.(3)如图3,在(2)的条件下,在中作射线,使,且,直接写出______.18 . 如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHA.(1)求证:AB∥CD;(2)若∠EHF=80°,∠D=40°,求∠AEM的度数。
〖汇总3套试卷〗重庆市2019年七年级下学期数学期末联考试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列命题是假命题的为()A.在同一平面内,不重合的两条直线不相交就平行B.若a2=b2,则a=bC.若x=y,则|x|=|y| D.同角的补角相等【答案】B【解析】根据两直线的位置关系、等式的性质,同角的补角等知识进行判断即可.【详解】解:A、在同一平面内,不重合的两条直线不相交就平行,是真命题;B、若a2=b2,则a=b或a=﹣b,是假命题;C、若x=y,则|x|=|y|,是真命题;D、同角的补角相等,是真命题;故选B.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.2.下列调查中,适合用全面调查方式的是( )A.了解某班学生“50米跑”的成绩B.了解一批灯泡的使用寿命C.了解一批炮弹的杀伤半径D.了解一批袋装食品是否含有防腐剂【答案】A【解析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】A、了解某班学生“50米跑”的成绩,是精确度要求高的调查,适于全面调查;B、C、D了解一批灯泡的使用寿命,了解一批炮弹的杀伤半径,了解一批袋装食品是否含有防腐剂,都是具有破坏性的调查,无法进行普查,故不适于全面调查.故选:A.【点睛】考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.有如下命题,其中假命题有().①负数没有平方根;②同位角相等;③对顶角相等;④如果一个数的立方根是这个数本身,那么这个数是1.A.1个B.1个C.2个D.3个【答案】C【解析】要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.【详解】解:①负数没有平方根,是真命题;②两直线平行,同位角相等,是假命题;③对顶角相等,是真命题;④如果一个数的立方根是这个数本身,那么这个数是1或±1,是假命题;故选:C.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.42的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【答案】C【解析】首先利用平方根的定义估算31前后的两个完全平方数25和36−2的范围即可.【详解】解:∵25<31<36,<,即∴5-,即故选:C.【点睛】5()A .﹣4B .±2C .±4D .4【答案】B 【解析】先算出16=4,再根据平方根的定义求解即可.【详解】∵42=16,∴16=4,∴16的平方根是±2,故选B .【点睛】本题考查算术平方根和平方根的定义,要看清楚题目,是求16的平方根,要先求出16的值. 6.如图,其中能判定//AB CD 的是( )A .12∠=∠B .35∠=∠C .180B BCD ︒∠+∠=D .4B ∠=∠.【答案】C【解析】根据平行线的判定定理即可解答 【详解】解:A. ∵∠1=∠2,∴AD ∥BC (内错角相等两直线平行),所以A 不正确;B. ∵∠3和∠5既不是同位角,也不是内错角,也不是同旁内角,所以两角相等不能判定平行,所以B 不正确;C. ∵180B BCD ︒∠+∠=,∴//AB CD (同旁内角互补,两直线平行),所以C 正确;D. ∵∠B 和∠4既不是同位角,也不是内错角,也不是同旁内角,所以两角相等不能判定平行,所以D 不正确;故选C【点睛】此题考查平行线的判定定理,熟练掌握同位角、内错角和同旁内角的辨别方法为解题关键7.已知点(1,4)A m m -+在x 轴上,则点A 的坐标是( )A .(0,5)B .(5,0)-C .(0,3)D .(3,0)-【答案】B【解析】根据在x 轴上的点的性质求出m 的值,即可求出点A 的坐标.【详解】∵点(1,4)A m m -+在x 轴上∴40m+=解得4m=-即1415m-=--=-∴点(5,0)A-故答案为:B.【点睛】本题考查了点坐标的问题,掌握在x轴上的点的性质是解题的关键.8.数学中有一些命题的特征是:原命题是真命题,但它的逆命题却是假命题.例如:如果a>2,那么a2>1.下列命题中,具有以上特征的命题是()A.两直线平行,同位角相等B.如果|a|=1,那么a=1C.全等三角形的对应角相等D.如果x>y,那么mx>my【答案】C【解析】分别判断原命题和其逆命题的真假后即可确定正确的选项.【详解】解:A、原命题正确,逆命题为同位角相等,两直线平行,正确,为真命题,不符合题意;B、原命题错误,是假命题;逆命题为如果a=1,那么|a|=1,正确,是真命题,不符合题意;C、原命题正确,是真命题;逆命题为:对应角相等的三角形全等,错误,是假命题,符合题意;D、当m=0时原命题错误,是假命题,不符合题意,故选:C.【点睛】考查了命题与定理的知识,解题的关键是能够正确的写出一个命题的逆命题,难度不大.9.如果x ay b=⎧⎨=⎩是方程x﹣3y=﹣3的一组解,那么代数式5﹣a+3b的值是()A.8 B.5 C.2 D.0 【答案】A【解析】把x ay b=⎧⎨=⎩代入方程,再根据5-a+3b=5-(a-3b),然后代入求值即可.【详解】把x ay b=⎧⎨=⎩代入方程,可得:a−3b=−3,所以5−a+3b=5−(a−3b)=5+3=8,故选A.【点睛】本题考查的知识点是二元一次方程的解,解题关键是利用整体代入的思想. 10.一副三角板按如图所示方式叠放在一起,则图中∠α等于()A .105B .115C .120D .135【答案】A 【解析】利用三角形内角和定理计算即可.【详解】解:由三角形的内角和定理可知:α=180°﹣30°﹣45°=105°,故选A .【点睛】本题考查三角形内角和定理,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考基础题.二、填空题题11.若m ,n 为实数,且21280m n m n +---=,则2012()m n +的值为________.