九年级上《22.3实际问题与二次函数》同步练习(含答案详解)

合集下载

人教版九年级数学上册22.3实际问题与二次函数同步练习(word版_含答案)(含知识点)

人教版九年级数学上册22.3实际问题与二次函数同步练习(word版_含答案)(含知识点)

《实际问题与二次函数》同步练习附答案课堂学习检测1.矩形窗户的周长是6m,写出窗户的面积y(m2)与窗户的宽x(m)之间的函数关系式,判断此函数是不是二次函数,如果是,请求出自变量x的取值范围,并画出函数的图象.2.如图,有一座抛物线型拱桥,已知桥下在正常水位AB时,水面宽8m,水位上升3m,就达到警戒水位CD,这时水面宽4m,若洪水到来时,水位以每小时0.2m的速度上升,求水过警戒水位后几小时淹到桥拱顶.3.如图,足球场上守门员在O处开出一高球,球从离地面1m的A处飞出(A 在y轴上),运动员乙在距O点6m的B处发现球在自己头的正上方达到最高点M,距地面约4m高.球第一次落地后又弹起.据试验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式;(2)运动员乙要抢到第二个落点D ,他应再向前跑多少米?(取734=,562=)综合、运用、诊断4.如图,有长为24m 的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借用一段墙体(墙体的最大可用长度a =10m).(1)如果所围成的花圃的面积为45m 2,试求宽AB 的长;(2)按题目的设计要求,能围成面积比45m 2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.5.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m (件)与每件的销售价x (元)满足一次函数m =162-3x .(1)写出商场卖这种商品每天的销售利润y (元)与每件的销售价x (元)间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最为合适?最大销售利润为多少?6.某工厂现有80台机器,每台机器平均每天生产384件产品.现准备增加一批同类机器以提高生产总量.在试生产中发现,由于其他生产条件没有改变,因此,每增加一台机器,每台机器平均每天将减少生产4件产品.(1)如果增加x台机器,每天的生产总量为y件,请写出y与x之间的函数关系式;(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?7.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30万元;(3)求第8个月公司所获利润为多少万元?拓展、探究、思考8.已知:在平面直角坐标系xOy中,二次函数y=ax2+bx-3(a>0)的图象与x 轴交于A,B两点,点A在点B的左侧,与y轴交于点C,且OC=OB=3OA.(1)求这个二次函数的解析式;(2)设点D是点C关于此抛物线对称轴的对称点,直线AD,BC交于点P,试判断直线AD,BC是否垂直,并证明你的结论;(3)在(2)的条件下,若点M,N分别是射线PC,PD上的点,问:是否存在这样的点M,N,使得以点P,M,N为顶点的三角形与△ACP全等?若存在请求出点M,N的坐标;若不存在,请说明理由.参考答案1.y =-x 2+3x (0<x <3)图略.2.5小时.3.(1).11212++-=x x y (2)17米. 4.(1)设花圃的宽AB =x 米,知BC 应为(24-3x )米,故面积y 与x 的关系式为 y =x (24-3x )=-3x 2+24x .当y =45时,-3x 2+24x =45,解出x 1=3,x 2=5.当x 2=3时,BC =24-3×3>10,不合题意,舍去;当x 2=5时,BC =24-3×5=9,符合题意.故AB 长为5米.(2)能围成面积比45m 2更大的矩形花圃.由(1)知,y =-3x 2+24x =-3(x -4)2+48.103240≤-<x ,.8314<≤∴x 由抛物线y =-3(x -4)2+48知,在对称轴x <4的左侧,y 随x 的增大而增大,当x >4时,y 随x 的增大而减小.∴当314=x 时,y =-3(x -4)2+48有最大值,且最大值为),m (3246)4314(34822=--此时,,m 314=AB BC =10m ,即围成长为10米,宽为314米的矩形ABCD 花圃时,其最大面积为.m 32462 5.(1)y =-3x 2+252x -4860;(2)当x =42时,最大利润为432元.6.解:(1)由题意得y =(80+x )(384-4x )=-4x 2+64x +30720.(2)∵y =-4x 2+64x +30720=-4(x -8)2+30976,∴当x =8时,y 有最大值,为30976.