氨基酸代谢

合集下载

氨基酸分解代谢

氨基酸分解代谢
高氨血症的症状包括呕吐、头痛、意识障碍等,严重时 可导致昏迷。
高氨血症常见于先天性氨基酸代谢障碍、肝硬化、重症 肝炎等疾病。
治疗高氨血症的方法包括使用降氨药物、限制蛋白质摄 入、促进氨排泄等,同时需积极治疗原发病。
肝性脑病
肝性脑病是指由于肝功能严重 受损,导致氨代谢异常,引起 中枢神经系统功能紊乱的综合
酶的共价修饰
一些酶在催化过程中会发生共价修饰,如磷酸化、乙酰化 等。这些修饰可以改变酶的活性或调节酶的功能。
激素的调控
01
激素的合成与释放
激素在特定的内分泌细胞中合成,并通过血液或其他途径传输到靶细胞。
激素的合成和释放受到上游激素和营养物质的调节。
02 03
激素与受体结合
激素与靶细胞表面的受体结合,触发一系列信号转导途径,最终影响基 因表达和代谢过程。不同的激素与不同的受体结合,产生不同的生物学 效应。
02 氨基酸分解代谢的过程
氨基酸的活化
总结词
氨基酸的活化是指将游离氨基酸转变为氨基酰-tRNA的过程,是氨基酸分解代谢的起始步骤。
详细描述
在氨基酸的活化过程中,游离氨基酸与特定的tRNA结合,通过氨基酰-tRNA合成酶催化,形成氨基酰tRNA复合物。这个过程需要消耗ATP,为氨基酸提供活化所需的能量。
03 氨基酸分解代谢的调控
酶的调控
酶的激活与抑制
酶的活性受到多种因素的调节,包括激活剂和抑制剂的影 响。某些物质可以促进酶的活性,称为激活剂,而另一些 物质则抑制酶的活性,称为抑制剂。
酶的合成与降解
酶的合成和降解是动态过程,受到基因表达和蛋白质降解 的影响。在某些情况下,增加酶的合成可以促进代谢反应, 而酶的降解则可能降低代谢速率。
征。

第九章氨基酸代谢

第九章氨基酸代谢

5.96
CH3-CH-CH2 CHCOOH
Leu L
CH3
NH2
5.98
二、氨基酸的脱氨基作用
? 脱氨基作用 是指氨基酸脱去氨基生成相 应α-酮酸的过程。
氧化脱氨基
转氨基作用 ?方式
联合脱氨基
*嘌呤核苷酸循环
(一) 氧化脱氨基作用
1. L-谷氨酸脱氢酶广泛 存在于肝、脑、肾等组织中。 2. 其辅酶为 NAD+ 或NADP+。 3. GTP、ATP为其抑制剂; GDP、ADP为其激活剂。
尿素
鸟氨酸
氨基甲酰磷酸
精氨酸
延胡索酸
O2
NO
一氧化氮合酶 (NOS)
精氨酸代 琥珀酸
瓜氨酸
天冬氨酸
对心脑血管方面
NO在感觉传入以及学习记忆等有很重要的作用。先
天性精氨酸代琥珀酸合成酶(裂解酶)缺乏可出现严重
的精神障碍症状。还有研究发现 NO可抑制肿瘤的生长。
(三)高氨血症和氨中毒
1.血氨浓度升高称 高氨血症,此时可引起脑 功能障碍,称 氨中毒。常见于肝功能严重损伤、 尿素合成酶系的遗传缺陷。
1.总氮平衡 摄入氮 = 排出氮(正常成人)。 2.正氮平衡 摄入氮 > 排出氮(儿童、孕妇等 )。 3.负氮平衡 摄入氮 < 排出氮(饥饿、消耗性
疾病患者 )。 4.氮平衡意义 可反映体内蛋白质代谢的慨况。
(二) 需要量
成人每日最低蛋白质需要量为 30~50g,我 国营养学会推荐成人每日蛋白质需要量为 80g。
食物蛋白质
组织 分解 蛋白质
合成
氨基酸 代谢库
尿素 氨
α-酮酸
酮体 氧化供能

Hale Waihona Puke 体内合成氨基酸 (非必需氨基酸)

