《圆与圆的位置关系》测试题

合集下载

专题24圆的有关位置关系(共52题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版

专题24圆的有关位置关系(共52题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版

备战2023年中考数学必刷真题考点分类专练(全国通用)专题24圆的有关位置关系(共52题)一.选择题(共15小题)1.(2022•长沙)如图,P A,PB是⊙O的切线,A、B为切点,若∠AOB=128°,则∠P的度数为()A.32°B.52°C.64°D.72°2.(2022•哈尔滨)如图,AD,BC是⊙O的直径,点P在BC的延长线上,P A与⊙O相切于点A,连接BD,若∠P=40°,则∠ADB的度数为()A.65°B.60°C.50°D.25°3.(2022•无锡)如图,AB是圆O的直径,弦AD平分∠BAC,过点D的切线交AC于点E,∠EAD=25°,则下列结论错误的是()A.AE⊥DE B.AE∥OD C.DE=OD D.∠BOD=50°4.(2022•眉山)如图是不倒翁的主视图,不倒翁的圆形脸恰好与帽子边沿P A,PB分别相切于点A,B,不倒翁的鼻尖正好是圆心O,若∠OAB=28°,则∠APB的度数为()A.28°B.50°C.56°D.62°5.(2022•重庆)如图,AB是⊙O的切线,B为切点,连接AO交⊙O于点C,延长AO交⊙O于点D,连接BD.若∠A=∠D,且AC=3,则AB的长度是()A.3B.4C.3D.46.(2022•武汉)如图,在四边形材料ABCD中,AD∥BC,∠A=90°,AD=9cm,AB=20cm,BC=24cm.现用此材料截出一个面积最大的圆形模板,则此圆的半径是()A.cm B.8cm C.6cm D.10cm7.(2022•重庆)如图,AB是⊙O的直径,C为⊙O上一点,过点C的切线与AB的延长线交于点P,若AC =PC=3,则PB的长为()A.B.C.D.38.(2022•自贡)P为⊙O外一点,PT与⊙O相切于点T,OP=10,∠OPT=30°,则PT长为()A.5B.5C.8D.99.(2022•梧州)如图,⊙O是△ABC的外接圆,且AB=AC,∠BAC=36°,在上取点D(不与点A,B 重合),连接BD,AD,则∠BAD+∠ABD的度数是()A.60°B.62°C.72°D.73°10.(2022•十堰)如图,⊙O是等边△ABC的外接圆,点D是弧AC上一动点(不与A,C重合),下列结论:①∠ADB=∠BDC;②DA=DC;③当DB最长时,DB=2DC;④DA+DC=DB,其中一定正确的结论有()A.1个B.2个C.3个D.4个11.(2022•邵阳)如图,⊙O是等边△ABC的外接圆,若AB=3,则⊙O的半径是()A.B.C.D.12.(2022•德阳)如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,与BC相交于点G,则下列结论:①∠BAD=∠CAD;②若∠BAC=60°,则∠BEC=120°;③若点G为BC的中点,则∠BGD=90°;④BD=DE.其中一定正确的个数是()A.1B.2C.3D.413.(2022•娄底)如图,等边△ABC内切的图形来自我国古代的太极图,等边三角形内切圆中的黑色部分和白色部分关于等边△ABC的内心成中心对称,则圆中的黑色部分的面积与△ABC的面积之比是()A.B.C.D.14.(2022•吉林)如图,在△ABC中,∠ACB=90°,AB=5,BC=4.以点A为圆心,r为半径作圆,当点C在⊙A内且点B在⊙A外时,r的值可能是()A.2B.3C.4D.515.(2022•杭州)如图,已知△ABC内接于半径为1的⊙O,∠BAC=θ(θ是锐角),则△ABC的面积的最大值为()A.cosθ(1+cosθ)B.cosθ(1+sinθ)C.sinθ(1+sinθ)D.sinθ(1+cosθ)二.填空题(共17小题)16.(2022•泰州)如图,P A与⊙O相切于点A,PO与⊙O相交于点B,点C在上,且与点A、B不重合.若∠P=26°,则∠C的度数为°.17.(2022•海南)如图,射线AB与⊙O相切于点B,经过圆心O的射线AC与⊙O相交于点D、C,连接BC,若∠A=40°,则∠ACB=°.18.(2022•怀化)如图,AB与⊙O相切于点C,AO=3,⊙O的半径为2,则AC的长为.19.(2022•株洲)中国元代数学家朱世杰所著《四元玉鉴》记载有“锁套吞容”之“方田圆池结角池图”.“方田一段,一角圆池占之.”意思是说:“一块正方形田地,在其一角有一个圆形的水池(其中圆与正方形一角的两边均相切)”,如图所示.问题:此图中,正方形一条对角线AB与⊙O相交于点M、N(点N在点M的右上方),若AB的长度为10丈,⊙O的半径为2丈,则BN的长度为丈.20.(2022•泰安)如图,在△ABC中,∠B=90°,⊙O过点A、C,与AB交于点D,与BC相切于点C,若∠A=32°,则∠ADO=.21.(2022•宁波)如图,在△ABC中,AC=2,BC=4,点O在BC上,以OB为半径的圆与AC相切于点A.D是BC边上的动点,当△ACD为直角三角形时,AD的长为.22.(2022•连云港)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,连接BC,与⊙O交于点D,连接OD.若∠AOD=82°,则∠C=°.23.(2022•金华)如图,木工用角尺的短边紧靠⊙O于点A,长边与⊙O相切于点B,角尺的直角顶点为C.已知AC=6cm,CB=8cm,则⊙O的半径为cm.24.(2022•黑龙江)如图,在⊙O中,AB是⊙O的弦,⊙O的半径为3cm.C为⊙O上一点,∠ACB=60°,则AB的长为cm.25.(2022•泰州)如图,△ABC中,∠C=90°,AC=8,BC=6,O为内心,过点O的直线分别与AC、AB边相交于点D、E.若DE=CD+BE,则线段CD的长为.26.(2022•玉林)如图,在5×7网格中,各小正方形边长均为1,点O,A,B,C,D,E均在格点上,点O是△ABC的外心,在不添加其他字母的情况下,则除△ABC外把你认为外心也是O的三角形都写出来.27.(2022•宜宾)我国古代数学家赵爽的“弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示).若直角三角形的内切圆半径为3,小正方形的面积为49,则大正方形的面积为.28.(2022•泸州)如图,在Rt△ABC中,∠C=90°,AC=6,BC=2,半径为1的⊙O在Rt△ABC内平移(⊙O可以与该三角形的边相切),则点A到⊙O上的点的距离的最大值为.29.