【答案】1【解析】根据绝对值与二次根式的非负性即可列出方程组求解.【详解】依题意得210280m n m n +-=⎧⎨--=⎩,解得23m n =⎧⎨=-⎩ 故2012()m n +=(-1)2012=1故填1【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据非负性列出方程组.12.若(3,2)P -,则点P 到y 轴的距离为__________.【答案】1【解析】根据平面直角坐标系中点的坐标的几何意义解答即可.【详解】解:∵点P 的坐标为(-1,2),∴点P 到x 轴的距离为|2|=2,到y 轴的距离为|-1|=1.故填:1.【点睛】解答此题的关键是要熟练掌握点到坐标轴的距离与横纵坐标之间的关系,即点到x 轴的距离是横坐标的绝对值,点到y 轴的距离是纵坐标的绝对值.13.若a 2-3b=4,则2a 2-6b +2019=_____.【答案】2027【解析】将a 2-3b=4代入原式=2(a 2-3b )+2019,计算可得.【详解】当a 2−3b=4时,原式=2(a 2−3b)+2019=2×4+2019=2027,故答案为2027.【点睛】本题考查有理数的加减运算,解题的关键是掌握整体代入法.14.要使(x2+ax+1)•(﹣6x3)的展开式中不含x4项,则a=_________.【答案】1【解析】试题分析:根据单项式与多项式相乘的法则展开,然后让x4项的系数等于1,列式求解即可.解:(x2+ax+1)•(﹣6x3)=﹣6x5﹣6ax4﹣6x3,∵展开式中不含x4项,∴﹣6a=1,解得a=1.考点:单项式乘多项式.点评:本题考查了单项式与多项式相乘,不含某一项就是让这一项的系数等于1.15.若23xy=⎧⎨=-⎩和12xy=⎧⎨=⎩都是关于x,y的方程y=kx+b的解,则k+2b的值是________.【答案】2【解析】首先根据23xy=⎧⎨=-⎩和12xy=⎧⎨=⎩都是关于x、y的方程y=kx+b的解,可得232k bk b⎨⎩+-+⎧==;然后根据二元一次方程组的求解方法,求出k、b的值各是多少即可.【详解】∵23xy=⎧⎨=-⎩和12xy=⎧⎨=⎩都是关于x、y的方程y=kx+b的解,∴232k bk b⎨⎩+-+⎧==解得57 kb⎩-⎧⎨==∴k的值是-5,b的值是1.所以k+2b=-5+1×2=2.故答案为:2【点睛】此题主要考查了二元一次方程的求解问题,要熟练掌握,解答此题的关键是要明确二元一次方程的求解方法.16.如图,在△ABC中,EF∥BC,∠ACG是△ABC的外角,∠BAC的平分线交BC于点D,记∠ADC=α,∠ACG=β,∠AEF=γ,则:α、β、γ三者间的数量关系式是______.【答案】2∠α=∠β+∠γ.【解析】分析:根据两直线平行,同位角相等可得∠B=γ,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠BAD 、∠CAD ,再根据角平分线的定义可得∠BAD=∠CAD ,然后列出方程整理即可得解.详解:∵EF ∥BC ,∴∠B=γ,由三角形的外角性质得,∠BAD=α-∠B=α-γ,∠CAD=β-α,∵AD 是∠BAC 的平分线,∴∠BAD=∠CAD ,∴α-γ=β-α,∴β+γ=2α.故答案为:β+γ=2α.点睛:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质是解题的关键.17.计算:33()a =_____________.【答案】9a【解析】根据幂的乘方运算法则,即可解出.【详解】根据幂的乘方的运算法则:底数不变,指数相乘,得:33()a =9a故答案为9a【点睛】本题考查整式运算中,幂的乘方的运算,熟练掌握运算法则是解题的关键.三、解答题18.如图1,在平面直角坐标系中,,过C 作轴于B . (1)三角形ABC 的面积_____________; (2)如图2,过B 作交y 轴于D ,且AE ,DE 分别平分∠CAB ,∠ODB ,求∠AED 的度数; (3)点P 在y 轴上,使得三角形ABC 和三角形ACP 的面积相等,直接写出P 点坐标.【答案】(1)4;(2)45°;(3)P(0,-1)或(0,3)【解析】(1)根据点的坐标,可以得到AB、BC的长度,然后计算面积;(2)过E作EF∥AC,根据平行线性质得BD∥AC∥EF,且∠3=∠CAB=∠1,∠4=∠ODB=∠2,所以∠AED=∠1+∠2=(∠CAB+∠ODB);然后把∠CAB+∠ODB=∠5+∠6=90°,代入计算即可.(3)分类讨论:设P(0,t),分P在y轴正半轴上时或在y轴负半轴时,过P作MN∥x轴,AN∥y轴,BM∥y轴,利用S△APC=S梯形MNAC-S△ANP-S△CMP=4,可得到关于t的方程,再解方程求出t即可;【详解】解:(1)∵,∴B(2,0),∴AB=4,BC=2,∴三角形ABC的面积.故答案为:4.(2)解:如图,过E作轴,,∴∴∵,∴∵AE,DE分别平分∴∴;(3)设P(0,t),过P作MN∥x轴,AN∥y轴,BM∥y轴,①当P在y轴正半轴上时,如图1,∵∴×4×(t+t-2)- ×2t- ×2×(t-2)=4,解得:t=3,∴P点的坐标为:(0,3);②当P在y轴负半轴上时,如图2,∵∴×4(-t+2-t)+×2t-×2(2-t)=4,解得:t=-1,∴P点的坐标为:(0,-1);∴综上所述,P点坐标为:(0,-1)或(0,3).【点睛】本题考查了平行线的判定与性质:两直线平行,内错角相等.也考查了坐标与图形性质以及三角形面积公式,解题的关键是掌握平行线的性质,熟练的运用割补法求图形的面积.19.计算(1)()22315a a a a +⋅-⋅.(2)()2232246()x y x y xy -÷.【答案】(1)32a a -;(2)46x -【解析】(1)原式利用单项式乘以多项式,以及单项式乘以单项式法则计算,合并即可得到结果; (2)原式先计算乘方运算,再利用多项式除以单项式法则计算即可求出值.【详解】解:(1) 原式3335a a a =+-32a a =-;(2)原式()22322246x y x yx y =-÷46x =-.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.20. “安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A .仅学生自己参与;B .