即增加8台机器,可以使每天的生产总量最大,最大生产总量为30976件.7.解:(1)设s 与t 的函数关系式为x =at 2+bt +c ,图象上三点坐标分别为(1,-1.5),(2,-2),(5,2.5).分别代入,得⎪⎩⎪⎨⎧=++-=++-=++∴.5.2525,224,5.1c b a c b a c b a 解得⎪⎪⎩⎪⎪⎨⎧=-==.0,2,21c b a .2212t t s -=∴ (2)把s =30代入,2212t t s -= 解得t 1=10,t 2=-6(舍去).即截止到10月末,公司累积利润可达到30万元.(3)把t =7代入,2212t t s -= 得7月末的累积利润为s 7=10.5(万元).把t =8代入,2212t t s -= 得8月末的累积利润为s 8=16(万元).∴s 8-s 7=16-10.5=5.5(万元).即第8个月公司获利润5.5万元.8.(1)y =x 2-2x -3; (2)AD ⊥BC ;(3)存在,M 1(1,-2),N 1(4,-3).或M 2(0,-3),N 2(3,-4).以下不需要可以删除人教版初中数学知识点总结必备必记目 录七年级数学(上)知识点 (1)第一章 有理数 (1)第二章 整式的加减 (3)第三章 一元一次方程 (4)第四章 图形的认识初步 (5)七年级数学(下)知识点 (6)第五章相交线与平行线 (6)第六章平面直角坐标系 (8)第七章三角形 (9)第八章二元一次方程组 (12)第九章不等式与不等式组 (13)第十章数据的收集、整理与描述 (13)八年级数学(上)知识点 (14)第十一章全等三角形 (14)第十二章轴对称 (15)第十三章实数 (16)第十四章一次函数 (17)第十五章整式的乘除与分解因式 (18)八年级数学(下)知识点 (19)第十六章分式 (19)第十七章反比例函数 (20)第十八章勾股定理 (21)第十九章四边形 (22)第二十章数据的分析 (23)九年级数学(上)知识点 (24)第二十一章二次根式 (24)第二十二章一元二次根式 (25)第二十三章旋转 (26)第二十四章圆 (27)第二十五章概率 (28)九年级数学(下)知识点 (30)第二十六章二次函数 (30)第二十七章相似 (32)第二十八章锐角三角函数 (33)第二十九章投影与视图 (34)七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章有理数一.知识框架二.知识概念1.有理数:(1)凡能写成)0pq,p(pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a(a)0a()0a(aa或⎩⎨⎧<-≥=)0a(a)0a(aa;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 请判断下列题的对错,并解释.1.近似数25.0的精确度与近似数25一样.2.近似数4千万与近似数4000万的精确度一样.3.近似数660万,它精确到万位.有三个有效数字.4.用四舍五入法得近似数6.40和6.4是相等的.5.近似数3.7x10的二次与近似数370的精确度一样.1、错。

22.3 实际问题与二次函数 同步练习(附答案)

22.3 实际问题与二次函数  同步练习(附答案)

22.3 实际问题与二次函数第1课时二次函数与图形面积1.如图,假设篱笆(虚线部分)的长度为16 m,则所围成矩形ABCD的最大面积为() A.60 m2B.63 m2C.64 m2D.66 m22.如图,利用一面墙(墙的长度不超过45 m),用80 m长的篱笆围一个矩形场地.当AD=时,矩形场地的面积最大,最大值为.第1题图第2题图第3题图第4题图3.如图,在△ABC中,∠B=90°,AB=8 cm,BC=6 cm,点P从点A开始沿AB向B 点以2 cm/s的速度移动,点Q从点B开始沿BC向C点以1 cm/s的速度移动,如果P,Q 分别从A,B同时出发,当△PBQ的面积最大时,运动时间t为s.4.如图,在正方形ABCD中,E为BC上的点,F为CD边上的点,且AE=AF,AB=4,设EC =x,△AEF的面积为y,则y与x之间的函数关系式是.5.用长为20 cm的铁丝,折成一个矩形,设它的一边长为x cm,面积为y cm2.(1)求出y与x的函数关系式;(2)当边长x为多少时,矩形的面积最大?最大面积是多少?6.如图,要利用一面墙(长为30 m)建羊圈,用100 m长的围栏围成两个大小相同的矩形羊圈,每个羊圈留有一个1 m宽的门(留门部分不需要围栏),若宽用x(m)表示,总面积用y(m2)表示.(1)写出总面积y(m2)与宽x(m)的函数关系式;(2)当面积y=624时,求羊圈的宽x的值.7.手工课上,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60 cm,菱形的面积S(单位:cm2)随其中一条对角线的长x(单位:cm)的变化而变化.