氨基酸的一般代谢

氨基酸的一般代谢

总反应式:
2NH3+CO2+3ATP+3H2O
尿素 鸟氨酸 精氨酸酶 H2O 精氨酸
尿素+2ATP+AMP+2Pi+PPi
NH3 + CO2
H2O 瓜氨酸
H2O
NH 3
NH2 + CO2 + H2O 线粒体 2ATP 2ADP+Pi 氨基甲酰磷酸 Pi 瓜氨酸 N-乙酰谷氨酸
胞液
鸟氨酸
瓜氨酸 鸟氨酸循环 鸟氨酸 尿素 H2O 精氨酸 ATP AMP+PPi 精氨酸代琥珀酸
天冬氨酸
α- 酮戊二酸
氨基酸
草酰乙酸
谷氨酸
α- 酮酸
苹果酸 延胡索酸
⑷ 鸟氨酸循环的特点: ① 尿素分子中的2个氮原子,一个来自氨, 另一个来自天冬氨酸,而天冬氨酸又可 由其它氨基酸通过转氨基作用而生成。 ② 尿素合成是一个耗能的过程,合成1分子
尿素需要消耗4个高能磷酸键。
⑸ 氨的其它去路
① 在肾小管细胞中,谷氨酰胺在谷氨酰胺 酶的作用下脱氨基,氨基与尿液中的H+ 结合,然后以胺盐的形式由尿排除。 ② 参与合成非必需氨基酸。 ③ 参与核酸中碱基的合成。
4.高血氨症和氨中毒
正常生理情况下,血氯的来源与去路保持动 态平衡,血氨浓度处于较低的水平。氨在肝脏中 合成尿素是维持这种平衡的关键。 当肝功能严重损伤时,尿素合成发生障碍, 血氨浓度升高,称为高血氨症。 一般认为,氨进入脑组织.可与脑中的α酮戊二酸结合生成谷氨酸,氨也可与脑中的谷氨 酸进一步结合生成谷氨酰胺。因此,脑中氨的增 加可以使脑细胞中的α一酮戊二酸减少,导致三 羧酸循环减弱,从而使脑组织中ATP生成减少, 引起大脑功能障碍,严重时可发生昏迷,这就是 肝昏迷氨中毒学说的基础。