家长和学生一起参与;C .仅家长自己参与;D .家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C 类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.【答案】(1)400;(2)补全条形图见解析;C 类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.【解析】分析:(1)根据A 类别人数及其所占百分比可得总人数;(2)总人数减去A 、C 、D 三个类别人数求得B 的人数即可补全条形图,再用360°乘以C 类别人数占被调查人数的比例可得;(3)用总人数乘以样本中D 类别人数所占比例可得.详解:(1)本次调查的总人数为80÷20%=400人;(2)B 类别人数为400-(80+60+20)=240,补全条形图如下:C 类所对应扇形的圆心角的度数为360°×60400=54°; (3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×0N F N =100人.点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.21.如图,在小明的一张地图上,有A 、B 、C 三个城市,但是图上城市C 已被墨迹污染,只知道∠BAC =∠α,∠ABC =∠β,你能用尺规帮他在图中确定C 城市的具体位置吗?【答案】见解析【解析】连接AB ,以AB 为边,A 为顶点作∠BAC =α,以B 为顶点作∠ABC =∠β,两边交于点C ,如图所示.【详解】如图所示,点C 为求作的点.【点睛】此题考查作图-应用与设计作图,熟练掌握全等三角形的判定方法(ASA )是解题的关键.22.甲、乙两商场以同样价格出售同样的商品,并且各自又推出不同的优惠方案:在甲商场累计购物超过1元后,超出1元的部分按90%收费;在乙商场累计购物超过100元后,超出100元的部分按95%收费.设小李在同一商场累计购物x 元,其中x >1.(1)当x为何值时,小李在甲、乙两商场的实际花费相同?(2)根据小李购物花费的不同金额,请你确定在哪家商场购物更合算?【答案】(1)2;(2)当小李购物花费多于1元,少于2元时,在乙商场购物合算;当小李购物花费多于2元时,在甲商场购物合算;当小李购物花费等于2元时,到两家商场购物一样多.【解析】(1)根据已知得出甲商场1+(x﹣1)×90%以及乙商场100+(x﹣100)×95%,相等列等式,进而得出答案;(2)根据1+(x﹣1)×90%与100+(x﹣100)×95%大于、小于、等于,列三个式子,从而得出正确结论.【详解】(1)依题意,得1+(x﹣1)×90%=100+(x﹣100)×95%,解得x=2.即当x=2时,小李在甲、乙两商场的实际花费相同;(2)①当1+(x﹣1)×90%>100+(x﹣100)×95%时,解得x<2.②当1+(x﹣1)×90%<100+(x﹣100)×95%时,解得x>2.③当1+(x﹣1)×90%=100+(x﹣100)×95%时,解得x=2.答:当小李购物花费少于2元时,在乙商场购物合算;当小李购物花费多于2元时,在甲商场购物合算,当小李购物等于2元时,到两家商场花费一样多.【点睛】本题考查了一元一次不等式和一元一次方程的应用,关键是读懂题意,列出不等式,再根据实际情况进行讨论,不要漏项.23.请将下列证明过程补充完整:已知:如图,点P在CD上,已知∠BAP+∠APD=180°,∠1=∠2求证:∠E=∠F证明:∵∠BAP+∠APD=180°(已知)∴∥()∴∠BAP= ()又∵∠1=∠2(已知)∴∠BAP﹣= ﹣∠2即∠3= (等式的性质) ∴AE ∥PF( )∴∠E=∠F ( )【答案】答案见解析【解析】分析:根据平行线的性质以及判定定理进行填空即可得出答案.详解:∵∠BAP+∠APD=180°(已知)∴ AB ∥ CD (同旁内角互补,两直线平行 )∴∠BAP= ∠APC (两直线平行,内错角相等 )又∵∠1=∠2(已知)∴∠BAP ﹣ ∠1 = ∠APC ﹣∠2即∠3= ∠4 (等式的性质)∴AE ∥PF (内错角相等,两直线平行 )∴∠E=∠F (两直线平行,内错角相等 )点睛:本题主要考查的是平行线的性质与判定定理,属于基础题型.平行线的性质有:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.平行线的判定有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.24.解不等式组:()2x 3152x 115x 3+⎧<⎪⎨⎪--≤+⎩,并把它的解集在数轴上表示出来.【答案】不等式组的解集是2x 1-≤<,数轴表示见解析.【解析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】()2x 3152x 115x 3+⎧<⎪⎨⎪--≤+⎩①②,解不等式①,得x 1<,解不等式②,得x 2≥-,∴不等式组的解集是2x 1-≤<.解集在数轴上表示如图:.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.25.计算:(﹣4)2+(π﹣3)0﹣23﹣|﹣5|.【答案】1【解析】先根据有理数的乘方、绝对值的性质、0指数幂及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.【详解】原式=16+1﹣8﹣5=1.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在下列条件中,不能判定直线a与b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°【答案】C【解析】解:A.∵∠1与∠2是直线a,b被c所截的一组同位角,∴∠1=∠2,可以得到a∥b,∴不符合题意B.∵∠2与∠3是直线a,b被c所截的一组内错角,∴∠2=∠3,可以得到a∥b,∴不符合题意,C.∵∠3与∠5既不是直线a,b被任何一条直线所截的一组同位角,内错角,∴∠3=∠5,不能得到a∥b,∴符合题意,D.∵∠3与∠4是直线a,b被c所截的一组同旁内角,∴∠3+∠4=180°,可以得到a∥b,∴不符合题意,故选C.【点睛】本题考查平行线的判定,难度不大.2.