(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)当x是多少时,菱形风筝面积S最大?最大面积是多少?8.用一段长为24 m的篱笆围成一个一边靠墙的矩形养鸡场,若墙长8 m,则这个养鸡场最大面积为 m2.9.如图,在边长为6 cm的正方形ABCD中,点E,F,G,H分别从点A,B,C,D同时出发,均以1 cm/s的速度向点B,C,D,A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为3s时,四边形EFGH的面积最小,其最小值是cm2.10.如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=12 cm,点P是AB边上的一个动点,过点P作PE⊥BC于点E,PF⊥AC于点F,当PB=时,四边形PECF的面积最大,最大值为.11.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28 m 长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=x m.(1)若花园的面积为192 m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15 m和6 m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.12.用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x 米,面积为y 平方米.(1)求y 关于x 的函数解析式;(2)当x 为何值时,围成的养鸡场面积为60平方米?(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.13.如图,正方形ABCD 的边长为2 cm ,△PMN 是一块直角三角板(∠N =30°),PM >2 cm ,PM 与BC 均在直线l 上,开始时M 点与B 点重合,将三角板向右平行移动,直至M 点与C 点重合为止.设BM =x cm ,三角板与正方形重叠部分的面积为y cm 2.下列结论:①当0≤x ≤233时,y 与x 之间的函数关系式为y =32x 2;②当233<x ≤2时,y 与x 之间的函数关系式为y =2x -233;③当MN 经过AB 的中点时,y =32cm 2; ④存在x 的值,使y =12S 正方形ABCD (S 正方形ABCD 表示正方形ABCD 的面积).其中正确的是 (写出所有正确结论的序号).第2课时 二次函数与商品利润1.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售价为x 元,则可卖出(350-10x)件商品,那么卖出商品所赚钱y(元)与售价x(元)之间的函数关系式为( )A .y =-10x 2-560x +7 350 B .y =-10x 2+560x -7 350 C .y =-10x 2+350x D .y =-10x 2+350x -7 3502.某种商品每件进价为20元,调查表明:在某段时间内若以每件x 元(20≤x ≤30,且x 为整数)出售,可卖出(30-x)件.若使利润最大,则每件商品的售价应为 元.3.中考前,某校文具店以每套5元购进若干套考试用具,为让利考生,该店决定售价不超过7元,在几天的销售中发现每天的销售数量y(套)和售价x(元)之间存在一次函数关系,绘制图象如图.(1)y与x的函数关系式为(要求写出x的取值范围);(2)设销售该套文具每天获利w元,则销售单价应为多少元时,才能使文具店每天的获利最大?最大利润是多少?4.一件工艺品进价为100元,标价135元售出,每天可售出100件.根据销售统计,该件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为()A.5元B.10元C.0元D.6元5.某商场销售一批品牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)若商场平均每天盈利1 200元,每件衬衫应降价多少元?(2)想要平均每天盈利最多,每件衬衫应降价多少元?6.喜迎圣诞,某商店销售一种进价为50元/件的商品,售价为60元/件,每星期可卖出200件,若每件商品的售价每上涨1元,则每星期就会少卖出10件.设每件商品的售价上涨x 元(x 为正整数),每星期销售该商品的利润为y 元,则y 与x 的函数关系式为( )A .y =-10x 2+100x +2 000 B .y =10x 2+100x +2 000 C .y =-10x 2+200x D .y =-10x 2-100x +2 0007.某商品进货单价为30元,按40元一个销售能卖40个;若销售单价每涨1元,则销量减少1个.