氨基酸代谢的三种方式

氨基酸代谢的三种方式

氨基酸代谢的三种方式
氨基酸的代谢主要有三种方式,分别是脱氨反应、反应价和酶促反应。

这几种氨基酸的代谢方式在生物体内起着至关重要的作用。

首先是脱氨反应。

氨基酸在体内以脱氨的方式释放能量,生成酮体。

这一过程会产生大量的氨气,从而导致酸碱失衡。

因此,生物体需要通过尿素循环将多余
的氨排出体外,维持体内的酸碱平衡。

其次是反应价。

反应价主要是通过氨基酸的羟基反应,来调节氨基酸的浓度。

当氨基酸的浓度过高时,生物体可以通过增加羟基反应的速度,来降低氨基酸的浓度。

反之,当氨基酸的浓度过低时,生物体可以通过减少羟基反应的速度,来提高氨基酸的浓度。

最后是酶促反应。

氨基酸在体内的代谢过程中,绝大部分是通过酶的催化来进行的。

氨基酸可以通过酶的催化,进行氧化脱羧、脱氨、转氨和分子重排等反应,从而实现其在体内的代谢。

综上所述,氨基酸的代谢主要有脱氨反应、反应价和酶促反应三种方式。

这三种方式在生物体内协同作用,维持着氨基酸的正常代谢,并使其发挥出应有的生
理功能。

氨基酸代谢名词解释

氨基酸代谢名词解释

氨基酸代谢名词解释
氨基酸代谢是指体内氨基酸之间相互转化和利用的过程,是维持机体正常生命活动所必需的过程。

氨基酸代谢的异常会导致一系列疾病的发生,因此研究氨基酸代谢对于预防和治疗疾病具有重要意义。

在氨基酸代谢中,必需氨基酸是指人体无法自身合成而必须从饮食中摄入的氨基酸。

这些必需氨基酸包括赖氨酸、色氨酸、苯丙氨酸、甲硫氨酸、苏氨酸、异亮氨酸、亮氨酸和缬氨酸。

这些必需氨基酸对于人体的生长、维持组织和细胞功能、合成激素和神经递质等具有重要作用。

条件性必需氨基酸是指在某些特定条件下必须由饲料供给的氨基酸。

这些条件性必需氨基酸包括异亮氨酸、亮氨酸和缬氨酸。

在这些氨基酸缺乏的情况下,饲料中的这些氨基酸会被转化为其他有用的蛋白质,从而保证机体其他重要蛋白质的供应。

氨基酸代谢中的异常现象包括氨基酸尿症、苯丙酮尿症等。

氨基酸尿症是一种常见的氨基酸代谢疾病,其特征是氨基酸尿和脑损伤。

苯丙酮尿症是一种常见的氨基酸代谢疾病,其特征是苯丙氨酸水平升高,导致苯丙氨酸及其酮酸蓄积,损害神经系统和其他器官。

研究氨基酸代谢对于预防和治疗疾病具有重要意义。

通过研究氨基酸代谢的异常现象,可以揭示相关疾病的发生机制,为预防和治疗疾病提供理论基础。

同时,通过研究氨基酸代谢的调节机制,可以开发新的药物和治疗方法,提高疾病的治疗效果。

7第七章 氨基酸代谢

7第七章  氨基酸代谢
乙酸等),在有氮源提供的情况下,氨基化生成某些非必需氨基 酸,但不能生成必需氨基酸。可见蛋白质可转变为糖,而糖不能
转变为蛋白质。这就是为什么食物中蛋白质不能为糖、脂肪替代,
而蛋白质却能替代糖和脂肪供能的重要原因。
三、脂类与氨基酸代谢的联系 20种氨基酸分解后均能生成乙酰CoA,经还原缩合反应可合成脂肪 酸进而合成脂肪,即蛋白质可转变为脂肪。乙酰CoA还能合成胆固 醇以满足机体的需要。氨基酸也可作为合成磷脂的原料。脂类不
三、含硫氨基酸的代谢 体内含硫氨基酸包括三种:蛋氨酸、半胱氨酸和胱氨酸。
(一)蛋氨酸(甲硫氨酸)代谢
1.蛋氨酸是体内重要的甲基供体
三、含硫氨基酸的代谢 体内含硫氨基酸包括三种:蛋氨酸、半胱氨酸和胱氨酸。
(一)蛋氨酸(甲硫氨酸)代谢
2.蛋氨酸是必需氨基酸
3.蛋氨酸循环
三、含硫氨基酸的代谢
体内含硫氨基酸包括三种:蛋氨酸、半胱氨酸和胱氨酸。
一、氨基酸的脱氨基作用 (一)氧化脱氨基作用
一、氨基酸的脱氨基作用 (二) 转氨基作用
知识卡片
ALT是反应肝细胞损伤非常灵敏的指标
这是由于ALT主要存在于细胞质中,AST主要存在于线粒体中。病变较 轻的肝病如急性肝炎时,释放入血的转氨酶主要是ALT,血中ALT升高 程度高于 AST 。但在慢性肝炎或中毒性肝炎,特别是肝硬化时,病变
累及线粒体,此时AST升高程度就会超过ALT。故在国外,对怀疑是肝
炎患者,常同时测 AST 和 ALT ,并计算 AST/ALT 的比值,以此判断肝炎
的变化与转归。
一、氨基酸的脱氨基作用
(三)联合脱氨基作用
联合脱氨基作用有以下特点: 1.联合脱氨基作用的顺序一般先转氨 基,再氧化脱氨基。 2.转氨基作用的氨基受体是α-酮戊

氨基酸代谢

氨基酸代谢

第十二章 氨基酸代谢第一节 体内氨基酸的来源一、 外源氨基酸(一)蛋白质在胃和肠道被消化被成氨基酸和寡肽1.场所一:胃酶类:胃蛋白酶原、胃酸、胃蛋白酶消化程度:多肽及少量氨基酸2.场所二:小肠酶类:肠激酶、胰液蛋白酶(原)、内/外肽酶 消化程度:氨基酸和小肽——小肠是蛋白质消化的主要部位3.场所三:小肠粘膜细胞内酶类:寡肽酶(例如氨基肽酶及二肽酶等) 消化程度:最终产生氨基酸。

(二)氨基酸的吸收是一个主动转运过程吸收部位:主要在小肠粘膜细胞 吸收形式:氨基酸、寡肽、二肽 吸收机制:耗能的主动吸收过程1.方式一:载体蛋白与氨基酸、Na+组成三联体,由ATP 供能将氨基酸、Na+转入细胞内,Na+再由钠泵排出细胞。