如图,△OAB绕点O逆时针旋转80°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是()A.30°B.40°C.50°D.60°【答案】C【解析】试题解析:根据旋转的意义,图片按逆时针方向旋转80°,即∠AOC=80°,又∵∠A=110°,∠D=40°,∴∠DOC=30°,则∠α=∠AOC-∠DOC=50°.故选C.考点:旋转的性质.3.一次中考考试中考生人数为15万名,从中抽取6000名考生的中考成绩进行分析,在这个问题中样本指的是( )A .6000B .6000名考生的中考成绩C .15万名考生的中考成绩D .6000名考生【答案】B【解析】本题的考查的对象是一次中考考试中的成绩,样本是总体中所抽取的一部分个体,即抽取6000名考生的成绩.【详解】A 、6000是样本容量;B 、6000名考生的中考成绩是样本;C 、15万名考生的中考成绩是总体;D 、6000名考生不是样本;故选B .【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.4.下列不是方程2313x y +=的解的是( ) A .23x y =⎧⎨=⎩ B .15x y =-⎧⎨=⎩ C .46x y =-⎧⎨=⎩ D .81x y =⎧⎨=-⎩ 【答案】C【解析】根据方程的解的概念,逐一将选项代入方程中验证即可判断.【详解】A ,将23x y =⎧⎨=⎩代入方程2313x y +=中,得223313⨯+⨯=,是方程的解,故不符合题意; B ,将15x y =-⎧⎨=⎩代入方程2313x y +=中,得2(1)3513⨯-+⨯=,是方程的解,故不符合题意; C ,将46x y =-⎧⎨=⎩代入方程2313x y +=中,得2(4)361013⨯-+⨯=≠,不是方程的解,故符合题意; D ,将81x y =⎧⎨=-⎩代入方程2313x y +=中,得283(1)13⨯+⨯-=,是方程的解,故不符合题意; 故选:C .【点睛】本题主要考查二元一次方程的解,验证某对数值是不是二元一次方程的解,只要把它代入方程,若方程的左右两边相等,则为方程的解,反之则不是方程的解.5.若,,则的值是( ) A . B . C . D .【答案】D【解析】原式利用多项式乘以多项式法则计算,整理后将x+y 与xy 的值代入计算即可求出值.【详解】解:∵x+y=2,xy=-2,∴(1-x )(1-y )=1-y-x+xy=1-(x+y )+xy=1-2-2=-1.故选:D .【点睛】本题考查整式的混合运算-化简求值,熟练掌握运算法则是解题的关键.6.小伟向一袋中装进a 只红球,b 只白球,c 只黑球,它们除颜色外,无其他差别.小红从袋中任意摸出一球,问他摸出的球不是红球的概率为( )A .+a a b c +B .1aC .b c a b c +++D .1c b+ 【答案】C【解析】让不是红球的个数除以球的总数即为摸出的球不是红球的概率. 【详解】他摸出的球不是红球的概率为b+c a+b+c,故答案选C . 【点睛】本题主要考查了概率的定义,熟知概率=所求情况数与总情况数之比是解题的关键.7.一个等腰三角形的两条边长分别为3、7,则这个等腰三角形的周长为( )A .13B .17C .13或17D .21或17 【答案】B【解析】根据腰为3或7,分类求解,注意根据三角形的三边关系进行判断.【详解】∵等腰三角形的一边长为3,另一边长为7,∴有两种情况:①7为底,3为腰,而3+3=6<7,那么应舍去;②3为底,7为腰,那么7+7+3=17;∴该三角形的周长是7+7+3=17,故选B .【点睛】本题考查了等腰三角形的性质和三角形的三边关系;求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.8.如图所示的象棋盘上,若“帅”位于(1,2)-,“相”位于(3,2)-,则“炮”位于( )A .(1,1)-B .(1,2)-C .(2,1)-D .(2,2)-【答案】D 【解析】“帅”的位置向左平移一个单位,向上平移2个单位就是坐标原点的位置,然后可得答案.【详解】解:由“帅”的位置向左平移一个单位,向上平移2个单位就是坐标原点的位置,可知“炮”的位置是(−2,2).故选:D .【点睛】本题考查了坐标确定位置,利用“将”的位置向左平移一个单位所得直线是y 轴,向上平移2个单位所得直线是x 轴是解题关键.9.甲、乙两台机床生产一种零件,在 10 天中两台机床每天生产的次品数的平均数是=x 甲=2x 乙,方差是2=1.65S 甲,2=0.76S 乙出次品的波动较小的是( )台机床A .甲B .乙C .甲、乙一样D .不能确定 【答案】B【解析】分析: 根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.详解:∵S 甲2=1.65,S 乙2=0.76,∴S 甲2>S 乙2,∴出次品的波动较小的机床是乙机床;故选:B.点睛: 本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.10.平面上五条直线l 1,l 2,l 3,l 4和l 5相交的情形如图所示,根据图中标出的角度,下列叙述正确的是( )A .1l 和3l 不平行,2l 和3l 平行B .1l 和3l 不平行,2l 和3l 不平行C .1l 和3l 平行,2l 和3l 平行D .1l 和3l 平行,2l 和3l 不平行【答案】A【解析】直接利用平行线的判定方法分别判断得出答案.【详解】解:由题意可得:∠1=88°,利用同位角相等,两直线平行可得l 2和l 3平行,∵92°+92°≠180°,∴l 1和l 3不平行.故选:A .【点睛】此题主要考查了平行线的判定,正确掌握判定方法是解题关键.二、填空题题11.若多项式291x mx -+(m 是常数)中,是一个关于x 的完全平方式,则m 的值为_________.【答案】6或6-【解析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值.【详解】因为2291=()1x mx mx -+-+23x ,所以2=231mx x -±••,解得=6m ±.故m 的值为 6或6-.【点睛】本题考查完全平方式,解题的关键是掌握完全平方式.12.某班级一次数学模拟考试成绩的最高分为96,最低分为30,如果把考试成绩绘制成直方图,组距为10,则应分的组数是______.