为了获得最大利润,此商品的最佳售价应为 元.8.某工厂生产的某种产品按产量分为10个档次,第1档次(最低档次)的产品一天能生产95件产品,每件利润6元(第一档).每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x 档次的产品一天的总利润为y 元(其中x 为正整数,且1≤x ≤10),求出y 关于x 的函数解析式;(2)若生产第x 档次的产品一天的总利润为1 120元,求该产品的质量档次.9.为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1 000 m 2的空地进行绿化,一部分种草,剩余部分栽花.设种草部分的面积为x(m 2),种草所需费用y 1(元)与x(m 2)的函数关系式为y 1=⎩⎪⎨⎪⎧k 1x (0≤x<600),k 2x +b (600≤x ≤1 000),其图象如图所示.栽花所需费用y 2(元)与x(m 2)的函数关系式为y 2=-0.01x 2-20x +30 000(0≤x ≤1 000).(1)请直接写出k 1,k 2和b 的值;(2)设这块1 000 m 2空地的绿化总费用为W(元),请利用W 与x 的函数关系式,求出绿化总费用W 的最大值;(3)若种草部分的面积不少于700 m 2,栽花部分的面积不少于100 m 2,请求出绿化总费用W 的最小值.10.某网店销售某款童装,每件售价60元,每星期可卖300件.为了促销,该店决定降价销售,市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元.设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大?最大利润是多少?(3)若该网店每星期想要获得不低于6 480元的利润,每星期至少要销售该款童装多少件?第3课时实物抛物线1.河北省赵县的赵州桥是近似的抛物线形,建立如图所示的平面直角坐标系,其函数关系式为y=-125x2.当水面离桥拱顶的高度DO是4 m时,这时水面宽度AB为()A.-20 m B.10 m C.20 m D.-10 m2.某隧道横截面由抛物线与矩形的三边组成,尺寸如图所示.以隧道横截面抛物线的顶点为原点,以抛物线的对称轴为y轴,建立直角坐标系,求得该抛物线对应的函数关系式为.3.有一个抛物线形的立交拱桥,这个拱桥的最大高度为16 m,跨度为40 m,现把它的图形放在坐标系中(如图).若在离跨度中心5 m处的M点垂直竖立一铁柱支撑拱顶,则这根铁柱的长为m.4.(绵阳中考)如图是抛物线形拱桥,当拱顶离水面2 m时,水面宽4 m,水面下降2 m,水面宽度增加 m.5.如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB 和矩形的三边AE ,ED ,DB 组成,已知河底ED 是水平的,ED =16 m ,AE =8 m ,抛物线的顶点C 到ED 的距离是11 m .试以ED 所在的直线为x 轴,抛物线的对称轴为y 轴建立平面直角坐标系,求题中抛物线的函数解析式.6.王大力同学在校运动会上投掷标枪,标枪运行的高度h(m)与水平距离x(m)的关系式为h=-148x 2+2324x +2,则王大力同学投掷标枪的成绩是 m.7.一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系式是y =-112x 2+23x +53,铅球运行路线如图. (1)求铅球推出的水平距离;(2)通过计算说明铅球行进高度能否达到4 m.8.某种火箭被竖直向上发射时,它的高度h(m)与时间t(s)的关系可以用公式h =-5t 2+150t +10表示.经过 s ,火箭达到它的最高点.9.如图,某大桥有一段抛物线形的拱梁,抛物线的解析式是y =ax 2+bx.小强骑自行车从拱梁一端O 沿直线匀速穿过拱梁部分的桥面OC ,当小强骑自行车行驶8秒时和28秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC 共需 秒.10.王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线y =-15x 2+85x ,如图,其中y(m)是球的飞行高度,x(m)是球飞出的水平距离,结果球离球洞的水平距离还有2 m.(1)请写出抛物线的开口方向、顶点坐标、对称轴; (2)请求出球飞行的最大水平距离;(3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线?求出其解析式.11.如图,隧道的截面由抛物线和长方形构成,长方形的长是12 m ,宽是4 m .按照图中所示的平面直角坐标系,抛物线可以用y =-16x 2+bx +c 表示,且抛物线上的点C 到墙面OB的水平距离为3 m ,到地面OA 的距离为172m.