(2022•湖北)如图,点P是⊙O上一点,AB是一条弦,点C是上一点,与点D关于AB对称,AD交⊙O于点E,CE与AB交于点F,且BD∥CE.给出下面四个结论:①CD平分∠BCE;②BE=BD;③AE2=AF•AB;④BD为⊙O的切线.其中所有正确结论的序号是.30.(2022•恩施州)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,⊙O为Rt△ABC的内切圆,则图中阴影部分的面积为(结果保留π).31.(2022•黔东南州)如图,在△ABC中,∠A=80°,半径为3cm的⊙O是△ABC的内切圆,连接OB、OC,则图中阴影部分的面积是cm2.(结果用含π的式子表示)32.(2022•凉山州)如图,在边长为1的正方形网格中,⊙O是△ABC的外接圆,点A,B,O在格点上,则cos∠ACB的值是.三.解答题(共20小题)33.(2022•临沂)如图,AB是⊙O的切线,B为切点,直线AO交⊙O于C,D两点,连接BC,BD.过圆心O作BC的平行线,分别交AB的延长线、⊙O及BD于点E,F,G.(1)求证:∠D=∠E;(2)若F是OE的中点,⊙O的半径为3,求阴影部分的面积.34.(2022•恩施州)如图,P为⊙O外一点,P A、PB为⊙O的切线,切点分别为A、B,直线PO交⊙O于点D、E,交AB于点C.(1)求证:∠ADE=∠P AE.(2)若∠ADE=30°,求证:AE=PE.(3)若PE=4,CD=6,求CE的长.35.(2022•十堰)如图,△ABC中,AB=AC,D为AC上一点,以CD为直径的⊙O与AB相切于点E,交BC于点F,FG⊥AB,垂足为G.(1)求证:FG是⊙O的切线;(2)若BG=1,BF=3,求CF的长.36.(2022•衡阳)如图,AB为⊙O的直径,过圆上一点D作⊙O的切线CD交BA的延长线于点C,过点O作OE∥AD交CD于点E,连接BE.(1)直线BE与⊙O相切吗?并说明理由;(2)若CA=2,CD=4,求DE的长.37.(2022•天津)已知AB为⊙O的直径,AB=6,C为⊙O上一点,连接CA,CB.(Ⅰ)如图①,若C为的中点,求∠CAB的大小和AC的长;(Ⅱ)如图②,若AC=2,OD为⊙O的半径,且OD⊥CB,垂足为E,过点D作⊙O的切线,与AC的延长线相交于点F,求FD的长.38.(2022•绍兴)如图,半径为6的⊙O与Rt△ABC的边AB相切于点A,交边BC于点C,D,∠B=90°,连结OD,AD.(1)若∠ACB=20°,求的长(结果保留π).(2)求证:AD平分∠BDO.39.(2022•安徽)已知AB为⊙O的直径,C为⊙O上一点,D为BA的延长线上一点,连接CD.(1)如图1,若CO⊥AB,∠D=30°,OA=1,求AD的长;(2)如图2,若DC与⊙O相切,E为OA上一点,且∠ACD=∠ACE.求证:CE⊥AB.40.(2022•德阳)如图,AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足是点H,过点C作直线分别与AB,AD的延长线交于点E,F,且∠ECD=2∠BAD.(1)求证:CF是⊙O的切线;(2)如果AB=10,CD=6,①求AE的长;②求△AEF的面积.41.(2022•随州)如图,已知D为⊙O上一点,点C在直径BA的延长线上,BE与⊙O相切,交CD的延长线于点E,且BE=DE.(1)判断CD与⊙O的位置关系,并说明理由;(2)若AC=4,sin C=,①求⊙O的半径;②求BD的长.42.(2022•邵阳)如图,已知DC是⊙O的直径,点B为CD延长线上一点,AB是⊙O的切线,点A为切点,且AB=AC.(1)求∠ACB的度数;(2)若⊙O的半径为3,求圆弧的长.43.(2022•新疆)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,点D在⊙O上,AC=CD,连接AD,延长DB交过点C的切线于点E.(1)求证:∠ABC=∠CAD;(2)求证:BE⊥CE;(3)若AC=4,BC=3,求DB的长.44.(2022•扬州)如图,AB为⊙O的弦,OC⊥OA交AB于点P,交过点B的直线于点C,且CB=CP.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若sin A=,OA=8,求CB的长.45.(2022•赤峰)如图,已知AB为⊙O的直径,点C为⊙O外一点,AC=BC,连接OC,DF是AC的垂直平分线,交OC于点F,垂足为点E,连接AD、CD,且∠DCA=∠OCA.(1)求证:AD是⊙O的切线;(2)若CD=6,OF=4,求cos∠DAC的值.46.(2022•齐齐哈尔)如图,在△ABC中,AB=AC,以AB为直径作⊙O,AC与⊙O交于点D,BC与⊙O 交于点E,过点C作CF∥AB,且CF=CD,连接BF.(1)求证:BF是⊙O的切线;(2)若∠BAC=45°,AD=4,求图中阴影部分的面积.47.(2022•玉林)如图,AB是⊙O的直径,C,D都是⊙O上的点,AD平分∠CAB,过点D作AC的垂线交AC的延长线于点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)若AB=10,AC=6,求tan∠DAB的值.48.(2022•南充)如图,AB为⊙O的直径,点C是⊙O上一点,点D是⊙O外一点,∠BCD=∠BAC,连接OD交BC于点E.(1)求证:CD是⊙O的切线.(2)若CE=OA,sin∠BAC=,求tan∠CEO的值.49.(2022•黔东南州)(1)请在图1中作出△ABC的外接圆⊙O(尺规作图,保留作图痕迹,不写作法);(2)如图2,⊙O是△ABC的外接圆,AE是⊙O的直径,点B是的中点,过点B的切线与AC的延长线交于点D.①求证:BD⊥AD;②若AC=6,tan∠ABC=,求⊙O的半径.50.(2022•鄂州)如图,△ABC内接于⊙O,P是⊙O的直径AB延长线上一点,∠PCB=∠OAC,过点O 作BC的平行线交PC的延长线于点D.(1)试判断PC与⊙O的位置关系,并说明理由;(2)若PC=4,tan A=,求△OCD的面积.51.(2022•宿迁)如图,在△ABC中,∠ABC=45°,AB=AC,以AB为直径的⊙O与边BC交于点D.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)若AB=4,求图中阴影部分的面积.52.(2022•娄底)如图,已知BD是Rt△ABC的角平分线,点O是斜边AB上的动点,以点O为圆心,OB 长为半径的⊙O经过点D,与OA相交于点E.(1)判定AC与⊙O的位置关系,为什么?(2)若BC=3,CD=,①求sin∠DBC、sin∠ABC的值;②试用sin∠DBC和cos∠DBC表示sin∠ABC,猜测sin2α与sinα、cosα的关系,并用α=30°给予验证.。