【答案】1【解析】首先计算出最大值和最小值的差,再利用极差除以组距即可.(利用进一法,整除时组数=商+1)【详解】∵最高分为96,最低分为30,如果把考试成绩绘制成直方图,组距为10,∴963010-=6.1,∴应分的组数为1.故答案为:1.【点睛】本题考查了频数分布直方图,首先计算极差,即计算最大值与最小值的差.再决定组距与组数.13.某班体育委员对本班40名学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是________________小时.【答案】1【解析】根据统计图中的数据可以得到一共多少人,然后根据中位数的定义即可求得这组数据的中位数.【详解】解:由统计图可知,一共有:6+9+10+8+7=40(人),∴该班这些学生一周锻炼时间的中位数是第20个和21个学生对应的数据的平均数,∴该班这些学生一周锻炼时间的中位数是1,故答案为:1.【点睛】本题考查折线统计图、中位数,解答本题的关键是明确中位数的定义,利用数形结合的思想解答.14.已知(a﹣1)2+|b+1|+b c a+-,则a+b+c=_____.【答案】2.【解析】由(a﹣1)2b c a+-,可得a-1=0,b+1=0,b+c-a=0,由此求出a、b、c的值,再代入a+b+c中计算即可.详解:∵(a﹣1)2b c a+-,∴1010abb c a-=⎧⎪+=⎨⎪+-=⎩,解得:112abc=⎧⎪=-⎨⎪=⎩,∴()1122a b c ++=+-+=.故答案为:2.点睛:本题的解题要点是:(1)一个式子的平方、绝对值和算术平方根都是非负数;(2)若几个非负数的和为0,则这几个非负数都为0.15.如图,直线AB ∥CD ,∠B =50°,∠C =40°,则∠E 等于_____.【答案】90°【解析】根据平行线的性质得到∠1=∠B=50°,由三角形的内角和即可得到结论. 【详解】解:设CD 和BE 的夹角为∠1,∵AB ∥CD ,∴∠1=∠B =50°;∵∠C =40°,∴∠E =180°﹣∠B ﹣∠1=90°.故答案为:90°.【点睛】本题考查了平行线的性质和三角形的内角和,熟练掌握知识点是解题关键.16.如图,//,AD BC ABD ∆的面积是5,AOD ∆的面积是2,那么COD ∆的面积是_________.【答案】1【解析】观察图形可知,△ABD 和△ACD 同底同高,所以S △ACD =S △ABD =5,又S △COD =S △ACD -S △AOD ,代入即可求出答案,【详解】解:观察图形可知,△ABD 和△ACD 同底同高,∴S △ACD =S △ABD =5,∴S △COD =S △ACD -S △AOD =5-2=1.故答案为:1.【点睛】本题考查三角形的面积,难度不大,关键是观察出△ABD 和△ACD 同底同高,它们的面积相等.17.如图,已知长方形ABCD 中,6AD =cm ,4AB =cm ,点E 为AD 的中点.若点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BC 上由点B 向点C 运动.若AEP ∆与BPQ 全等,则点Q 的运动速度是_________cm/s.【答案】32【解析】设Q 运动的速度为xcm/s ,则根据△AEP 与△BQP 得出AP=BP 、AE=BQ ,从而可列出方程组,解出即可得出答案.【详解】 设点Q 的运动速度为xcm/s ,经过y 秒后,△AEP ≌△BPQ ,则AP=BP ,AE=BQ ,∴4{3y y xy=-= , 解得:3{22x y == , 即点Q 的运动速度为32cm/s 时能使两三角形全等. 【点睛】此题考查全等三角形的性质,解题关键在于列出方程组三、解答题18.(1)求x 的值:4x 2-9=0;(2363272(2)-.【答案】(1)32±;(2)5. 【解析】(1)方程变形后,开方即可求出解;(2) 首先化简每个二次根式,然后合并同类项即可【详解】()21490x -=, 249x =,294x = 32x =±; ()2原式6325=-+=.【点睛】本题考查了实数的运算和二次根式的混合运算,熟练掌握运算法则是解本题的关键.19.某地为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本。
重庆市育才中学七下数学期末模拟试卷

重庆市七下数学期末模拟试卷一、选择题:(本大题12个小题,每小题4分,共48分)每小题都给出了代号为ABCD 的四个答案,其中只有一个是正确的,请将正确答案填涂在答题卷中对应方框内.1.下列方程组中,是二元一次方程组的是( ).A.⎩⎨⎧=-=+53262z y y xB.⎪⎩⎪⎨⎧=-=+1221y x y xC.⎩⎨⎧==+34y y x D.⎩⎨⎧==+31025xy y x 2.已知n m n m y x -+53与n m y x +--179的和是单项式,则m ,n 的值分别是(). A.1-=m ,7-=n B.3=m ,1=n C.1029=m ,56=n D.45=m ,2-=n3.方程x y -=1与523=+y x 的公共解是( )A.⎩⎨⎧==23y xB.⎩⎨⎧=-=43y xC.⎩⎨⎧-==23y x D.4. 不等式组的解集在数轴上表示为( )A.B.C.D.5. 下列调查方式合适的是( )A. 为了了解电视机的使用寿命,采用普查的方式B. 调查济南市初中学生利用网络媒体自主学习的情况,采用普查的方式C. 调查某中学七年级一班学生视力情况,采用抽样调查的方式D. 为了了解人们保护水资源的意识,采用抽样调查的方式6. 如图,AB ∥CD ,∠1=58°,FG 平分∠EFD ,则∠FGB 的度数等于( )A. 122°B. 151°C. 116°D. 97°7. 如图,BD 平分∠ABC ,CD ∥AB ,若∠BCD=70°,则∠ABD 的度数为( )A. 55°B. 50°C. 45°D. 40°8.某中学开展“眼光体育一小时”活动,根据学校实际情况,如图决定开设“A :踢毽子,B :篮球,C :跳绳,D :乒乓球”四项运动项目(每位同学必须选择一项),为了解学生最喜欢哪一项运动项目,随机抽取了一部分学生进行调查,丙将调查结果绘制成如图的统计图,则参加调查的学生中最喜欢跳绳运动项目的学生数为( )A.240B.120C.80D.409.