中考中的应用题PPT课件

合集下载

初三数学中考专题复习 握手问题的探究与应用 课件(共26张PPT)

初三数学中考专题复习  握手问题的探究与应用 课件(共26张PPT)
“握手”问题的探究及应用
【实际问题】
班级迎新晚会上,全班同学两两 握手一次致意,那么他们共握手多少 次?
合作探究:
小组进行握手游戏,合作寻找握手的 内在规律。
请思考:若4位同学两两握手共握手多
少次?5位呢?8位呢?…n位呢?
( 小组展示握手探究过程,小组代表讲解探究过程)
【问题解决】
班级迎新晚会上,n位同学 两两握手一次致意,那么他们共
握手 n(n 1) 次. 2
实 【思考1】 数线段

应 小明在纸上画了一条直线,

小红又拿起了笔,在小明画的直 线上点了8个点,“你知道现在 这条直线上有多少条线段吗?” 同学们,你能帮小明快速回答这 个问题吗?
【思考1】
小明在纸上画了一条直线,小红又拿起了笔, 在小明画的直线上点了8个点,“你知道现在这条 直线上有多少条线段吗?” 同学们,你能帮小明 快速回答这个问题吗?
2
平面内确定直线条数
不在同一条直线上的3个点,过任意两点 一共可以画 3 条直线; 平面内4个点(任意三点不在同一条直线 上),过任意两点一共可以画 6 条直线; 5个点呢? 在同一平面内有n个点(任意三个点都不 在同一条直线上)过这n个点中的任意两 点画直线,一共能画出 n(n 1) 条直线?
下一张
【思考2】
往返于青岛、北京南的D336动车,中途 经过胶州北、潍坊、昌乐、淄博、济南、德 州东、沧州西、天津南、廊坊站点,(只考 虑站点)那么该列火车需要安排多少种不同 的车票?
【解析】把每个站点看成每位同学,共 11个站点就是11位同学;每2个站点 的火车票种类可以看作2位同学握手, 火车票种类便是平面内,由不在同一条直线上
但有公共端点的n条射线所组成的图形中,

初中数学复习专题应用题 PPT课件 图文

初中数学复习专题应用题 PPT课件 图文
(1)试写出y与x之间的函数关系式(不必写出x的取值范围)
(2)试写出z与x之间的函数关系式(不必写出x的取值范围)
(3)计算当销售单价为160元时的年获利,并说明同年的年获利,销售单价 还可以定为多少元?相应的年销售分别为多少万件?
(4)公司计划:在第一年按年获利最大确定的销售单价;第二年年获利不 底于1130万元。请你借助函数的大致图象说明,第二年的销售单价x (元)应确定在什么范围内?
1 阅读型应用题
顾名思义,阅读型应用题即给出相关材料,以考 查学生的阅读理解能力。其信息量较大,应注意相关 信息的联想,发现,探索及归纳总结,知识考查往往 源于课本而又高于课本,属边缘问题,需注意。
例一 某高科技发展公司投资500万元,成功研制出一种市场需求量较大的 高科技替代产品,并投入资金1500万元进行批量生产,已知生产每件的 成本为40元,在销售过程中发现:当销售单价定为100元时,年销量为20 万件;当销量单价每增加10元,年销量将减少1万件,设销售单价为x元, 年销量为y(万元),年获利(年获利=年销售额 - 成本 - 投资)为z(万 元)
(1)若把BC作油桶高时,则油桶的底面半径R1等于多少? (2)当把AB作油桶高时,油桶的底面半径R2 与(1)中的R1 相等吗?若相等,请说明理由;若不相等,请求出R2
O1 A
C
O
Байду номын сангаас
B
D
O2
谢谢! 学妹给我打电话,说她又换工作了,这次是销售。电话里,她絮絮叨叨说着一年多来工作上的不如意,她说工作一点都不开心,找不到半点成就感。 末了,她问我:学姐,为什么想 找一份 自己热 爱的工 作这么 难呢? 我问她上一份工作干了多久,她 说不到 三个月 ,做的 还是行 政助理 的工作 ,工作 内容枯 燥乏味 不说,