圆与圆的位置关系综合练习

圆与圆的位置关系综合练习

圆与圆的位置综合练习一.选择题(共10小题)1.(2010•防城港)在数轴上,点A所表示的实数是﹣2,⊙A的半径为2,⊙B的半径为1,若⊙B与⊙A外切,则在数轴上点B所表示的实数是()A.1B.﹣5 C.1或﹣5 D.﹣1或﹣32.(2009•肇庆)若⊙O1与⊙O2相切,且O1O2=5,⊙O1的半径r1=2,则⊙O2的半径r2是()A.3B.5C.7D.3或73.(2009•临沂)已知⊙O1和⊙O2相切,⊙O1的直径为9cm,⊙O2的直径为4cm.则O1O2的长是()A.5cm或13cm B.2.5cm C.6.5cm D.2.5cm或6.5cm4.(2009•佛山)将两枚同样大小的硬币放在桌上,固定其中一枚,而另一枚则沿着其边缘滚动一周,这时滚动的硬币滚动了()A.1圈B.1.5圈C.2圈D.2.5圈5.(2009•滨州)已知两圆半径分别为2和3,圆心距为d,若两圆没有公共点,则下列结论正确的是()A.0<d<1 B.d>5 C.0<d<1或d>5 D.0≤d<1或d>56.(2008•雅安)已知两圆圆心距是5,半径分别为2和3,则两圆的位置关系为()A.相离B.相交C.内切D.外切7.(2008•宁夏)已知⊙O1和⊙O2相切,两圆的圆心距为9cm,⊙O1的半径为4cm,则⊙O2的半径为()A.5cm B.13cm C.9cm或13cm D.5cm或13cm8.(2007•肇庆)若两圆没有公共点,则两圆的位置关系是()A.外离B.外切C.内含D.外离或内含9.(2007•襄阳)如图,△ABC是边长为10的等边三角形,以AC为直径作⊙O,D是BC上一点,BD=2,以点B 为圆心,BD为半径的⊙B与⊙O的位置关系为()A.相交B.外离C.外切D.内切10.(2007•泰安)半径分别为13和15的两圆相交,且公共弦长为24,则两圆的圆心距为()A.或14 B.或4C.14 D.4或14二.填空题(共8小题)11.(2012•攀枝花)如图,以BC为直径的⊙O1与⊙O2外切,⊙O1与⊙O2的外公切线交于点D,且∠ADC=60°,过B点的⊙O1的切线交其中一条外公切线于点A.若⊙O2的面积为π,则四边形ABCD的面积是_________.12.(2011•绍兴)如图,相距2cm的两个点A、B在直线l上.它们分别以2cm/s和1cm/s的速度在l上同时向右平移,当点A,B分别平移到点A1,B1的位置时,半径为1cm的⊙A1,与半径为BB1的⊙B相切.则点A平移到点A1,所用的时间为_________s.13.(2010•宁夏)如图是三根外径均为1米的圆形钢管堆积图和主视图,则其最高点与地面的距离是_________米.14.(2008•绍兴)如图中的圆均为等圆,且相邻两圆外切,圆心连线构成正三角形,记各阴影部分面积从左到右依次为S1,S s,S3,…,S n,则S12:S4的值等于_________.15.(2008•三明)如图,在以O为圆心的两个同心圆中,大圆的直径AB交小圆于C、D两点,AC=CD=DB,分别以C、D为圆心,以CD为半径作圆.若AB=6cm,则图中阴影部分的面积为_________cm2.16.(2007•河池)若两圆的半径分别为5cm和3cm,圆心距为1cm,则这两个圆的位置关系是_________.17.(2004•郫县)已知半径3cm,4cm的两圆外切,那么半径为6cm且与这两圆都相切的圆共有_________个.18.(2000•嘉兴)如图,⊙O1与⊙O2交于点A,B,延长⊙O2的直径CA交⊙O1于点D,延长⊙O2的弦CB交⊙O1于点E.已知AC=6,AD:BC:BE=1:1:5,则DE的长是_________.三.解答题(共5小题)19.(2012•鼓楼区二模)如图,已知边长为10的菱形ABCD,对角线BD、AC交于点O,AC=12,点P在射线BD 上运动,过点P分别向直线AB、AD作垂线,垂足分别为E、F.(1)对角线BD长为_________;(2)设PB=x,以PO为半径的⊙P与以DF为半径的⊙D相切时,求x的值.20.(2008•静安区二模)如图,在四边形ABCD中,∠B=90°,AD∥BC,AB=4,BC=12,点E在边BA的延长线上,AE=2,点F在BC边上,EF与边AD相交于点G,DF⊥EF,设AG=x,DF=y.(1)求y关于x的函数解析式,并写出定义域;(2)当AD=11时,求AG的长;(3)如果半径为EG的⊙E与半径为FD的⊙F相切,求这两个圆的半径.21.如图,正方形网格中,每个小正方形的边长为1个单位,以O为原点建立平面直角坐标系,圆心为A(3,0)的⊙A被y轴截得的弦长BC=8.解答下列问题:(1)求⊙A 的半径;(2)请在图中将⊙A 先向上平移6 个单位,再向左平移8个单位得到⊙D,并写出圆心D的坐标;(3)观察你所画的图形,对⊙D 与⊙A 的位置关系作出合情的猜想,并直接写出你的结论.聪明的小伙伴,你完成整张试卷全部试题的解答后,如果还有时间对问题(3)的猜想结论给出证明,将酌情另加1~5分,并计入总分.22.如图,在平台上用直径为100mm的两根圆钢棒嵌在大型工件的两侧,测量大的圆形工件的直径,设两圆钢棒的外侧的距离为xmm,工件的直径为Dmm.(1)求出D(mm)与x(mm)之间的函数关系式;(2)当图形工件的直径D小于圆钢棒的直径时,上面所求得的D与x的函数关系式还是否仍然适用?请说明理由.23.实验探究:同学们,你注意过烟盒里的香烟是如何摆放的吗?已知,一个烟盒的长为56mm,宽为22mm,高为87mm,一根烟的直径是8mm,若把20根香烟摆放在烟盒中,请你探究合理的摆放方法.圆与圆的位置综合练习参考答案与试题解析一.选择题(共10小题)1.(2010•防城港)在数轴上,点A所表示的实数是﹣2,⊙A的半径为2,⊙B的半径为1,若⊙B与⊙A外切,则在数轴上点B所表示的实数是()A.1B.﹣5 C.1或﹣5 D.﹣1或﹣3考点:圆与圆的位置关系.专题:压轴题.分析:本题直接告诉了两圆的半径及位置关系,根据数量关系与两圆位置关系的对应情况便可直接得出答案.外离,则P>R+r;外切,则P=R+r;相交,则R﹣r<P<R+r;内切,则P=R﹣r;内含,则P<R﹣r.(P表示圆心距,R,r分别表示两圆的半径).解答:解:设数轴上点B所表示的实数是b,则AB=||b﹣(﹣2)|=|b+2|,⊙B与⊙A外切时,AB=2+1,即|b+2|=3,解得b=1或﹣5,故选C.点评:本题考查了由数量关系及两圆位置关系求圆心坐标的方法.2.(2009•肇庆)若⊙O1与⊙O2相切,且O1O2=5,⊙O1的半径r1=2,则⊙O2的半径r2是()A.3B.5C.7D.3或7考点:圆与圆的位置关系.专题:压轴题.分析:两圆相切,包括了内切或外切,即d=R+r,d=R﹣r,分别求解.解答:解:∵这两圆相切∴⊙O1与⊙O2的位置关系是内切或外切,O1O2=5,⊙O1的半径r1=2,所以r1+r2=5或r2﹣r1=5,解得r2=3或7.故选D.点评:本题考查了由两圆位置关系来判断半径和圆心距之间数量关系的方法.两圆的半径分别为R和r,且R≥r,圆心距为d:外离d>R+r;外切d=R+r;相交R﹣r<d<R+r;内切d=R﹣r;内含d<R﹣r.3.(2009•临沂)已知⊙O1和⊙O2相切,⊙O1的直径为9cm,⊙O2的直径为4cm.则O1O2的长是()A.5cm或13cm B.2.5cm C.6.5cm D.2.5cm或6.5cm考点:圆与圆的位置关系.专题:压轴题.分析:半径不相等的两圆相切有两种情况:内切和外切,不要只考虑其中一种情况.由⊙O1与⊙O2的直径分别为9cm和4cm得两圆的半径分别为4.5cm、2cm;当两圆外切时,O1O2=4.5+2=6.5(cm);当两圆内切时,O1O2=4.5﹣2=2.5(cm),所以O1O2的值为6.5cm或2.5cm.注意,相同半径的两圆只有外切与外离,而没有内切与内含的位置关系.解答:解:∵⊙O1和⊙O2相切,∴两圆可能内切和外切,∴当两圆外切时,O1O2=4.5+2=6.5(cm);当两圆内切时,O1O2=4.5﹣2=2.5(cm);∴O1O2的长是2.5cm或6.5cm.∴故选D.点评:本题考查两圆的位置关系.特别注意:两圆相切,则可能有两种情况,内切或外切.4.(2009•佛山)将两枚同样大小的硬币放在桌上,固定其中一枚,而另一枚则沿着其边缘滚动一周,这时滚动的硬币滚动了()A.1圈B.1.5圈C.2圈D.2.5圈考点:圆与圆的位置关系.专题:压轴题;转化思想.分析:根据自身的周长和滚动的周长求解.解答:解:设圆的半径是r,则另一枚沿着其边缘滚动一周所走的路程是以2r为半径的圆周长,即是4πr,它自身的周长是2πr.即一共滚了2圈.故选C.点评:此题要特别注意正确分析另一枚则沿着其边缘滚动一周所走的路程.5.(2009•滨州)已知两圆半径分别为2和3,圆心距为d,若两圆没有公共点,则下列结论正确的是()A.0<d<1 B.d>5 C.0<d<1或d>5 D.0≤d<1或d>5考点:圆与圆的位置关系.专题:压轴题.分析:若两圆没有公共点,则可能外离或内含,据此考虑圆心距的取值范围.解答:解:若两圆没有公共点,则可能外离或内含,外离时的数量关系应满足d>5;内含时的数量关系应满足0≤d<1.故选D.点评:考查了两圆的位置关系和数量关系之间的等价关系.6.(2008•雅安)已知两圆圆心距是5,半径分别为2和3,则两圆的位置关系为()A.相离B.相交C.内切D.外切考点:圆与圆的位置关系.专题:压轴题.