如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于( )A .50°B .55°C .60°D .65°10.开发区某物流公司计划调用甲、乙两种型号的物流货车共15辆,运送360件A 种货物和396件B 种货物.已知甲种物流货车每辆最多能载30件A 种货物和24件B 种货物,乙种物流货车每辆最多能载20件A 种货物和30件B 种货物.设安排甲种物流货车x 辆,你认为下列符合题意的不等式组是( )A .⎩⎨⎧≥-+≥-+396)15(3024360)15(2030x x x xB .⎩⎨⎧>-+>-+396)15(3024360)15(2030x x x xC .⎩⎨⎧≤-+≤-+396)15(3024360)15(2030x x x xD .⎩⎨⎧<-+<-+396)15(3024360)15(2030x x x x 11.若关于x 的不等式组无解,则a 的取值范围为( ) A . a <4 B . a=4 C . a ≤4 D . a ≥412.如图,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A 1,A 2,A 3,A 4,…表示,则顶点A 55的坐标是( )A.(13,13)B.(-13,-13)C.(14,14)D.(-14,-14)二、填空题:(本大题共6小题,每小题4分,共24分)在每小题中,请将答案直接填写在答题卷中对应的横线上.13.27的立方根为 .14.如图,计划把河水引到水池A 中,先作AB ⊥CD ,垂足为B ,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是 .15.方程1mx ny +=的两个解是12x y =-⎧⎨=⎩,,13x y =⎧⎨=⎩,,,则=m ,=n .16.如图,将边长为4个单位的等边△ABC 沿边BC 向右平移2个单位得到△DEF ,则四边形ABFD 的周长为 .17.关于x 的不等式组⎩⎨⎧<<+<<-5321x a x a 的解集为3<x <a +2,则a 的取值范围是___________18. 将正整数按如图所示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示实数9,则表示实数17的有序实数对是_____.三、解答题:(本大题共2个小题,每小题8分,共16分)解答时必须给出必要的演算过程或推理步骤,请将解答题书写在答题卷中对应的位置上.19. 计算:(1)﹣12017+|1﹣|﹣+;(2).(3) 解不等式组:,并在数轴上表示不等式组的解集.20.在下面的括号内,填上推理的根据:如图,已知AB ∥CD ,BE 平分∠ABC ,CF 平分∠BCD ,求证:BE ∥CF . (5分)证明:∵AB ∥CD ,(已知)∴∠ABC=∠BCD .( )∵BE 平分∠ABC ,CF 平分∠BCD ,(已知)∴∠1 = ∠ ,∠2 = ∠ ( )∴∠1=∠2.∴BE ∥CF .( )四、解答题(本大题共4个小题,每小题10分,共40分)解答题解答时必须给出必要的演算过程或推理步骤,请将解答题书写在答题卷中对应的位置上.21.如图,平面直角坐标系中,ABC △的顶点都在网格上,平移ABC △,使点C 与坐标原点O 重合.(1)请写出图中点A 、B 、C 的坐标.(2)画出平移后的11OA B △.(3)求1OA A △的面积.22.某学校为了学生的身体健康,每天开展体育活动一小时,共开设了排球、篮球、羽毛球、体操四项体育活动课.全校每个学生都可根据自己的爱好任选其中一项,体育老师在所有学生的报名中,随机抽取了部分学生的报名情况进行了统计,并将结果整理后绘制了如下两幅不完整的统计图:根据以上统计图解答:(1)体育老师随机抽取了 名学生,并将条形统计图补充完整;(2)在扇形统计图中,求出“排球”部分所对应的圆心角的度数并补全扇形统计图;(3)若学校一共有1200名学生,请估计该校报名参加“篮球”这一项目的人数.23.甲、乙两人同解方程组时,甲看错了方程①中的a ,解得31x y =-⎧⎨=-⎩,乙看错了②中的b ,解得⎩⎨⎧==45y x ,试求20172016)10(b a -+的值.51542ax y x by +=⎧⎨=-⎩24.五、解答题(本大题共2个小题,其中25题10分,26题12分,共22分)解答时必须给出必要的演算过程或推理步骤,请将解答题书写在答题卷中对应的位置上25. 某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?请列出二元一次方程组解答此问题.(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置.①设原来每天安排x名工人生产G型装置,后来补充m名新工人,求x的值(用含m的代数式表示)②请问至少需要补充多少名新工人才能在规定期内完成总任务?26.已知:直线AB∥CD,点E,F分别在直线AB,CD上,点M为平面内一点.(1)如图1,∠AEM,∠M,∠CFM的数量关系为;(直接写出答案)(2)如图2,∠AEM=48°,MN平分∠EMF,FH平分∠MFC,MK∥FH,求∠NMK的度数;(3)如图3,点P为CD上一点,∠BEF=n·∠MEF,∠PMQ=n·∠PME,过点M作MN∥EF交AB于点N,请直接写出∠PMQ,∠BEF,∠PMN之间的数量关系.(用含n的式子表示)。
重庆市育才中学初2019级七(下)期末考试数学试题

重庆初一(下)期末考试数学试题满分:150分时间:120分钟一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.下列四个图形中,轴对称图形的个数是(▲)A.1 B.2 C.3 D.42.计算(-a)3(-a)2的结果是(▲)A.-a5B.a5C.-a6D.a63.下列事件中,是不确定事件的是(▲)A.打开电视正在播放重庆卫视电视台B.同位角相等,两条直线平行C.平行于同一条直线的两条直线平行D.对顶角相等4.如图,已知AB // ED ,∠ECF = 72 ,则∠BAC 的度数为(▲)A.108°B.82°C.72°D.62°5.如图,∆ABC 中,D 是∆ABC 的重心,连接AD 并延长,交BC 于点E.若BC=8,则EC=(▲)A.3B.3.5C.4D.4.5第5 题图第6 题图第4 题图6.如图,在△ABC 中,∠A=88°,∠B=30°,若△ABC≌△A’B’C’,则∠C’的度数是(▲)A.52°B.62°C.72°D.92°7.