2.方式二:γ-谷氨酰基循环(三)未被吸收的蛋白质在肠道细菌作用下发生腐败作用腐败作用的产物大多有害,如胺、氨、苯酚、吲哚、硫化氢等;也可产生少量的脂肪酸及维生素等可被机体利用的物质,对机体有一定的营养作用。

组胺和尸胺:降血压;酪胺:升血压;酪胺和苯乙胺:假神经递质(肝性脑病)二、 内源氨基酸(一)蛋白质的降解及其半寿期1.半寿期:蛋白质降低其原浓度一半所需要的时间,用t1/2表示。

2. PEST 序列:脯-谷-丝-苏,快速降解标志序列。

(二)真核细胞内有两条主要的蛋白质的降解途径胃蛋白胃蛋白酶 + 多肽碎片胃酸、胃蛋白酶 (十二指肠分泌,胆汁激活)1.外在和长寿蛋白质在溶酶体通过ATP-非依赖途径降解 (1)不依赖ATP (2)利用溶酶体中的组织蛋白酶降解外源性蛋白、膜蛋白和长寿命的细胞内蛋白2.异常和短寿蛋白质在蛋白酶体通过需要ATP 的泛素途径降解 (1)依赖ATP (2)泛素共价地结合于底物蛋白质,蛋白酶体特异性地识别被泛素标记的蛋白质并将其迅速降解,泛素的这种标记作用是非底物特异性的,称为泛素化。

(3)降解异常蛋白和短寿命蛋白 3*.P53蛋白:细胞内的分子警察由这种基因编码的蛋白质是一种转录因子,其控制着细胞周期的启动。

氨基酸代谢

氨基酸代谢
第九章 氨基酸代谢 第九章 氨基酸代谢
Chapter 9 Metabolism of Amino Acids
氨基酸(amino acids)是蛋白质(protein)的基本 组成单位。 氨基酸代谢包括合成代谢和分解代谢。 本章主要讨论氨基酸的分解代谢。
第一节 蛋白质在体内的降解 第一节 蛋白质在体内的降解
COOH
H2N - CH CH2 COOH
天冬氨酸
N - CH CH2 NH (CH ) COOH C
2 3
H2N- CH COOH
精氨酸代琥珀酸
4.精氨酸代琥珀酸的裂解:
在胞液中由精氨酸代琥珀酸裂解酶催化,将精氨酸代琥珀酸裂解生成 精氨酸和延胡索酸。
NH2 C
COOH
精氨酸代琥 珀酸裂解酶
NH2 C NH (CH2)3 H2N- CH COOH
谷氨酰胺的运氨作用
肝外组织细胞 ATP + NH3 ADP + Pi
谷氨酰胺合成酶
glutamic acid
谷氨酰胺酶
glutamine
血液
NH3
肝细胞
H2O
第四节 氨基酸转变为生物活性物质 第四节 氨基酸转变为生物活性物质
一. 形成生物胺类
(一)5-羟色胺的生成:
5-羟色胺(5-hydroxytryptamine,5-HT)是一种重要的神 经递质,且具有强烈的缩血管作用。 5-羟色胺的合成原料是色氨酸(tryptophan)。
二、氨基酸的脱氨基作用
氨基酸主要通过三种方式脱氨基,即氧化脱氨基,联 合脱氨基和非氧化脱氨基。 在这三种脱氨基作用中,以联合脱氨基作用最为重 要;而非氧化脱氨基作用则主要见于微生物中。
(一)氧化脱氨基作用:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蛋白质降解和氨基酸代谢一、填空题1.根据蛋白酶作用肽键的位置,蛋白酶可分为 酶和 酶两类,胰蛋白酶则属于 酶。