分析:由两圆的半径分别2和3,圆心距为5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵两圆的半径分别为2和3,圆心距为5,又∵2+3=5,∴两圆的位置关系是外切.故选D.点评:此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.7.(2008•宁夏)已知⊙O1和⊙O2相切,两圆的圆心距为9cm,⊙O1的半径为4cm,则⊙O2的半径为()A.5cm B.13cm C.9cm或13cm D.5cm或13cm考点:圆与圆的位置关系.专题:压轴题;分类讨论.分析:根据两圆的位置关系与圆心距和两圆半径之间的数量关系之间的联系即可解决问题.设两圆的半径分别为R和r,且R≥r,圆心距为d:外离,则d>R+r;外切,则d=R+r;相交,则R﹣r<d<R+r;内切,则d=R﹣r;内含,则d<R﹣r.解答:解:两圆相切时,有两种情况:内切和外切.当外切时,另一圆的半径=9+4=13cm;当内切时,另一圆的半径=9﹣4=5cm.故选D.点评:本题考查了两圆相切时,两圆的半径与圆心距的关系,注意有两种情况.8.(2007•肇庆)若两圆没有公共点,则两圆的位置关系是()A.外离B.外切C.内含D.外离或内含考点:圆与圆的位置关系.分析:此题要求两个圆的位置关系,可观察两个圆之间的交点个数,一个交点两圆相切(内切或外切),两个交点两圆相交,没有交点两圆相离(外离或内含).解答:解:外离或内含时,两圆没有公共点.故选D.点评:此题考查的是两个圆之间的位置关系,解此类题目时可根据两个圆的交点个数来判断两个圆的位置关系.9.(2007•襄阳)如图,△ABC是边长为10的等边三角形,以AC为直径作⊙O,D是BC上一点,BD=2,以点B 为圆心,BD为半径的⊙B与⊙O的位置关系为()A.相交B.外离C.外切D.内切考点:圆与圆的位置关系;等边三角形的性质.专题:压轴题.分析:要判断两圆的位置关系,需要明确两圆的半径和两圆的圆心距,再根据数量关系进一步判断两圆的位置关系.设两圆的半径分别为R和r,且R≥r,圆心距为d:外离,则d>R+r;外切,则d=R+r;相交,则R﹣r<d<R+r;内切,则d=R﹣r;内含,则d<R﹣r.解答:解:根据题意,得:圆O的直径是10,点B到点O的距离是5,则5>5+2,所以⊙B与⊙O的位置关系为外离.故选B.点评:本题考查了由数量关系来判断两圆位置关系的方法.10.(2007•泰安)半径分别为13和15的两圆相交,且公共弦长为24,则两圆的圆心距为()A.或14 B.或4C.14 D.4或14考点:相交两圆的性质.分析:利用了连心线垂直平分公共弦,勾股定理求解,注意两圆相交的情况有两种情况.解答:解:如图,圆A与圆B相交于点C,D,CD与AB交于点E,AC=15,BC=13,由于连心线AB垂直平分CD,有CE=12,△ACE,△BCE是直角三角形,由勾股定理得,AE=9,BE=5,而两圆相交的情况有两种,当为左图时,AB=AE﹣BE=9﹣5=4,当为右图时,AB=AE+BE=14.故选D.点评:本题利用了连心线垂直平分公共弦,勾股定理.二.填空题(共8小题)11.(2012•攀枝花)如图,以BC为直径的⊙O1与⊙O2外切,⊙O1与⊙O2的外公切线交于点D,且∠ADC=60°,过B点的⊙O1的切线交其中一条外公切线于点A.若⊙O2的面积为π,则四边形ABCD的面积是12.考点:相切两圆的性质;含30度角的直角三角形;勾股定理;矩形的判定与性质;切线长定理.专题:计算题;压轴题.分析:设⊙O1的半径是R,求出⊙O2的半径是1,连接DO2,DO1,O2E,O1H,AO1,作O2F⊥BC于F,推出D、O2、O1三点共线,∠CDO1=30°,求出四边形CFO2E是矩形,推出O2E=CF,CE=FO2,∠FO2O1=∠CDO1=30°,推出R+1=2(R﹣1),求出R=3,求出DO1,在Rt△CDO1中,由勾股定理求出CD,求出AH==AB,根据梯形面积公式得出×(AB+CD)×BC,代入求出即可.解答:解:∵⊙O2的面积为π,设⊙O2的半径是r,则π×r2=π∴⊙O2的半径是1,∵AB和AH是⊙O1的切线,∴AB=AH,设⊙O1的半径是R,连接DO2,DO1,O2E,O1H,AO1,作O2F⊥BC于F,∵⊙O1与⊙O2外切,⊙O1与⊙O2的外公切线DC、DA,∠ADC=60°,∴D、O2、O1三点共线,∠CDO1=30°,∴∠DAO1=60°,∠O2EC=∠ECF=∠CFO2=90°,∴四边形CFO2E是矩形,∴O2E=CF,CE=FO2,∠FO2O1=∠CDO1=30°,∴DO2=2O2E=2,∠HAO1=60°,∵O1O2=2O1F(在直角三角形中,30度角所对的直角边等于斜边的一半),又∵O1F=R﹣1,O1O2=R+1,∴R+1=2(R﹣1),解得:R=3,即DO1=2+1+3=6,在Rt△CDO1中,由勾股定理得:CD=3,∵∠HO1A=90°﹣60°=30°,HO1=3,∴AH==AB,∴四边形ABCD的面积是:×(AB+CD)×BC=×(+3)×(3+3)=12.故答案为:12.点评:本题考查的知识点是勾股定理、相切两圆的性质、含30度角的直角三角形、矩形的性质和判定,本题主要考查了学生能否运用性质进行推理和计算,题目综合性比较强,有一定的难度.12.(2011•绍兴)如图,相距2cm的两个点A、B在直线l上.它们分别以2cm/s和1cm/s的速度在l上同时向右平移,当点A,B分别平移到点A1,B1的位置时,半径为1cm的⊙A1,与半径为BB1的⊙B相切.则点A平移到点A1,所用的时间为或3s.考点:圆与圆的位置关系.专题:压轴题;数形结合;分类讨论.分析:首先设点A平移到点A1,所用的时间为ts,根据题意求得AB=2cm,AA1=2tcm,BB1=tcm,再分别从内切与外切四种情况分析求解,即可求得答案.解答:解:设点A平移到点A1,所用的时间为ts,根据题意得:AB=2cm,AA1=2tcm,A1B=(2﹣2t)cm,BB1=tcm,如图,此时外切:2﹣2t=1+t,∴t=;如图,此时内切:2﹣2t=1﹣t,∴t=1,此时两圆心重合,舍去;或2﹣2t=t﹣1,解得:t=1,此时两圆心重合,舍去;如图,此时内切:2t﹣t+1=2,∴t=1,此时两圆心重合,舍去;如图:此时外切:2t﹣t﹣1=2,∴t=3.∴点A平移到点A1,所用的时间为1或3s.故答案为:或3.点评:此题考查了圆与圆的位置关系.解题的关键是注意数形结合与方程思想,分类讨论思想的应用,注意别漏解.13.(2010•宁夏)如图是三根外径均为1米的圆形钢管堆积图和主视图,则其最高点与地面的距离是米.考点:相切两圆的性质.专题:压轴题.分析:连接三个圆的圆心,构造等边三角形.根据等边三角形的性质进行求解.解答:解:连接三个圆的圆心,构造等边三角形,则等边三角形的边长是1.根据等边三角形的三线合一和勾股定理,得等边三角形的高是.则其最高点与地面的距离是(1+)米.点评:此题主要是构造等边三角形,根据等边三角形的性质进行计算.14.(2008•绍兴)如图中的圆均为等圆,且相邻两圆外切,圆心连线构成正三角形,记各阴影部分面积从左到右依次为S1,S s,S3,…,S n,则S12:S4的值等于19:7.考点:相切两圆的性质.专题:压轴题;规律型.分析:首先正确求得第一个图形的面积,然后结合图形发现面积增加的规律,从而进行分析求解.解答:解:设圆的半径是1,在第一个图形中,阴影部分的面积是3π﹣π=π;观察图形发现:阴影部分的面积依次增加1.5π.所以第四个图形的面积是2.5π+1.5π×3=7π,第12个图形的面积是2.5π+1.5π×11=19π.所以它们的比值是.点评:此类题的关键是找规律,根据规律进行计算.15.(2008•三明)如图,在以O为圆心的两个同心圆中,大圆的直径AB交小圆于C、D两点,AC=CD=DB,分别以C、D为圆心,以CD为半径作圆.若AB=6cm,则图中阴影部分的面积为4πcm2.考点:圆与圆的位置关系.分析:根据圆的中心对称性,大圆与小圆之间的部分全等,故阴影部分的面积是两圆面积差的一半.解答:解:观察图形,发现:阴影部分的面积是两圆面积差的一半,即S阴影=(S大圆﹣S小圆)=(π×32﹣π×12)=4π.点评:这里要能够把阴影部分合到一起整体计算.16.(2007•河池)若两圆的半径分别为5cm和3cm,圆心距为1cm,则这两个圆的位置关系是内含.考点:圆与圆的位置关系.分析:先计算两圆半径的和与差,再与圆心距比较,得出结论.解答:解:因为5﹣3>1,根据圆心距与半径之间的数量关系可知,⊙O1与⊙O2的位置关系是内含.点评:本题考查了由数量关系来判断两圆位置关系的方法.设两圆的半径分别为R和r,且R≥r,圆心距为d:外离d>R+r;外切d=R+r;相交R﹣r<d<R+r;内切d=R﹣r;内含d<R﹣r.17.(2004•郫县)已知半径3cm,4cm的两圆外切,那么半径为6cm且与这两圆都相切的圆共有4个.考点:圆与圆的位置关系.专题:压轴题.分析:两圆相切有内切和外切两种情况,本题只要画出图形加以判断即可.解答:解:如图:与两圆相切的有4个.点评:本题考查的是圆与圆的位置关系,解此类题目常常要结合图形再进行判断.18.(2000•嘉兴)如图,⊙O1与⊙O2交于点A,B,延长⊙O2的直径CA交⊙O1于点D,延长⊙O2的弦CB交⊙O1于点E.已知AC=6,AD:BC:BE=1:1:5,则DE的长是9.考点:圆内接四边形的性质;解分式方程;圆与圆的位置关系;相交两圆的性质;相似三角形的判定与性质.专题:压轴题.