已知,等腰三角形的一个角为100°,则它的顶角为(▲)A.40°B.50°C.100°D.40°或100°8.已知a﹣b=4,ab=3,则a2+b2 的值是(▲)A.10 B.16 C.22 D.289.甲、乙两人进行慢跑练习,慢跑路程y(米)与所用时间t(分钟)之间的关系如图所示,下列说.法.错.误.的是(▲)A.2 分钟后,乙的平均速度比甲慢B.5 分钟时两人都跑了500 米C.前8 分钟乙的平均速度为87.5 米/分D.甲乙两人8 分钟各跑了800 米第9 题图10.以梦为马,驰骋流年,重庆市双福育才中学初2019 级迎来了期盼已久的“拾光流影”六一晚会.当天张老师为带着儿子前去观看这次晚会,首先自己以某一速度开车从家出发到儿子学校大门口,等待儿子放学上车,儿子上车后,张老师担心堵车耽误时间于是就加快了车速赶到双福校区,如图所示的四个图象中(S 为离家的路程,t 为时间),符合以上情况的是(▲ )A B C D11.下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有5 颗棋子,第②个图形一共有12 颗棋子,第③个图形一共有21 颗棋子,第④个图形一共有32颗棋子,…,则第⑧个图形中棋子的颗数为(▲)①②③④第12 题A.77 B.96 C.106 D.11712.如图,△ABC、△ADE、△DFG 为等边三角形,C、E、F 三点共线,且E 是CF 的中点,下列结论:①△ADG≌△EDF;②∠BAG=∠BCE;③△AEF 为等边三角形;④AB 垂直平分GE;⑤AD=DF+GE.其中正确的个数为(▲ )A.2 B.3 C.4 D.5二、填空题:(本大题 6 个小题,每小题 4 分,共 24 分)在每小题中,请将答案填在答题卷相应的题后的横线上. 13. 黄果兰盛开的季节,育才校园阵阵飘香.据了解某种黄果兰花粉颗粒大小约为0.000065 米.那么数据 0.000065 用科学记数法表示为 ▲ .14.已知 x m = 3, x n= 2 ,则 x 2 m + n =▲ .15. 若 (3m + n )(m - 2n ) + n 中不含 n 的一次项,则 m =▲.16. 如图,△ABC 中,DE 是 AB 的垂直平分线,若△ADC 的周长为 21,AC 的长为 8, 则 CB 的长为 ▲ . 17.在△ABC 中,∠ADC =88°,∠B =68°,∠ACD =∠BCD ,AE 平分∠BAC ,则∠AED 的 度数为 ▲ .18.在△ABC 中,∠ABC =90°,AB=14,点 D 是边 AB 上的中点,AE ⊥AB ,连接 CD 、CE ,CD 平分∠BCE ,且 CE=10AE ,则四边形 ADCE 的面积为 ▲ .第 16 题图第 17 题图第 18 题图三、解答题:(本大题 5 个小题,共 46 分)解答时每小题必须给出必要的演算过程或推 理步骤.19.计算:(每小题 4 分,共 16 分)(1)230312()(2019)(2)2π--⨯--+--; (2)24323221(3)()(3)3ab a b c a b c --÷-(3) (a - 3b + 2c )(a + 3b - 2c ) ;(4) (3a - b )2 - (2a + b )2 - 5a (a - b ) .20.(6 分)已知:C 是线段 AB 的中点,且∠A =∠B ,∠ACD =∠BCE ,求证:CD =CE .21.(10 分)先化简,再求值:(2a + 3b )(3a - 2b ) - 12 (3a + 2b ) 2- a (32a - 2b ) ,其中21104a ab ++++=22.(6 分)在一个不透明的袋中装有 2 个黄色乒乓球,3 个黑色乒乓球和 5 个红色乒乓 球,它们除颜色外其他都相同.将袋中的乒乓球摇均匀后,李明从袋子里随机摸出一个 乒乓球.(1)你认为李明最有可能摸出 的乒乓球(填颜色);(2)李明和肖红一起做游戏,李明或肖红现从袋中随机摸出一个乒乓球,若摸到红色乒 乓球李明获胜,否则肖红获胜,这个游戏对双方公平吗?为什么?23.(8 分)2017 年端午节期间,长寿湖上演规模空前的水陆空嘉年华.甲、乙两队在 比赛时的路程 y (米)与时间 t (分钟)之间的变量关系如图所示,请你根据图象,回答 下列问题:(1)求乙与甲相遇时乙的速度;(2)求出在乙队与甲相遇之前,他们何时相距 80 米?四.解答题:(本大题共3 个小题,共32 分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡(卷)中对应的位置上.24.(10 分)如图,△ABC 中,AD⊥BC,AD=BD=DE,AF⊥AC,EF⊥BE.(1)若△ACD 的周长为12,且BD=4,求CE 的长度;(2)求证:BC=EF.25.(10 分)如果一个n 位自然数abcd gh 能被x0 整除,依次轮换各位数字得到的新数bcd gha 能被x0 +1整除,再依次轮换各位数字得到的新数cd ghab 能被x0 +2 整除,按此规律轮换后,d ghabc 能被x0 +3整除,…,habc g 能被x0 +n -1整除,那么我们称这个n 位自然数abcd gh 是x0 的一个“魔法数”.例如:60 能被5 整除,06 能被6 整除,则称60 是5 的一个“魔法数”.12 能被6 整除,21 能被7 整除,则称两位数12 是6 的一个“魔法数”.再如:324 能被2 整除,243 能被3 整除,432 能被4 整除,则称三位数324 是2 的一个“魔法数”..(1)若一个两位自然数的个位数是十位数的8 倍,求证:这个两位自然数一定是2 的一个“魔法数”;(2)已知三位自然数abc 是5 的一个“魔法数”,且a = 2 ,求这个三位自然数.26.(12 分)如图1,△ABC 中,∠BAC=90°,AB=AC=3,将△ABC 沿BC 翻折得到△DBC(D 为的A 对应点),P 是线段BD 上的点,连接AP.(1)若PB=85,求△ABP 的周长;(2)如图2,当Q 是线段CD 上的点,且CQ=43时,若PB=1,R 是直线AB 上的动点,当PR+RQ 取最小值时,请求出点D 到直线RQ 的距离;(3)如图3,当Q 是线段CD 上的点时,连接AQ,若∠PAQ=45°,现将△ABC 沿AC 翻折得到△AEC(E 为的B 对应点),再将∠PAQ 绕点A 顺时针旋转,旋转过程中,射.线.AP、射.线.AQ 交直.线.CE 分别为M、N,最后将△AMN 沿AN 翻折得到△AGN(G 为M的对应点),连接EG,若EN:EG=5:12,求EN:CE 的值.图1 图2图3 备用图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.已知 a﹣b=4,ab=3,则 a2+b2 的值是( A.10 B.16 ▲