2.转氨酶类属于双成分酶,其共有的辅基为 或 ;谷草转氨酶促反应中氨基供体为 氨酸,而氨基的受体为 该种酶促反应可表示为 。

3.植物中联合脱氨基作用需要 酶类和 酶联合作用,可使大多数氨基酸脱去氨基。

4.在线粒体内谷氨酸脱氢酶的辅酶多为 ;同时谷氨酸经L-谷氨酸氢酶作用生成的酮酸为 ,这一产物可进入 循环最终氧化为CO 2和H 2O 。

5.动植物中尿素生成是通 循环进行的,此循环每进行一周可产生一分子尿素,其尿素分子中的两个氨基分别来自于 和 。

每合成一分子尿素需消耗 分子ATP 。

6.根据反应填空()( )氨酸 ( )酸7.氨基酸氧化脱氨产生的 -酮酸代谢主要去向是 、 、 、 。

8.固氮酶除了可使N 2还原成 以外,还能对其它含有三键的物质还原,如 等。

该酶促作用过程中消耗的能量形式为 。

9.生物界以NADH 或NADPH 为辅酶硝酸还原酶有三个类别,其中高等植物子叶中则以 硝酸还原酸酶为主,在绿藻、酵母中存在着 硝酸还原酶或 硝酸还原酶。

10.硝酸还原酶催化机理如下图请填空完成反应过程。

NAD (P )H —— 2Cytb557 —— NO -+H 2O还原型2Cytb -557NAD (P )+ 氧化型 —— NO 3-CH 3 C=O COOH COOH CHNH 2 CH 2 CH 2 COOH11.亚硝酸还原酶的电子供体为,而此电子供体在还原子时的电子或氢则来自于或。

12.氨同化(植物组织中)通过谷氨酸循环进行,循环所需要的两种酶分别为和;它们催化的反应分别表示为和。

13.写出常见的一碳基团中的四种形式、、、;能提供一碳基团的氨基酸也有许多。

请写出其中的三种、、。

二、选择题(将正确答案相应字母填入括号中)1.谷丙转氨酶的辅基是()A、吡哆醛B、磷酸吡哆醇C、磷酸吡哆醛D、吡哆胺E、磷酸吡哆胺2.存在于植物子叶中和绿藻中的硝酸还原酶是()A、NADH—硝酸还原酶B、NADPH—硝酸还原酶C、Fd—硝酸还原酶D、NAD(P)H—硝酸还原酶3.硝酸还原酶属于诱导酶,下列因素中哪一种为最佳诱导物()A、硝酸盐B、光照C、亚硝酸盐D、水分4.固氮酶描述中,哪一项不正确()A、固氮酶是由钼铁蛋白质构成的寡聚蛋白B、固氮酶是由钼铁蛋白质和铁蛋白构成寡聚蛋白C、固氮酶活性中心富含Fe原子和S2-离子D、固氮酶具有高度专一性,只对N2起还原作用5.根据下表内容判断,不能生成糖类的氨基酸为()氨基酸降解中产生的α-酮酸6A、经谷氨酰胺合成酶作用,NH3与谷氨酸合成谷氨酰胺;B、经天冬酰胺合成酶作用,NH3与天冬氨酸合成天冬酰胺;C、经鸟氨酸循环形成尿素;D、与有机酸结合成铵盐。