分析:连接公共弦AB,构成圆内接四边形ABED,根据圆内接四边形的性质,可证明△ABC∽△EDC,从而得出与AD、BC、BE有关的比例线段,根据AD:BC:BE=1:1:5,设线段长度,代入比例式可求CD、CE的长,在Rt△EDC中,用勾股定理求ED.解答:解:连接AB,在圆内接四边形ABED中,∠BAC=∠E,∠ABC=∠EDC,因为AC为⊙O2直径,则∠ABC=90°,于是△ABC∽△EDC,因为AD:BC:BE=1:1:5,所以,设AD=x,BC=x,BE=5x;于是:=,即6x2=36+6x,x2﹣x﹣6=0,解得x=3,x=﹣2(负值设去),在Rt△EDC中,ED==9.点评:本题考查的是对圆心角和圆周角的关系,以及圆的内接四边形的外角和相应的内对角关系的应用.解答此类题关键是通过角的关系,在解题中应用中间角来寻找等量关系.三.解答题(共5小题)19.(2012•鼓楼区二模)如图,已知边长为10的菱形ABCD,对角线BD、AC交于点O,AC=12,点P在射线BD 上运动,过点P分别向直线AB、AD作垂线,垂足分别为E、F.(1)对角线BD长为16;(2)设PB=x,以PO为半径的⊙P与以DF为半径的⊙D相切时,求x的值.考点:相切两圆的性质;勾股定理;菱形的性质.分析:(1)根据菱形性质求出AO长,OB=OD,AC⊥BD,根据勾股定理求出BO,即可求出BD;(2)设PB=x,则PD=BD﹣PB=16﹣x.在Rt△PFD中,求出DF=DP•cos∠ADB=(16﹣x),分为两种情况:①当⊙P与⊙D外切时:第一种情况,当P点在点O的左侧,PO=8﹣x,根据相切两圆性质得出PO+DF=PD,代入得出方程(8﹣x)+(16﹣x)=16﹣x,求出x即可;第二种情况,当P点在点O的右侧,PO=x﹣8,根据相切两圆的性质得出PO+DF=PD,代入得出方程(x﹣8)+(16﹣x)=16﹣x,求出方程的解即可;②当⊙P与⊙D内切时:第三种情况,PO=PB﹣OB=x﹣8,根据OP﹣DF═PD,得出方程(x﹣8)﹣(16﹣x)=16﹣x,求出即可;第四种情况,点P在点D右侧时,PF=OD=8,则DP=10,PB=26.解答:(1)解:∵四边形ABCD是菱形,∴AO=OC=AC=6,OB=OD,AC⊥BD,由勾股定理得:BO===8,∴BD=16,故答案为:16.(2)PB=x,则PD=BD﹣PB=16﹣x.∵PF⊥AD,∴在Rt△PFD中,DF=DP•cos∠ADB=(16﹣x);①当⊙P与⊙D外切时:情况一:当P点在点O的左侧,PO=OB﹣PB=8﹣x,此时PO+DF=PD,∴(8﹣x)+(16﹣x)=16﹣x,解得,x=6;情况二:当P点在点O的右侧,PO=PB﹣OB=x﹣8,此时PO+DF=PD,∴(x﹣8)+(16﹣x)=16﹣x,解得,x=;②当⊙P与⊙D内切时:情况三:点P在D的左侧时,PO=PB﹣OB=x﹣8,∵PD>DF,∴DF﹣OP═PD,∴(x﹣8)﹣(16﹣x)=16﹣x,解得,x=;情况四:点P在点D右侧时,DF=OD=8,则DP=10,PB=26,综上所述,PB的长为6或或或26.点评:本题考查了解直角三角形,菱形的性质,勾股定理,相切两圆的性质等知识点,主要考查学生综合运用性质进行推理和计算的能力,题目综合性比较强,难度偏大,注意要进行分类讨论.20.(2008•静安区二模)如图,在四边形ABCD中,∠B=90°,AD∥BC,AB=4,BC=12,点E在边BA的延长线上,AE=2,点F在BC边上,EF与边AD相交于点G,DF⊥EF,设AG=x,DF=y.(1)求y关于x的函数解析式,并写出定义域;(2)当AD=11时,求AG的长;(3)如果半径为EG的⊙E与半径为FD的⊙F相切,求这两个圆的半径.考点:相似三角形的判定与性质;勾股定理;相切两圆的性质.专题:压轴题;探究型.分析:(1)先根据AD∥BC,∠B=90°求出∠EAG=∠B=90°,在Rt△AEG中根据勾股定理可用x表示出EG的值,再根据平行线分线段成比例可得出=,进而可得到关于x、y的关系式,由二次根式有意义的条件求出x的取值范围即可;(2)由△DFG∽△EAG可得到=,可用x表示出GD的值,再把AD=11代入即可求出x的值,进而得出AG的长;(3)①当⊙E与⊙F外切时,EF=EG+FD=EG+FG,再由△DFG∽△EAG即可求出AG=AE=2,进而可得出⊙E与⊙F的半径;②当⊙E与⊙F内切时,EF=FD﹣EG,再把EF、FD及ED的关系式代入即可求出x的值,由勾股定理即可求出两圆的半径.解答:解:(1)∵AD∥BC,∠B=90°,∴∠EAG=∠B=90°,∴EG==,∵=,∴FG===,∵∠DFG=∠EAG=90°,∠EGA=∠DGF,△DFG∽△EAG,∴=,∴=,∴y关于x的函数解析式为y=,定义域为0<x≤4.(2)∵△DFG∽△EAG,∴=,∴=,∴GD=.当AD=11时,x+=11,x1=1,x2=,经检验它们都是原方程的根,且符合题意,所以AG的长为1或.(3)当⊙E与⊙F外切时,EF=EG+FD=EG+FG,∴FD=FG,∵△DFG∽△EAG,∴∠E=∠AGE=∠FGD=∠GDF.∴AG=AE=2;∴⊙E的半径EG=,⊙F的半径FD=.当⊙E与⊙F内切时,EF=FD﹣EG,∴3=﹣,∵≠0,∴3=,∴x=1,∴⊙E的半径EG==,⊙F的半径FD=,∴⊙E的半径为2,⊙F的半径为4;或⊙E的半径为,⊙F的半径为4.点评:本题考查的是相似三角形的判定与性质、勾股定理及两圆相切的性质,涉及面较广,难度较大,在解(3)时要注意分两圆外切与内切两种情况进行讨论.21.如图,正方形网格中,每个小正方形的边长为1个单位,以O为原点建立平面直角坐标系,圆心为A(3,0)的⊙A被y轴截得的弦长BC=8.解答下列问题:(1)求⊙A 的半径;(2)请在图中将⊙A 先向上平移6 个单位,再向左平移8个单位得到⊙D,并写出圆心D的坐标;(3)观察你所画的图形,对⊙D 与⊙A 的位置关系作出合情的猜想,并直接写出你的结论.聪明的小伙伴,你完成整张试卷全部试题的解答后,如果还有时间对问题(3)的猜想结论给出证明,将酌情另加1~5分,并计入总分.考点:垂径定理;勾股定理;圆与圆的位置关系;坐标与图形变化-平移.专题:作图题.分析:(1)连接AB,根据垂径定理求出BO,根据勾股定理求出AB即可;(2)根据已知画出图形即可,根据平移规律求出D的坐标即可;(3)根据图形即可得出结论.解答:(1)解:∵x轴⊥y轴,A在x轴上,∴BO=CO=4,连接AB,由勾股定理得:AB==5,答:⊙A的半径是5.(2)解:如图:圆心D的坐标是(﹣5,6).(3)解:⊙D 与⊙A 的位置关系是外切.点评:本题考查了对勾股定理,垂径定理,圆与圆的位置关系,坐标与图形变化﹣平移等知识点的应用,解此题的关键是根据题意画出图形,培养了学生分析问题的能力,同时也培养了学生观察图形的能力,题型较好,难度适中.22.如图,在平台上用直径为100mm的两根圆钢棒嵌在大型工件的两侧,测量大的圆形工件的直径,设两圆钢棒的外侧的距离为xmm,工件的直径为Dmm.(1)求出D(mm)与x(mm)之间的函数关系式;(2)当图形工件的直径D小于圆钢棒的直径时,上面所求得的D与x的函数关系式还是否仍然适用?请说明理由.考点:相切两圆的性质;勾股定理;切线的性质.专题:计算题.分析:(1)设三圆的圆心分别为A、B、C,连接AB,则AB过切点E,连接AC,则AC过切点F,连接BC,AN,AN交BC于M,由题意得出AB=AC=50+,BC=x﹣(50+50)=x﹣100,AN=﹣50,在△ABM中根据勾股定理得出D和x的方程,求出即可;(2)根据(1)结合图形仍能得出函数解析式,即可得出答案.解答:(1)解:如图设三圆的圆心分别为A、B、C,连接AB,则AB过切点E,连接AC,则AC过切点F,连接BC,AN,AN交BC于M,由题意得:AB=AC=50+,BC=x﹣(50+50)=x﹣100,AN=﹣50,∵AC=AB,AM⊥BC,∴BM=CM=(x﹣100)=x﹣50,在Rt△ABM中,由勾股定理得:AB2=AM2+BM2,∴=+,即D=x2﹣x+25.(2)解:当图形工件的直径D小于圆钢棒的直径时,上面所求得的D与x的函数关系式能仍然适用,因为那样时,三圆同时与平台相切,有两大圆都与小圆相切时,得出的方程与(1)中的方程相同,所有上面所求得的D与x的函数关系式能仍然适用.点评:本题考查了相切两圆的性质,切线的性质,勾股定理等知识点的应用,能根据题意得出方程是解此题的关键,主要考查学生的观察能力和构造直角三角形的能力,题目比较典型,有一定的难度.23.实验探究:同学们,你注意过烟盒里的香烟是如何摆放的吗?已知,一个烟盒的长为56mm,宽为22mm,高为87mm,一根烟的直径是8mm,若把20根香烟摆放在烟盒中,请你探究合理的摆放方法.考点:相切两圆的性质;勾股定理.专题:计算题.分析:分为两种情况:(1)并列摆放,根据烟的直径和烟盒的长、宽得出只能放14根;(2)若错位摆放,连接O1O2、O2O3、O3O1,解答:解:(1)若并列摆放,如图①,因为烟的直径为8mm,所以AD方向上能并排放(根)烟,而在AB方向上,因为8×3=24>22,所以只能放两根,即烟盒只能放2×7=14(根)烟,此法不行.(2)若错位摆放,如图②,连接O1O2、O2O3、O3O1,则O2O3=O3O1=8mm,△O1O2O3为等腰三角形,过O3作O3E⊥O1O2,则E是O1O2的中点.=7(mm).所以在Rt△O1O3E中,(mm).故排列后中排所需空间长度=(mm),三排所需宽度为AB=22mm,故此摆放符合要求.点评:本题考查了对相切两圆的性质,勾股定理,等腰三角形性质的运用,主要培养学生分析问题和解决问题的能力,注意:分类讨论啊.。