▲ ) C.22 ) D.28
9.甲、乙两人进行慢跑练习,慢跑路程 y(米)与所用时间 t(分钟)之间的 关系如图所示,下列说法错误 的是( .... A.2 分钟后,乙的平均速度比甲慢 B.5 分钟时两人都跑了 500 米 C.前 8 分钟乙的平均速度为 87.5 米/分 D.甲乙两人 8 分钟各跑了 800 米
4.如图,已知 AB // ED , ECF 72 ,则 BAC 的度数为( A.108° EC=( ▲ A. 3 ) B.3.5 C .4 B.82° C.72°
D.62°
5.如图, ABC 中,D 是 ABC 的重心,连接 AD 并延长,交 BC 于点 E.若 BC=8,则 D. 4 . 5
21.(10 分)先化简,再求值: ( 2a 3b)(3a 2b)
1 a2 a b 1 0 . 4
1 3 (3a 2b) 2 a ( a 2b) ,其中 2 2
22.(6 分)在一个不透明的袋中装有 2 个黄色乒乓球,3 个黑色乒乓球和 5 个红色乒乓 球,它们除颜色外其他都相同.将袋中的乒乓球摇均匀后,李明从袋子里随机摸出一个 乒乓球. (1)你认为李明最有可能摸出 的乒乓球(填颜色);
第 2页 共 6 页
C.4
D.5
二、填空题:(本大题 6 个小题,每小题 4 分,共 24 分)在每小题中,请将答案填在答 题卷相应的题后的横线上. 13. 黄果兰盛开的季节,育才校园阵阵飘香.据了解某种黄果兰花粉颗粒大小约为 0.000065 米.那么数据 0.000065 用科学记数法表示为 14.已知 x 3, x 2 ,则 x 2 m n =
(2)李明和肖红一起做游戏,李明或肖红现从袋中随机摸出一个乒乓球,若摸到红色乒 乓球李明获胜,否则肖红获胜,这个游戏对双方公平吗?为什么?
23.(8 分)2017 年端午节期间,长寿湖上演规模空前的水陆空嘉年华.甲、乙两队在 比赛时的路程 y(米)与时间 t(分钟)之间的变量关系如图所示,请你根据图象,回答 下列问题: (1)求乙与甲相遇时乙的速度; (2)求出在乙队与甲相遇之前,他们何时相距 80 米?
第 9 题图
10.以梦为马,驰骋流年,重庆市双福育才中学初 2019 级迎来了期盼已久的“拾光流影” 六一晚会.当天张老师为带着儿子前去观看这次晚会,首先自己以某一速度开车从家出 发到儿子学校大门口,等待儿子放学上车,儿子上车后,张老师担心堵车耽误时间于是 就加快了车速赶到双福校区,如图所示的四个图象中(S 为离家的路程,t 为时间),符 合以上情况的是( ▲ )
A. 1
3 2
B.2 ▲ )
C.3
D. 4
2.计算 ( - a) ( - a) 的结果是( A. - a
5
B. a
5
C. - a ▲ )
6
D. a
6
3.下列事件中,是不确定事件的是(
A.打开电视正在播放重庆卫视电视台 C.平行于同一条直线的两条直线平行
B.同位角相等,两条直线平行 D.对顶角相等 ▲ )
m n
▲
.
▲
. ▲ .
15. 若 (3m + n)( m - 2n) + n 中不含 n 的一次项,则 m =
16. 如图,△ABC 中,DE 是 AB 的垂直平分线,若△ADC 的周长为 21,AC 的长为 8, 则 CB 的长为 度数为 ▲ ▲ . ▲ . . 17.在△ABC 中,∠ADC=88°,∠B=68°,∠ACD=∠BCD,AE 平分∠BAC,则∠AED 的 18.在△ABC 中,∠ABC=90°,AB=14,点 D 是边 AB 上的中点,AE⊥AB,连接 CD、CE, CD 平分∠BCE,且 CE=10AE,则四边形 ADCE 的面积为
重庆育才初 2019 级初一(下)期末考试
数 学 试 题
满分:150分 时间:120分钟 一、选择题:(本大题 12 个小题,每小题 4 分,共 48 分)在每个小题的下面,都给出 了代号为 A、B、C、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题 目的正确答案标号涂黑. 1.下列四个图形中,轴对称图形的个数是( ▲ )
第 4 题图
第 5 题图
第 6 题图
6.如图,在△ABC 中,∠A=88°,∠B=30°,若△ABC≌△A’B’C’,则∠C’的度数是 ( ▲ ) B.62° B.50° C.72° ▲ C.100°
第 1页 共 6 页
A.52° A.°
D.92° ) D.40°或 100°
7.已知,等腰三角形的一个角为 100°,则它的顶角为(
A
B
C
D
11.下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有 5 颗棋子, 第②个图形一共有 12 颗棋子,第③个图形一共有 21 颗棋子,第④个图形一共有 32 颗棋子,…,则第⑧个图形中棋子的颗数为( ▲ )
①
②
③
④
第 12 题
A.77
B.96
C.106
D.117
12.如图,△ABC、△ADE、△DFG 为等边三角形,C、E、F 三点共线,且 E 是 CF 的 中点,下列结论:①△ADG≌△EDF;②∠BAG=∠BCE;③△AEF 为等边三角形;④AB 垂直平分 GE;⑤AD=DF+GE.其中正确的个数为( ▲ ) A.2 B.3
第 16 题图
第 17 题图
第 18 题图
三、解答题:(本大题 5 个小题,共 46 分)解答时每小题必须给出必要的演算过程或推 理步骤. 19.计算:(每小题 4 分,共 16 分) (1)-2 ´ (- ) - (2019 + p ) - (-2)
2 3 0
1 2
-3
; (2)( -3ab) ( -
2
1 4 3 2 a b c ) ¸ (-3a 3b 2c 2 ) ; 3
(3) ( a - 3b + 2c)( a + 3b - 2c) ;
(4) (3a - b) - (2a + b) - 5a( a - b) .
2
2
第 3页 共 6 页
20.(6 分)已知:C 是线段 AB 的中点,且∠A=∠B,∠ACD=∠BCE,求证:CD=CE.