中考数学二次函数的应用复习之篱笆面积问题公开课精品PPT课件

中考数学二次函数的应用复习之篱笆面积问题公开课精品PPT课件
二次函数的应用复习 ——篱笆面积问题
教材母题
王大爷准备围成一个周长为34米的饲养场地(AD一面靠 墙,墙长为12米),围成的场地是如图所示的矩形ABCD, 设AB= x 米,矩形ABCD的面积为S平方米.
(1)求S与x之间的函数关系式以及自变量的取值范围;
解:(1) S=x(34-2x)= -2x2+34x
王大爷用长度80米的篱笆围成一面靠墙(墙长18米)的 长方形养殖场区域ABCD,他想饲养三种不同品种的幼崽, 把饲养场地隔成面积相等的三个小长方形养殖区域。设 BC的长度为 x 米,饲养总面积为 y 平方米,
(1)求y与x之间的函数关系式以及自变量的取值范围;
解:(1)设AE= a 米
0<x≤18
34-2x
∴11≤x<17
(2)面积有没有最大值?若有请求出,若没有请说明理由 ∵11≤x<17
变式一
王大爷准备围成一个周长为34米的饲养场地(AD一面 靠墙,墙足够长),围成的场地如图所示的矩形ABCD, 若此饲养场地中间用1道篱笆把它隔成两部分,设BC= x 米,矩形面积为 S 平方米 问:要使面积最大,饲养场的一边BC的长为多少米?
∴0<x≤18
(2)为了物尽其用,该养殖户应该取x为多少米时,总面积y 有最间的关系
2、用二次函数表示出它们之间的关系以及自 变量的取值范围
3、求最值,若顶点不在范围内注意最值的求 取
谢谢大家
变式二
王大爷准备利用一面墙AD(墙的长度为20米),用34 米长的篱笆围成两个饲养场,中间用一道篱笆隔开,每 个饲养场均留一道1米宽的门,设AB的长为x米.
(1)若两个饲养场总面积为96平方米,求x;
x
x
36-3x
(2)若两个饲养场场的面积和为S,求S关于x的关系式及自变 量取值;

2020年中考数学应用类二阅读理解型问题课件 (共25张PPT)

2020年中考数学应用类二阅读理解型问题课件  (共25张PPT)

解:应用:①若 PB=PC,连接 PB,则∠PCB=∠PBC,∵CD 为等边三角形的高,∴ AD=BD,∠PCB=30°.∴∠PBD=∠PBC=30°,∴PD= 33DB= 63AB.与已知 PD=12AB 矛盾,∴PB≠PC.②若 PA=PC,连接 PA,同理可得 PA≠PC.
③若 PA=PB,由 PD=12AB,得 PD=AD=BD,∴∠APD=∠BPD=45°.∴∠APB =90°.
(2)∵经过三次折叠,∠BAC是△ABC的好角,∴第三次折叠时, ∠A2B2C=∠C,如图所示.∵∠ABB1=∠AA1B1,∠AA1B1=∠A1B1C +∠C,又∵∠A1B1C=∠A1A2B2,∠A1A2B2=∠A2B2C+∠C,∴∠ABB1 =∠A1B1C+∠C=∠A2B2C+∠C+∠C=3∠C.由上面的探索发现,若 ∠BAC是△ABC的好角,折叠一次重合,有∠B=∠C;折叠两次重合 ,有∠B=2∠C;折叠三次重合,有∠B=3∠C;由此可猜想若经过n 次折叠,∠BAC是△ABC的好角,则∠B=n∠C;
小俊的证明思路是:如图②,过点P作PG⊥CF,垂足为G,可以证得: PD=GF,PE=CG,则PD+PE=CF.
【变式探究】如图③,当点P在BC延长线上时,其余条件不变,求证: PD-PE=CF;
请运用上述解答中所积累的经验和方法完成下题:
【结论运用】如图④,将矩形ABCD沿EF折叠,使点D落在点B上,点C 落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE,PH⊥BC,垂 足分别为G,H,若AD=8,CF=3,求PG+PH的值.
中考数学应用类问题三
阅读理解型问题
阅读理解型问题,一般篇幅较长,涉及内容丰富,构思新颖别致.这类 问题,主要考查解题者的心理素质,自学能力和阅读理解能力,考查解题 者的观察分析能力、判辩是非能力、类比操作能力、抽象概括能力、数学 归纳能力以及数学语言表达能力.