初中数学【与圆有关的位置关系】练习题

初中数学【与圆有关的位置关系】练习题

初中数学【与圆有关的位置关系】练习题一.选择题(共10小题)1.在平面直角坐标系中,圆心为坐标原点,⊙O的半径为10,则P(﹣10,1)与⊙O的位置关系为()A.点P在⊙O上B.点P在⊙O外C.点P在⊙O内D.无法确定2.如图,△ABC是⊙O的内接三角形,∠A=119°,过点C的圆的切线交BO于点P,则∠P的度数为()A.32°B.31°C.29°D.61°3.如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是()A.0B.1C.2D.34.一个点到圆的最小距离为6cm,最大距离为9cm,则该圆的半径是()A.1.5cm B.7.5cmC.1.5cm或7.5cm D.3cm或15cm5.在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为()A.E、F、G B.F、G、H C.G、H、E D.H、E、F6.直角△ABC,∠BAC=90°,AB=8,AC=6,以A为圆心,4.8长度为半径的圆与直线BC的公共点的个数为()A.0B.1C.2D.不能确定7.如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是()A.8≤AB≤10B.8<AB≤10C.4≤AB≤5D.4<AB≤58.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P 沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()A.1B.1或5C.3D.59.如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是()A.1<r<4B.2<r<4C.1<r<8D.2<r<810.如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,P A⊥PB,且P A、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3B.4C.6D.8二.填空题(共4小题)11.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是3<r<5.12.如图,在平面直角坐标系中,A(0,4)、B(4,4)、C(6,2),则经过A、B、C三点的圆弧所在圆的圆心M的坐标为;点D坐标为(8,﹣2),连接CD,直线CD 与⊙M的位置关系是.13.如图,直线l:y=﹣x+1与坐标轴交于A,B两点,点M(m,0)是x轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线l相切时,则m的值为.14.⊙O的半径为R,点O到直线l的距离为d,R,d是方程x2﹣4x+m=0的两根,当直线l与⊙O相切时,m的值为.三.解答题(共3小题)15.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.16.已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.(1)当直线CD与半圆O相切时(如图①),求∠ODC的度数;(2)当直线CD与半圆O相交时(如图②),设另一交点为E,连接AE,若AE∥OC,①AE与OD的大小有什么关系?为什么?②求∠ODC的度数.答案一.选择题(共10小题)1.在平面直角坐标系中,圆心为坐标原点,⊙O的半径为10,则P(﹣10,1)与⊙O的位置关系为()A.点P在⊙O上B.点P在⊙O外C.点P在⊙O内D.无法确定【解答】解:∵圆心P的坐标为(﹣10,1),∴OP==.∵⊙O的半径为10,∴>10,∴点P在⊙O外.故选:B.2.如图,△ABC是⊙O的内接三角形,∠A=119°,过点C的圆的切线交BO于点P,则∠P的度数为()A.32°B.31°C.29°D.61°【解答】解:如图所示:连接OC、CD,∵PC是⊙O的切线,∴PC⊥OC,∴∠OCP=90°,∵∠A=119°,∴∠ODC=180°﹣∠A=61°,∵OC=OD,∴∠OCD=∠ODC=61°,∴∠DOC=180°﹣2×61°=58°,∴∠P=90°﹣∠DOC=32°;故选:A.3.如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是()A.0B.1C.2D.3【解答】解:设OP与⊙O交于点N,连结MN,OQ,如图,∵OP=4,ON=2,∴N是OP的中点,∵M为PQ的中点,∴MN为△POQ的中位线,∴MN=OQ=×2=1,∴点M在以N为圆心,1为半径的圆上,当点M在ON上时,OM最小,最小值为1,∴线段OM的最小值为1.故选:B.4.一个点到圆的最小距离为6cm,最大距离为9cm,则该圆的半径是()A.1.5cm B.7.5cmC.1.5cm或7.5cm D.3cm或15cm【解答】解:分为两种情况:①当点P在圆内时,最近点的距离为6cm,最远点的距离为9cm,则直径是15cm,因而半径是7.5cm;②当点P在圆外时,最近点的距离为6cm,最远点的距离为9cm,则直径是3cm,因而半径是1.5cm.故选:C.5.在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为()A.E、F、G B.F、G、H C.G、H、E D.H、E、F【解答】解:∵OA==,∴OE=2<OA,所以点E在⊙O内,OF=2<OA,所以点F在⊙O内,OG=1<OA,所以点G在⊙O内,OH==2>OA,所以点H在⊙O外,故选:A.6.直角△ABC,∠BAC=90°,AB=8,AC=6,以A为圆心,4.8长度为半径的圆与直线BC的公共点的个数为()A.0B.1C.2D.不能确定【解答】解:∵∠BAC=90°,AB=8,AC=6,∴BC=10,∴斜边上的高为:=4.8,∴d=4.8cm=r=4.8cm,∴圆与该直线AB的位置关系是相切,交点个数为1,故选:B.7.如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是()A.8≤AB≤10B.8<AB≤10C.4≤AB≤5D.4<AB≤5【解答】解:当AB与小圆相切,∵大圆半径为5,小圆的半径为3,∴AB=2=8.∵大圆的弦AB与小圆有公共点,即相切或相交,∴8≤AB≤10.故选:A.8.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P 沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()A.1B.1或5C.3D.5【解答】解:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5.故选:B.19.如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A 的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是()A.1<r<4B.2<r<4C.1<r<8D.2<r<8【解答】解:连接AD,∵AC=4,CD=3,∠C=90°,∴AD=5,∵⊙A的半径长为3,⊙D与⊙A相交,∴r>5﹣3=2,∵BC=7,∴BD=4,∵点B在⊙D外,∴r<4,∴⊙D的半径长r的取值范围是2<r<4,故选:B.10.如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,P A⊥PB,且P A、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3B.4C.6D.8【解答】解:∵P A⊥PB,∴∠APB=90°,∵AO=BO,∴AB=2PO,若要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,过点M作MQ⊥x轴于点Q,则OQ=3、MQ=4,∴OM=5,又∵MP′=2,∴OP′=3,∴AB=2OP′=6,故选:C.二.填空题(共4小题)11.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是3<r<5.【解答】解:在直角△ABD中,CD=AB=4,AD=3,则BD==5.由图可知3<r<5.故答案为:3<r<5.12.如图,在平面直角坐标系中,A(0,4)、B(4,4)、C(6,2),则经过A、B、C三点的圆弧所在圆的圆心M的坐标为(2,0);点D坐标为(8,﹣2),连接CD,直线CD与⊙M的位置关系是相切.【解答】解:(1)如图,经过A、B、C三点的圆弧所在圆的圆心M的坐标为(2,0).故答案为(2,0);(2)连接MC,MD,MC2=42+22=20,CD2=42+22=20,MD2=62+22=40,MD2=MC2+CD2,∴∠MCD=90°,又∵MC为半径,∴直线CD是⊙M的切线;故答案为:相切.13.如图,直线l:y=﹣x+1与坐标轴交于A,B两点,点M(m,0)是x轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线l相切时,则m的值为2﹣2或2+2..【解答】解:在y=﹣x+1中,令x=0,则y=1,令y=0,则x=2,∴A(0,1),B(2,0),∴AB=;如图,设⊙M与AB相切与C,连接MC,则MC=2,MC⊥AB,∵∠MCB=∠AOB=90°,∠B=∠B,∴△BMC~△ABO,∴,即,∴BM=2,∴OM=2﹣2,或OM=2+2.∴m=2﹣2或m=2+2.故答案为:2﹣2,2+2.14.⊙O的半径为R,点O到直线l的距离为d,R,d是方程x2﹣4x+m=0的两根,当直线l与⊙O相切时,m的值为4.【解答】解:∵d、R是方程x2﹣4x+m=0的两个根,且直线L与⊙O相切,∴d=R,∴方程有两个相等的实根,∴△=16﹣4m=0,解得,m=4,故答案为:4.三.解答题(共3小题)15.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.【解答】解:(1)直线DE与⊙O相切,理由如下:连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°﹣90°=90°,∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8﹣x)2=22+x2,解得:x=4.75,则DE=4.75.16.已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.(1)当直线CD与半圆O相切时(如图①),求∠ODC的度数;(2)当直线CD与半圆O相交时(如图②),设另一交点为E,连接AE,若AE∥OC,①AE与OD的大小有什么关系?为什么?②求∠ODC的度数.【解答】解:(1)如图①,连接OC,∵OC=OA,CD=OA,∴OC=CD,∴∠ODC=∠COD,∵CD是⊙O的切线,∴∠OCD=90°,∴∠ODC=45°;(2)如图②,连接OE.∵CD=OA,∴CD=OC=OE=OA,∴∠1=∠2,∠3=∠4.∵AE∥OC,∴∠2=∠3.设∠ODC=∠1=x,则∠2=∠3=∠4=x.∴∠AOE=∠OCD=180°﹣2x.①AE=OD.理由如下:在△AOE与△OCD中,∴△AOE≌△OCD(SAS),∴AE=OD.②∠6=∠1+∠2=2x.∵OE=OC,∴∠5=∠6=2x.∵AE∥OC,∴∠4+∠5+∠6=180°,即:x+2x+2x=180°,∴x=36°.∴∠ODC=36°.。