7.对于植物来说NH3同化的主要途径是()A、氨基甲酰磷酸酶ONH3+CO2H2N-C-OPO32-2ATP+H2O 2ADP+Pi 氨基甲酰磷酸B、谷氨酰胺合成酶NH3+L-谷氨酸L-谷氨酰胺A TP ADP+PiC、α-酮戊二酸+NH3+NAD(P)H2L-谷氨酸+NAD(P)++H2OD、嘌呤核苷酸循环8.一碳单位的载体是()A、叶酸B、四氢叶酸C、生物素D、焦磷酸硫胺素9.代谢过程中,可作为活性甲基的直接供体是()A、甲硫氨酸B、s—腺苷蛋酸C、甘氨酸D、胆碱10.在鸟氨酸循环中,尿素由下列哪种物质水解而得()A、鸟氨酸B、胍氨酸C、精氨酸D、精氨琥珀酸11.糖分解代谢中α-酮酸由转氨基作用可产生的氨基酸为()A、苯丙氨酸、甘氨酸、谷氨酰胺B、甲硫氨酸、天冬氨酸、半胱氨酸C、谷氨酸、天冬氨酸、丙氨酸D、天冬酰胺、精氨酸、赖氨酸12.NH3经鸟氨酸循环形成尿素的主要生理意义是()A、对哺乳动物来说可消除NH3毒性,产生尿素由尿排泄B、对某些植物来说不仅可消除NH3毒性,并且是NH3贮存的一种形式C、是鸟氨酸合成的重要途径D、是精氨酸合成的主要途径13.植物生长激素β-吲哚乙酸可由氨基酸脱去羧基后一步转变而成,该种氨基酸是()A、苯丙氨酸B、色氨酸C、组氨酸D、精氨酸14.参与嘧啶合成氨基酸是()A、谷氨酸B、赖氨酸C、天冬氨酸D、精氨酸15.可作为一碳基团供体的氨基酸有许多,下列的所给的氨基酸中哪一种则不可能提供一碳基团()A、丝氨酸B、甘氨酸C、甲硫氨酸D、丙氨酸16.经脱羧酶催化脱羧后可生成γ-氨基丁酸的是()A、赖氨酸B、谷氨酸C、天冬氨酸D、精氨酸17.谷氨酸甘氨酸可共同参与下列物质合成的是()A、辅酶AB、嘌呤碱C、嘧啶碱D、叶绿素18.下列过程不能脱去氨基的是()A、联合脱氨基作用B、氧化脱氨基作用C、嘌呤核甘酸循环D、转氨基作用三、解释名词1.肽链内切酶2.肽链端解酶、羧基肽酶、氨基肽酶3.联合脱氨基作用4.转氨基作用5.氨同化6.生糖氨基酸、生酮氨基酸、生糖兼生酮氨基酸7.一碳单位(基团) 8.蛋白质互补作用9.必需氨基酸10.非必需氨基酸11.氨基酸脱羧基作用12.非氧化脱氨基作用四、判断题1.L-谷氨酸脱氨酶不仅可以使L-谷氨酸脱氨基,同时也是联合脱氨基作用不可缺少的重要酶。

()2.许多氨基酸氧化酶广泛存在于植物界,因此大多数氨基酸可通过氧化脱氨基作用脱去氨基。

()3.蛋白酶属于单成酶,分子中含有活性巯基(-SH),因此烷化剂,重金属离子都能抑制此类酶的活性。

()4.氨基酸的碳骨架可由糖分解代谢过程中的α-酮酸或其它中间代谢物提供,反过来过剩的氨基酸分解代谢中碳骨架也可通过糖异生途径合成糖。

( )5.植物细胞内,硝酸还原酶存在于胞质中,因此,该酶促反应的氢(电子和质子)供体NADH 或NAPH 主要来自于糖分代谢。

( )6.植物界亚硝酸还原酶存在绿色组织的叶绿体中,光合作用中还原态的铁氧还蛋白(Fd )可为亚硝酸还原提供电子。

( )7.亚硝酸还原酶的辅基是铁卟啉衍生物,当植物缺铁时亚硝酸的还原受阻。

( )8.谷氨酸脱氢酶催化的反应如下:α-酮戊二酸+NH 3+NADPH+H + L-谷氨酸+NADP ++H 2O该酶由于广泛存在,因此该酶促反应也是植物氨同化的主要途径之一。

( ) 9.氨甲酰磷酸合成酶促反应是植物及某些微生物氨同化的主要方式之一。

( )10.磷酸吡哆醛是转氨酶的辅基,转氨酶促反应过程中,其中醛基可作为催化基团能与底物形成共价化合物,即Schff`s 碱。

( ) 11.动植物组织中广泛存在转氨酶,需要α-酮戊二酸作为氨基受体,因此它们对与之相偶联的两个底物中的一个底物,即α-酮戊二酸是专一的,而对另一个底物则无严格的专一性。

( )12.脱羧酶的辅酶是1磷酸毗醛。

( )13.非必需氨基酸和必需氨基酸是针对人和哺乳动物而言的,它们意即人或动物不需或必需而言的。

( )14.鸟氨酸循环(一般认为)第一步反应是从鸟氨酸参与的反应开始,首先生成瓜氨酸,而最后则以精氨酸水解产生尿素后,鸟氨酸重新生成而结束一个循环的。

( )15.NADPH-硝酸还原酶是寡聚酶,它以FAD 和钼为辅因子,这些辅因子参与电子传递。

( )16.四氢叶酸结构为HH 2N它可作为一碳基团转移酶的辅酶,在一碳基团传递过程中,N 7及N 10常常是一碳基团的推带部位。

( )17.磷酸甘油酸作为糖代谢中间物,它可以植物细胞内转变为丝氨酸及半胱氨酸。

( )18.组氨酸生物合成中的碳架来自于1.5-二磷酸核糖。

( )19.丝氨酸在一碳基团转移酶作用下反应是HO -CH 2-CH -COOH FH 42转移酶H 2N -CH 2-COOH N 10-CH 2-OHFH 4甘说明丝氨酸提供的一碳基团为-CH 2OH ,而N 10-CH 2OHFH 4则是N 10携带着羟甲基的四N N N H H CH H N C R O 3 4 5 6 9 10氢叶酸。