2024年中考数学复习专题课件(共30张PPT)一元一次不等式(组)及其应用

2024年中考数学复习专题课件(共30张PPT)一元一次不等式(组)及其应用

解:设普通水稻的亩产量是 x kg,则杂交水稻的亩产量是 2x kg,依题 意得 7 200 9 600
x - 2x =4,解得 x=600, 经检验,x=600 是原分式方程的解,且符合题意,则 2x=2×600=1 200(kg). 答:普通水稻的亩产量是 600 kg,杂交水稻的亩产量是 1 200 kg.
__00__.
6.[2023·贵州第 17(2)题 6 分]已知 A=a-1,B=-a+3.若 A>B,求 a 的取值范围. 解:由 A>B 得 a-1>-a+3, 解得 a>2, 即 a 的取值范围为 a>2.
7.[2021·贵阳第 17(1)题 6 分]有三个不等式 2x+3<-1,-5x>15, 3(x-1)>6,请在其中任选两个不等式, 组成一个不等式组,并求出它 的解集.
4.风陵渡黄河公路大桥是连接山西、陕西、河南三省的交通要塞 ,该 大桥限重标志牌显示,载重后总质量超过 30 t 的车辆禁止通行,现有一 辆自重 8 t 的卡车,要运输若干套某种设备,每套设备由 1 个 A 部件和 3 个 B 部件组成,这种设备必须成套运输,已知 1 个 A 部件和 2 个 B 部件 的总质量为 2.8 t,2 个 A 部件和 3 个 B 部件的质量相等. (1)求 1 个 A 部件和 1 个 B 部件的质量各是多少; (2)卡车一次最多可运输多少套这种设备通过此大桥?
解:(1)设出售的竹篮 x 个,陶罐 y 个,依题意有 5x+12y=61, x=5, 6x+10y=60,解得y=3. 答:小钢出售的竹篮 5 个,陶罐 3 个.
(2)设购买鲜花 a 束,依题意有 0<61-5a≤20, 解得 8.2≤a<12.2, ∵a 为整数, ∴共有 4 种购买方案, 方案一:购买鲜花 9 束; 方案二:购买鲜花 10 束; 方案三:购买鲜花 11 束; 方案四:购买鲜花 12 束.

中考数学专题复习之 二次函数的应用 课件

中考数学专题复习之 二次函数的应用 课件
中考数学专题复习
二次函数的应用
考点精讲·导析探究
B
( 1 )设 y = kx + b ,
把( 22 , 36 )与( 24 , 32 )代入得:
则 y =- 2x + 80 ;
( 2 )设当文具店每周销售这种纪念册获得 150元的利润时,每本纪念册的销售单价是
x 元,根据题意得:( x - 20 ) y = 150 ,
润是 192 元.
(1)∵ B ( 4 , m )在直线 y = x + 2 上
∴ m = 4 + 2 = ቤተ መጻሕፍቲ ባይዱ ,∴ B ( 4 , 6 )
∵抛物线 y =
ax2+
1 5
bx+ 6经过 A ( , ),B ( 4 , 6 )
2 2
∴抛物线的解析式为 y = 2x2 - 8x + 6 .
( 2 )设 P ( m , m + 2 ),则 D ( m , 2m2- 8m + 6 ).
整理得 w =-( x - 25 ) 2 + 225
∵- 1 < 0
∴当 x = 25 时, w 取得最大值,最大值为 225 元.
1
( 1 )根据题意得, y =- x + 50 ;
2
1
( 2 )根据题意得,( 40 + x )(- x + 50 )= 2 250 ,
2
解得: x 1 = 50 , x 2= 10 ,
=- 2 ( x - 30 ) 2 + 200 ,
此时当 x = 30 时, w 最大,
又∵售价不低于 20 元且不高于 28 元,
∴ x < 30 时, y 随 x 的增大而增大,即当 x = 28时, w 最大 =- 2 ( 28 - 30 ) 2 + 200 =

中考数学总复习:方程(组)与不等式(组)的实际应用ppt专题课件

中考数学总复习:方程(组)与不等式(组)的实际应用ppt专题课件

第 九 讲
第 十 讲
复习目标
知识回顾
重点解析
探究拓展
真题演练
3. 利率问题中的等量关系: ( 1) 本息和= 本金+ ( 2) 利息= 本金× 利率×
第 七 讲
第 八 讲
第 九 讲
( 3) 利息税= 利息× 利息税率 4. 利润问题中的等量关系: ( 1) 毛利润= 售价( 2) 纯利润= 售价- 其他费用
第 七 讲
第 八 讲
第 九 讲
第 十 讲
复习目标
知识回顾
重点解析
探究拓展
真题演练
第 七 讲
一、方程( 组) 与不等式( 组) 的实际应用 1. 行程问题中的基本数量关系: 路程= 速度× 2. 工程问题中的基本数量关系: 工作效率= ➡特别提醒: 工程问题中通常把工作总量看作整体“1”.
第 八 讲
复习目标
知识回顾
重点解析
探究拓展
真题演练
方程(组)与不等式(组)的实际应用
课标要求 理解:列方程(组)、不等式(组)解决实际问题的意义. 掌握:列方程(组)、不等式(组)解应用题的步骤与方法. 会:列方程( 组) 、不等式(组) 解决实际问题. 高频考点 1.列方程(组)解决实际问题. 2.列不等式(组)解决实际问题.
第 八 讲
第 九 讲
第 十 讲
复习目标
知识回顾
重点解析
探究拓展
真题演练
【思路点拨】 利用时间作为等量关系, 即骑车行驶 2. 1 千米所用的时间= 步行 2. 1 千米所用的时间-20 分钟, 在列方程时要注意单位的统一.
第 七 讲
第 八 讲
【自主解答】 ( 1) 设李明步行速度为 x米/ 分, 则骑自行车的速度为 3x米/ 分.