圆和圆的位置关系习题

圆和圆的位置关系习题

圆和圆的位置关系练习题一、选择题一、若两圆的半径别离为3和4,两个圆的圆心距为10,则两圆的位置关系是( ). (A )内含 (B )相交 (C )外切 (D )外离二、已知两圆的半径别离是5和6,圆心距x 知足不等式组522841314x x x x +⎧+>⎪⎨⎪-<+⎩,则两圆的位置关系是( ) A .内切 B .外切 C .相交 D .外离3、两等圆⊙O 和⊙O ′相外切,过O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB 等于( )A.90°B.60°C.45°D.30°4.如图,⊙O 1和⊙O 2内切,它们的半径别离为3和1,过O 1作⊙O 2的切线, 切点为A,则O 1A 的长为355.半径为1cm 和2cm 的两个圆外切,那么与这两个圆都相切且半径为3cm 的圆的个数是( ) A.5个 B.4个 C.3个 D.2个6.如图,矩形ABCD 中,AB=18,AD=25,去掉一个与三边相切的⊙M 后,余下部份能剪出的最大圆的直径是( ) A .8 B .7 C .6 D .47.如图,某城市公园的雕塑是由3个直径为1m 的圆两两相垒立在水平的地面上, 则雕塑的最高点到地面的距离为[ ] A .232+ B.233+ C.222+ D. 223+ 8、下列说法(1)两圆没有公共点,则两圆必然外离.(2)若两个大小不等的圆的圆心距为0,那么两圆必然内含(3)半径相等的两个圆的位置关系只有三种.(4)相切两圆必然是轴对称图形,且对称轴必过切点. 其中正确的有( )个 A .1 B .2 C .3 D. 4 二、填空题9.三角形三边长别离为五、1二、13,以三角形三个极点为圆心的三个圆两两外切,则三个圆的半径别离为____________. 10.两个圆的半径别离为R 和r (R >r ),圆心距为d ,若R 2+d 2-r 2=2Rd ,则两圆的位置关系为________________ 11.半径为5cm 的⊙O 外一点P ,则以点P 为圆心且与⊙O 相切的⊙P 能画________个.12.两圆内切时圆心距是2,这两圆外切时圆心距是5,两圆的半径别离是________、________. 13.两圆的半径别离为10cm 和R 、圆心距为13cm ,若这两个圆相切,则R 的值是________. 14.已知两圆半径别离为八、6,若两圆相切,则圆心距为____________.15.已知两圆的圆心距d=8,两圆的半径长是方程x 2-8x+1=0的两根,则这两圆的位置关系是_____________.16.圆心都在y 轴上的两圆⊙O 1、⊙O 2,⊙O 1的半径为5,⊙O 2的半径为1,O 1 的坐标为(0,-1),O 2的坐标为(0,3),则两圆⊙O 1与⊙O 2的位置关系是________.17.若⊙O 1的半径为5,⊙O 1、⊙O 2内含,且两圆的圆心距为4,则⊙O 2半径的取值范围O 2O 1A AB是 .18、如图两个同心圆中,大圆的弦AB 是小圆的切线.弦AB 的长为8厘米,则圆环的面积为 . 19.已知两圆没有公共点,且半径别离为7和3,则圆心距的取值范围为__________________20.两圆半径长别离是R 和r(R>r),圆心距为d,若关于x 的方程x 2-2rx+(R-d)2=0 有相等的两实数根,则两圆的位置关系是_________.21.在直角坐标系中,⊙O 的圆心在原点,半径为3,⊙A 的圆心A 的坐标为(-3,1),⊙O 半径为1,那么⊙O 与⊙A 的位置关系是_______.22.如图3,两圆轮叠靠在墙边,已知两轮半径别离为4和1,则它们与墙的切点A ,B 间的距离为________.23.已知⊙O 1、⊙O 2相交于A,B 半径 别离为3和4且O 1O 2 =5,则AB=____________24. 已知⊙O 1、⊙O 2相交于A,B 且AB=6,⊙O 1的直径为10则,⊙O 2的直径为8则O 1O 2=____________ 26.⊙O 的半径为 5 cm ,点P 是⊙O 外一点,OP =8 cm ,⊙O 和⊙P 相切,⊙P 的半径________. 三.解答题27.若两圆的圆心距d 知足等式│d -4│=3,且两圆的半径是方程x 2-7x+12=0 的两个根,试判断这两圆的位置关系.28、已知⊙1O 、⊙2O 相交于点A 、B ,∠A 1O B = 120°,∠A 2O B = 60°,1O 2O = 6cm 。

圆与圆的位置关系(3)典型题(精选)

圆与圆的位置关系(3)典型题(精选)

一、两圆的公切线1. 两圆的外公切线(1) 求两圆外公切线长:构造外公切线、圆心距、大圆与小圆半径的差为边的特征直角三角形.如图,设大圆的半径为R ,小圆的半径为r ,两圆的圆心距为d ,两外公切线的夹角为α,则两圆的外公切线长为:()22l d R r --,sin 2R rdα-=αPO 1O 2A B CR rd l(2) 求两圆内公切线长:构造外公切线、圆心距、大圆与小圆半径的和为边的特征直角三角形. 2. 两圆的内公切线αO 1O 2A B C R r d l 如图,设大圆的半径为R ,小圆的半径为r ,两圆的圆心距为d ,两外公切线的夹角为α,则两圆的内公切线长()22l d R r -+,sin 2R rdα+=一、两圆的公切线【例1】 已知两圆的半径分别为3cm 和5cm ,圆心距为9cm ,则两圆的公切线有 条;【例2】 两圆半径分别为8和3,外公切线长为9,则两圆的位置关系是 ( )A.内切B.相交C.外切D.外离C BAO 2O 1例题知识点圆与圆的位置关系(3)【例10】 如图,O ⊙′与O ⊙外离,设P 和Q 是一条内公切线和两条外公切线的交点.那么PQ 的长是( ) A .内公切线长和外公切线长的平均数 B .当且仅当O ⊙和O ⊙′的半径相等时,等于一条外公切线长 C .永远等于一条外公切线的长 D .大于一条外公切线的长【例3】 如图,已知1O ⊙与2O ⊙外切,外公切线AB 与12O O 、⊙⊙分别相切于A B 、两点,AB 与12O O 的夹角30P ∠=︒,若122O O =,求两圆的半径及外公切线长.【例4】 半径分别为R r 、(R r >)的两个圆12O O 、⊙⊙相交,公切线与连心线的夹角为30︒,则两圆公切线长为______________.【例5】 已知,如图1O ⊙与2O ⊙外离,AB CD 、两条内公切线交于P 点,若1210O O =,且1O ⊙的半径为2,2O ⊙的半径为3,求两条内公切线长及它们所夹锐角的度数.【例11】 如图,两个等圆O ⊙与O ⊙′外切,过O 作O ⊙′的两条切线OA OB 、,A B 、为切点,则AOB ∠=__________.【例12】 两圆内切于P ,大圆的弦AB 切小圆于C ,则APC BPC ∠=∠.EQ A CB MNP【例13】 已知:如图,1O ⊙与2O ⊙内切于点T ,1O ⊙的弦TA TB 、交2O ⊙于点C 和D ,若253TC DC TA ==,,求AB 的长.【例14】 半径为R 、r 的两圆O 、O '外切于C ,外公切线AB 分别切两圆于A 、B 两点,试求ABC ∆的面积.ABOO'C【例15】 已知:如图所示.1O ⊙与2O ⊙外切于P ,AC 是过P 的割线,1O ⊙于A .交2O ⊙于C ,BC 切2O ⊙于C ,过点1O 作直线AB 交BC 于B .求证:AB BC ⊥.【例16】 如图,1O 和2O 为Rt ABC ∆的内切等圆,43AC BC ==,,求1O 的半径r .BA【例17】 如图,12n O O O ,为Rt ABC ∆的内切等圆,43AC BC ==,,求1O 的半径r .【例18】 如图,若两等圆12O O ,与Rt ABC ∆的边BC 及AC AB ,的延长线相切,且两等圆外切,求此时两等圆的半径r .【例19】 若将n 个等圆12n O O O ,,放到ABC ∆外相邻两圆相外切,且与线段BC 相切,与线段AB AC ,的延长线相切,求这些圆的半径r .BA二、连心线的性质【例20】 已知12O O 、⊙⊙相交于点A B 、,公共弦与连心线12O O 交于点G ,若48AB =,12O O 、⊙⊙的半径分别是3040,,那么12AO O ∆的面积是________________.【例21】 已知两个等圆⊙O 1和⊙O 2相交于A 、B 两点,且⊙O 1经过O 2,则四边形O 1AO 2B 是( )A .平行四边形B .菱形C .矩形D .正方形【例22】 如图,1O ⊙与2O ⊙外切于点T,它们的半径之比为2:3,AB 是它们的外公切线,A B 、是切点,且AB =12O O 的值是_____________.【例23】 已知两圆半径分别是4,5,公共弦长为6,求两圆的圆心距.【例24】 已知1O ⊙与2O ⊙相交于A 、B 两点,且4cm AB =,两圆半径分别为6cm 和4cm ,求12O O 的长.【例25】 已知12O O 、⊙⊙相交于A 、B 两点,两圆半径分别为3cm 和5cm ,且12120O AO ∠=︒,求AB 的长.【例26】 半径为13和半径为5的两个圆相交,圆心距为12,则这两圆公共弦长为______________.【例27】 如图,把1O ⊙向右平移8个单位长度得2O ⊙,两圆相交于A B 、,且12O A O A ⊥,则图中阴影部分的面积是_____________.。

《圆与圆的位置关系》练习题(含答案)

《圆与圆的位置关系》练习题(含答案)

10题B A O'O O 3O 218题O 1A 20题B A 19题16题P O 《圆与圆的位置关系》练习题1.⊙O 1与⊙O 2的半径分别为3cm 和8cm,①若两圆相切,则圆心距O 1O 2= ;②若O 1O 2=4㎝,则两圆 ;③若两圆相交,则圆心距O 1O 2的取值范围为 ;④若两圆有公共点,则圆心距O 1O 2的取值范围为 。

2.相切两圆的半径分别为8㎝和x ㎝,圆心距为10㎝,则x 的值为 。

3.⊙O 1与⊙O 2相切,⊙O 1的半径为6cm ,①若O 1O 2=4㎝,则⊙O 2的半径为 ;②若O 1O 2=8㎝,则⊙O 2的半径为 。

4.两圆半径之比为3︰5,若两圆相外切,且圆心距为8㎝,则两圆相内切时,圆心距为 .5.在平面直角坐标系中,A 、B 两点的坐标分别是(0,5)、(12,0),分别以A 、B 为圆心作⊙A 、⊙B ,①若两圆的半径分别是8、3,则两圆的位置关系为 ;②若两圆的半径分别是15、2,则两圆的位置关系为 ;③若两圆的半径分别是7、6,则两圆的位置关系为 ;④若⊙A 的半径为8㎝,则当⊙B 的半径为 时,两圆相切。