( )五、简答题及计算题:1.计算1mol 的丙氨酸在植物或动物体内彻底氧化可产生多个摩尔的ATP 。

2.简明叙述尿素形成的机理和意义。

3.简述植物界普遍存在的谷氨酰胺合成酶及天冬酰胺合成酶的作用及意义。

4.简述自然界氮素如何循环。

5.生物固氮中,固氮酶促反应需要满足哪些条件。

6.高等植物中的硝酸还原酶与光合细菌中硝酸还原酶有哪些类别和特点。

7.高含蛋白质的食品腐败往往会引起人畜食物中毒,简述基原因。

8.以丙氨基为例说明生糖氨基本转变成糖的过程。

9.简单阐述L-谷氢酸脱氢酶所催化的反应逆过程为什么不可能是植物细胞氨同化的主要途径。

10.在生物体要使蛋白质水解成氨基酸需要哪些蛋白酶。

11.转氨酶主要有那些种类它们对底物专一性有哪些特点,它们可与什么酶共同完成氨基酸脱氨基作用。

12.一碳基团常见的有哪些形式,四氢叶酸作为一碳基团的传递体,在作用过程中携带一碳单位的活性部位如何。

答案:一、填空:1. 肽链内切 肽链端解 内切 2.磷酸吡哆醛 磷酸吡哆胺 谷或天冬草乙酸或α-酮戊二酸 3.转氨 L-谷氨酸脱氢酶 4.NAD + α-酮戊二酸 三羟酸 5.鸟氨酸(尿素) NH3 天冬氨酸 46. CH 3 COOHCHNH 2 C=OCOOH CH 2丙氨酸 CH 2COOHα-酮戊二酸丙酮酸 谷氨酸7.再生成氨基酸与有机酸生成铵盐,进入三羟酸循环氧化,生成糖或其它物质。

8.NH 3 C 2H 2 CNH ATP 9.NADH- NADH- NADPH- 10.FAD FADH 2 2M 6+ 2M 5++2H + 11.还原型铁氧还蛋白(Fd ),光合作用光反应, NADPH12.谷氨酰合成酶(GS ) 谷氨酸合成酶(GOGAT ) L-谷氨酸+ATP+NH 3 L-谷氨酰酸+ADP+Piα-酮戊二酸+L-谷氨酰胺 2L-谷氨酸NAD (P )H+H + NAD (P )+或Fd (还原型) 或Fd (氧化型)13.-CH 3 -CH 2OH -CHO CH 2NH 2 甘、丝、苏、组(或甲硫氨酸)二、选择题: 1.CE 2.A 3.A 4.B 5.A 6.AB 7.B 8.B 9.B10.C 11.C 12.AB 13.B 14.C 15.D 16.B 17.B 18.D三、名词解释(略)四、判断题:1.√ 2.× 3.√ 4.√ 5.√ 6.√ 7.√ 8.× 9.√ 10.√ 11.√ 12.√ 13.× 14.√ 15.√ 16.× 17.√ 18.√ 19.√GOGAT GS五、简答及计算:1.丙氨酸α-酮戊二酸NADH+H+(线粒体)L-谷氨酸NAD+3ATP丙酮酸NAD+(3A TP)3NADH×3NADH+H+1FADH2×2乙酰COA(一次循环)1ATP×1三羧酸循环2.答:尿素在哺乳动物肝脏或某些植物如洋蕈中通过鸟氨酸循环形成,对哺乳动物来说,它是解除氨毒性的主要方式,因为尿素可随尿液排除体外,对植物来说除可解除氨毒性外,形成的尿素是氮素的很好贮存和运输的重要形式,当需要时,植物组织存在脲酶,可使其水解重新释放出NH3,被再利用。

相关文档
最新文档