中考数学复习讲义课件 专题5 几何与图形实际应用

中考数学复习讲义课件 专题5 几何与图形实际应用

解:过点 C 作 CF⊥AE 于点 F.则 FC=AD=20m,AF=DC. 在 Rt△ACF 中,∠EAC=22°. ∵tan∠EAC=FACF=tan22°≈25,∴DC=AF≈52FC=50(m). 在 Rt△ABD 中,∠ABD=∠EAB=67°. ∵tan∠ABD=ABDD=tan67°≈152,∴BD≈152AD=235(m). ∴BC=DC-BD=50-235≈41.7(m). 答:大桥 BC 的长约为 41.7m.
4.(2021·怀化)政府将要在某学校大楼前修一座大桥.如图,宋老师测得大 楼的高是 20m,大楼的底部 D 处与将要修的大桥 BC 位于同一水平线上, 宋老师又上到楼顶 A 处测得 B 和 C 的俯角∠EAB,∠EAC 分别为 67°和 22°,宋老师说现在我能算出将要修的大桥 BC 的长了.同学们:你知道宋 老师是怎么算的吗?请写出计算过程.(结果精确到 0.1m,其中 sin67°≈ 1123,cos67°≈153,tan67°≈152,sin22°≈38,cos22°≈1156,tan22°≈25)
解:设 BN 的长为 x 米,则 BM=x+1.1+2.8-1.5=x+2.4(米). 由题意,得∠CND=∠ANB,∠CDN=∠ABN=90°. ∴△CND∽△ANB.∴ CADB=DBNN.同理,△EMF∽△AMB.∴AEBF=FBMM. ∵EF=CD,∴DBNN=FBMM,即1x.1=x+1.52.4. ∴x=6.6.∵CADB=DBNN,∴A1.B6=16..16.∴AB=9.6(米).
答:点 C 到弦 AB 所在直线的距离约为 6.64 米.
8.某新农村乐园设置了一个秋千场所,如图所示,秋千拉绳 OB 的长为 3m, 静止时,踏板到地面距离 BD 的长为 0.6m(踏板厚度忽略不计).为安全起见, 乐园管理处规定:儿童的“安全高度”为 hm,成人的“安全高度”为 2m.(计 算结果精确到 0.1m)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
获得的总利润最大?最大利润是多少?
解:设安排生产A种产品x种,则生产B种
产品为(50-x)种。
甲产品
依题意,得 9x4(50x)360 3x10(50x)290
乙产品
∴30≤x≤32
∵x为整数,∴x只能取30,31,32
∴生产方案有三种:
第一种方案:生产A种产品30件,B种产品20件;
第二种方案:生产A种产品31件,B种产品19件;
x≥10000 1 0 x≤ 8 0 2 0 0 0 5 x≤ 8 0 0 0 0 + 2 0 0 0
∴10000≤x≤16000
X≥10000 X≤16000 x≤16400
2020年10月2日
5
函数应用题
(例2、为了预防“非典”,某学校对教室采用药薰消毒法进行消毒。已
知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分)
①销售部主管说:现在已接到明年的定单10000台; ②人事部主管说:明年共有80位工人可投入生产,每人每年平均可
投入2000个工时; ③技术部主管说:生产一台产品平均要用10个工时,每台需要安装5
个A零件; ④供应部主管说:去年年终库存A零件2000件,明年能采购到A零件
80000件。 问:明年该公司应将生产量x(台)控制在什么范围之内?
(1)写出购买国债的金额x(元)与5年后银行支付的本息和(元) 的函数关系式;
(2)求鸿泰分红保险的年利率,并写出支付保费x(元)与5年后保 险公司还付的本息和(元)的函数关系式(红利除外);
(3)请你帮助投资者分析两种投资的利弊.
2020年10月2日
10
某工厂生产某种产品,每件产品的出厂价为 1万元,其原材料成本价(含 设备损耗等)为0.55万元,同时在生产过程中平均每生产一产品有1吨的废 渣产生.为达到国家环保要求,需要对废渣进行脱硫、脱氮等处理,现有 两种方案可供选择:
2020年10月2日
9