6.半径分别为2、4、6的三个圆两两外切,则以这三个圆的圆心为顶点的三角形的形状为 .7.△ABC 的三边分别为AB=5㎝、BC=6㎝、AC=7㎝,若分别以A 、B 、C 三点为圆心作⊙A 、⊙B 、⊙C ,它们两两外切,则⊙A 、⊙B 、⊙C 的半径分别为 。

8.若两圆半径分别为r 1、r 2,圆心距为d,关于x 的一元二次方程x 2-2r 1x+(r 2-d)2=0有两个相等的实数根,则这两圆的位置关系为 。

9. ⊙O 1与⊙O 2是等圆,且两圆交于A 、B 两点,⊙O 1经过⊙O 2的圆心O 2,连接O 1A 、O 1B 、O 2A 、O 2B ,则四边形O 1AO 2B 的形状为 。

10.如图所示,两个等圆⊙O 与⊙O ’相外切,则∠AOB 的度数为 。

圆和圆的位置关系-数学习题及答案

圆和圆的位置关系-数学习题及答案

1、:已知:两个等圆⊙O1和⊙O2相交于A,B两点,⊙O1经过点O2。

求∠O1AB的度数2、:如图,已知⊙O1和⊙O2相交于点A、B,O1在⊙O2上,AC是⊙O1的直径,CB与⊙O2相交于点D,连结AD。

(1)求证:AD是⊙O2的直径。

(2)求证:DA=DC。

(1)证明:AD是圆O1的直径;【模拟试题】(答题时间:25分钟)1. 若两圆无公共点,则两圆的位置关系为___________。

2. 若两圆有公共点,则两圆的位置关系为___________。

3. 已知两圆半径为12.4cm 和7.3cm ,则两圆相切时,圆心距等于___________。

4. 已知两圆的半径之比为3:5,若两圆内切时圆心距等于6cm ,则两圆的半径分别为___________;若两圆无公共点,则圆心距d 的取值范围为___________。

5. 若两圆半径为r 和R ,圆心距为d ,且d<R+r ,则两圆位置关系为___________。

6. 若两圆的半径分别是2cm 和4cm ,圆心距是1cm ,则两圆的位置关系是___________。

7. 在△ABC 中,∠C=90°,AC=4cm ,BC=3cm ,圆A 、圆B 、圆C 两两外切,则圆C 的半径是___________。

8. 若两圆直径分别是8+t 和8-t ,圆心距为16,则两圆的位置关系为___________。

9. 若两圆半径分别为R 和r (R>r ),其圆心距为d ,且有Rd 2d r R 222=+-,则两圆的位置关系为___________。

10. 若两圆半径分别为R 和r ,圆心距为d ,且r R d -≥,则两圆位置关系为___________。

11. 已知圆O 1和圆O 2相切,这个图形是___________对称图形,它的对称轴是___________,切点与对称轴的位置关系为___________。

12. 两个半径相等的圆的位置关系有___________种。

高一数学圆与圆的位置关系试题答案及解析

高一数学圆与圆的位置关系试题答案及解析

高一数学圆与圆的位置关系试题答案及解析1.已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为()A.5-4B.-1C.6-2D.【答案】A【解析】圆关于轴对称圆的圆心坐标,半径不变,圆的圆心坐标半径的最小值为连接圆与圆圆心,再减去两圆的半径因此的最小值【考点】圆与圆的位置关系.2.若圆与圆()的公共弦长为,则_____.【答案】1【解析】因为圆与圆()的公共弦所在的直线方程为:;又因为两圆的公共弦长为,所以有.【考点】圆与圆的位置关系.3.圆和圆的位置关系为.【答案】内切【解析】通过利用两点间的距离公式计算,寻找其与两圆的半径和,差的关系,判断可知,所以内切.【考点】两圆位置关系的判断.4.经过两圆x2+y2+6x-4=0和x2+y2+6y-28=0的交点,并且圆心在直线x-y-4=0上的圆的方程.【答案】【解析】设经过两圆交点的圆的方程为,整理为,再整理:.圆心坐标为,代入直线方程,解得:,代入得圆的方程:.【考点】经过两圆交点的圆的方程5.圆与圆的位置关系为()A.两圆相交B.两圆相外切C.两圆相内切D.两圆相离【答案】A【解析】∵,,∴两圆的圆心距,所以两圆相交,故选A.【考点】圆与圆的位置关系.6.两圆相交于点A(1,3)、B(m,-1),两圆的圆心均在直线x-y+c=0上,则m+c的值为()A.3B.2C.0D.-1【答案】A【解析】由圆的知识可知公共弦的垂直平分线过两圆的圆心,中点为代入直线得,【考点】圆与圆的位置关系点评:两圆相交时,两圆心的连心线是公共弦的垂直平分线7.圆: 与圆: 的位置关系是A.外离B.相交C.内切D.外切【答案】D【解析】∵的圆心为(-2,2)半径为1圆的圆心为(2,5)半径为4,∴,∴两圆外切,故选D【考点】本题考查了两圆的位置关系点评:通过两圆心的距离与半径和(差)的比较即可得到两圆的位置关系8.已知圆与圆相交,则圆与圆的公共弦所在的直线的方程为()A.B.C.D.【答案】B【解析】∵,,∴两圆的公共弦所在直线方程为x+2y-1=0,【考点】本题考查了圆与圆的位置关系点评:两圆相减即可得到两圆公共弦所在的直线方程9.两圆x2+y2-4x+6y=0和x2+y2-6x=0的连心线方程为()A.x+y+3=0B.2x-y-5=0.C.3x-y-9=0.D.4x-3y+7=0【答案】C【解析】解:因为两圆的圆心为(2,3)(3,0),则由两点式可知连心线的方程为3x-y-9=0.选C10.(本题满分14分)已知圆,圆,动点到圆,上点的距离的最小值相等.(1)求点的轨迹方程;(2)点的轨迹上是否存在点,使得点到点的距离减去点到点的距离的差为,如果存在求出点坐标,如果不存在说明理由.【答案】(1)点的轨迹方程是.(2)点的轨迹上不存在满足条件的点.【解析】本试题主要是考查了动点的轨迹方程的求解,以及满足动点到定点的距离差为定值的点是否存在的探索性问题的运用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《圆与圆的位置关系》测试题
课堂训练 1.填空:
2.⊙O 1 和⊙O 2的半径分别为3厘米和4厘米,在下列条件下,求⊙O 1 和⊙O 2位置关系: (1)O 1O 2=8厘米 (2)O 1O 2=7厘米 (3)O 1O 2=5厘米 (4)O 1O 2=1厘米 (5)O 1O 2=0.5厘米 (6)O 1和O 2重合
3 如图, ⊙O 的半径为3cm,点P 是⊙O 外的一点,OP=5cm.
求:(1)以P 为圆心作⊙P 与⊙O 外切,小圆⊙P 的半径是多少?并画图
(2)以P 为圆心作⊙P 与⊙O 内切,大圆⊙P 的半径是多少? 并画图
4.已知⊙A 、⊙B 相切,圆心距为10 cm ,其中⊙A 的半径为4 cm ,求⊙B 的半径
5.如图,AB 既是⊙C 的切线也是⊙D 的切线,⊙C 与⊙D 相外切,⊙C 的半径r=1,⊙D 的半径R=3,求四边形ABCD 的面积。

6.已知⊙1O 、⊙2O 相交于点A 、B ,∠A 1O B = 120°,∠A 2O B = 60°,1O 2O = 6cm 。

求:(1)∠1O A 2O 的度数;2)⊙1O 的半径1r 和⊙2O 的半径2r 。

晚间训练
1. 若两圆没有交点,则这两个圆的位置关系是 ; 若两圆有一个交点,则这两个圆的位置关系是 ; 若两圆有两个交点,则这两个圆的位置关系是 ;
2.(06佛山)圆和圆有多种位置关系,与图中不同的圆和圆的位置关系是 .
A B C
3.⊙O 1 和⊙O 2的半径分别为3厘米和5厘米,在下列条件下,求⊙O 1 和⊙O 2位置关系: (1)O 1O 2=0.5厘米 .答 (2)O 1O 2=2厘米 答. (3)O 1O 2=6厘米. 答 (4)O 1O 2=8厘米. 答 (5)O 1O 2=10厘米. 答
4.两圆相切,圆心距为8cm,已知其中一圆半径为5cm, 求另一圆半径.
5.三角形三边长为5cm 、12cm 、13cm ,以三角形三个顶点为圆心的三个圆两两外切, 求此三个圆的半径.
1
O 2
O B
A
6. 已知:半径均为1cm 的两个圆外切,半径均为2cm 且和这两圆都相切的圆有多少个?试画出它们的图形.
7.如图,AB 既是⊙C 的切线也是⊙D 的切线,⊙C 与⊙D 相外切,⊙C 的半径r=2,⊙D 的半径R=6,求四边形ABCD 的面积。

[提高题]如图,抛物线y =-x 2
+bx +c 与x 轴交于A (1,0),B (-3,0)两点. (1)求该抛物线的解析式;
(2)设(1)中的抛物线交y 轴于C 点,在该抛物线的对称轴上是否存在点Q ,使得△
QAC 的周长最小?若存在,求出点Q 的坐标;若不存在,请说明理由;
(3)在(1)中的抛物线上的第二象限内是否存在一点P ,使△PBC 的面积最大?,若存
在,求出点P 的坐标及△PBC。

相关文档
最新文档