练习:一位投资者有两种选择:①中国银行发行五年期国债,年利 率为2.63%.②中国人寿保险公司乌鲁木齐市分公司推出的一种保 险一一鸿泰分红保险,投资者一次性交保费10000元(10份),保险 期为5年,5年后可得本息和10489.60元,一般还可再分得一些红利, 但分红的金额不固定,有时可能多,有时可能少.
第三种方案:生产A种产品32件,B种产品18件。
甲种原料 (千克)
9
4
乙种原料 (千克)
利润(元)
3
700
10
1200
方法一:逐一计算出利润, 后比较大小;
方法二:建立生产一种产品 的数量与总利润之间的函数 关系式,后求出最大值。
2020年10月2日
4
练习 某公司董事会召开各部门会议,制定明年的生产计划, 以下是各部门的调查汇报:
方案一:由工厂对废渣直接进行处理,每处理1吨废渣所用的原料费为 0.05万元,并且每月设备维护及损耗费为20万元.
方案二:工厂将废渣集中到废渣处理厂统一处理,每处理1吨废渣需付 0.1万元的处理费.
10万件。为了获得更好的效益,公司准备拿出一定的资金做广告。根据经验,
每且年y投入的x广2 告7费x是x(7万元,)如,果产把品利的润年看销作售是量销将售是总原额销减售去量成的本y倍费,和广告 费: 10 10 10
(1
)写出利润S(万元)与广告费x(万元)的函数关系式。并计算广告是多少
万元时,公司获得的利润最大,最大年利润是多少万元?
成正比例,药物燃烧后,y与x成反比例(如图所示)。现测得药物8分钟
燃毕,此时室内空气中每立方米的含药量为6毫克。请你根据题中所提供
的信息,解答下列问题:(1)药物燃烧时y关于x的函数关系式
为:
,自变量x的取值范围是:
;药物燃烧后y与x的函数关
系式为:
;(2)研究表明,当空气中每立方米的含药量低于1.6
数学组 于秀珍
2020年10月2日
1
应用题的分类
方程不等式应用题 函数、方程应用题 几何、方程应用题 统计、方程应用题
2020年10月2日
2
方程不等式应用题
例1 某工厂现在有甲种原料360千克、乙种原料290千克, 计划利用这两种原料生产A、B两种产品,共50件。已知生产一 件A种产品,需用甲种原料9千克、乙种原料3千克,可获利润700 元;生产一件B种产品,需用甲种原料4千克、乙种原料10千克, 可获利润1200元。问:按要求安排A、B两种产品的生产件数,有 哪几种方案?请你设计出来。在你设计的生产方案中,哪种方案
获得的总利润最大?最大利润是多少?
甲产品 乙产品
甲种原料 (千克)
9
4
乙种原料 (千克)
利润(元)
3
700
10
1200原料360千克、乙种原料290千克, 计划利用这两种原料生产A、B两种产品,共50件。已知生产一 件A种产品,需用甲种原料9千克、乙种原料3千克,可获利润700 元;生产一件B种产品,需用甲种原料4千克、乙种原料10千克, 可获利润1200元。问:按要求安排A、B两种产品的生产件数,有 哪几种方案?请你设计出来。在你设计的生产方案中,哪种方案
(2)把(1)中的最大利润留出3万元作广告,现有6个项目可供选择,各项
目项每目股投资金额A 和预计年B收益如下表C:
D
E
F
每股
5
2
6
4
6
8
(万元)
收益
0.55
0.4
0.6
0.5
0.9
1
(万元)
2020年10月2日
8
如果每个项目只能投一股,且要求所有投资项目的收益总额不 得低于1.6万元,问的几种符合要求的投资方式?定出每种投资 方式所选的项目。
毫克时学生方可进教室,那么从消毒开始,至少需要经过 分钟后,学
生才能回到教室;(3)研究表明,当空气中每立方米的含药量低不低于
1.6毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么
此次消毒是否有效?为什么?
2020年10月2日
6
(1) y=0.75x ,0<x≤8 ; y 48 x
(2)30 (3)此次消毒有效;把y=3代入y=0.75x得x=4,把y=3代
入 y 48 ,得x=6,因为16-4=12>10,即空气中的含 x
药量不低于3毫克/立方米的持续时间为12分钟,大于10 分钟的有效消毒时间,所以此次消毒有效.
2020年10月2日
7
28.启明公司生产某种产品,每件产品的成本是3元,售价是4元,年销售量为
相关文档
最新文档