(1)求该抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运汽车载一长方体集装箱后高为6 m ,宽为4 m ,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线形拱壁上需要安装两排灯,使它们离地面的高度相等.如果灯离地面的高度不超过8 m ,那么两排灯的水平距离最小是多少米?22.3 实际问题与二次函数第1课时 二次函数与图形面积1.C2.20m ,800__m 2. 3.2.4.y =-12x 2+4x .5.解:(1)已知一边长为x cm ,则另一边长为(10-x )cm.则y =x (10-x ),化简,得y =-x 2+10x (0<x <10).(2)y =10x -x 2=-(x 2-10x )=-(x -5)2+25. ∴当x =5时,y 取最大值,为25.答:当边长x 为5 cm 时,矩形的面积最大,最大面积是25 cm 2. 6.解:(1)y =x (100-3x +2),即y =-3x 2+102x (24≤x ≤34).(2)由题意得-3x 2+102x =624,解得x 1=8(不合题意,舍去),x 2=26. 则羊圈的宽x =26.7.解:(1)S =-12x 2+30x.(2)∵S =-12x 2+30x =-12(x -30)2+450,且a =-12<0,∴当x =30时,S 有最大值,最大面积为450 cm 2. 8.64 . 9.18.10.6cm ,3__cm 2.11.解:,得x (28-x )=192,解得x 1=12,x 2=16. ∴x =12或16.(2)S =x (28-x )=-(x -14)2+196.由题意知⎩⎪⎨⎪⎧x ≥6,28-x ≥15,解得6≤x ≤13.在6≤x ≤13范围内,S 随x 的增大而增大.∴当x =13时,S 最大=-(13-14)2+196=195.12.解:(1)y =x (16-x )=-x 2+16x (0<x<16).(2)当y =60时,-x 2+16x =60, 解得x 1=10,x 2=6.∴当x =10或6时,围成的养鸡场的面积为60平方米.(3)当y =70时,-x 2+16x =70,整理得 x 2-16x +70=0.∵Δ=256-280=-24<0, ∴此方程无实数根.∴不能围成面积为70平方米的养鸡场. 13.①②④.第2课时 二次函数与商品利润1.B3.(1)y=-20x+200(5≤x≤7);(2)解:根据题意得w=(x-5)(-20x+200)=-20x2+300x-1 000=-20(x-7.5)2+125,∵当x<7.5时,w随x的增大而增大,∴当x=7时,文具店每天的获利最大,最大利润是-20×(7-7.5)2+125=120(元).答:销售单价为7元时,才能使文具店每天的获利最大,最大利润是120元.4.A5.解:(1)设每件衬衫应降价x元,∵商场平均每天要盈利1 200元,∴(40-x)(20+2x)=1 200.整理,得2x2-60x+400=0.解得x1=20,x2=10.因为要扩大销售,在获利相同的情况下,降价越多,销售越快,故每件衬衫应降价20元.(2)设商场平均每天赢利w元.则 w=(20+2x)(40-x),=-2x2+60x+800,=-2(x-15)2+1 250.∴当x=15时,w取最大值,为1 250.答:每件衬衫降价15元时,商场平均每天赢利最多,最大利润为1 250元.6.A7.55.8.解:(1)y=[6+2(x-1)]×[95-5(x-1)],整理,得y=-10x2+180x+400(1≤x≤10).(2)由-10x2+180x+400=1 120,化简,得x2-18x+72=0.解得x1=6,x2=12(不合题意,舍去).∴该产品为第6档次的产品.9.解:(1)k1=30,k2=20,b=6 000.(2)当0≤x<600时,W=30x+(-0.01x2-20x+30 000)=-0.01x2+10x+30 000=-0.01(x-500)2+32 500,∵-0.01<0,∴当x=500时,W取最大值为32 500元.当600≤x≤1 000时,W=20x+6 000+(-0.01x2-20x+30 000)=-0.01x2+36 000,∵-0.01<0,∴当600≤x≤1 000时,W随x的增大而减小.∴当x=600时,W取最大值为32 400元.∵32 400<32 500,∴W的最大值为32 500元.(3)由题意,得1 000-x≥100,解得x≤900.又∵x≥700,∴700≤x≤900.∵当700≤x≤900时,W随x的增大而减小,∴当x=900时,W取最小值为27 900元.10.解:(1)y=300+30(60-x)=-30x+2 100.(2)设每星期的销售利润为W元,依题意,得W=(x-40)(-30x+2 100)=-30x2+3 300x-84 000=-30(x-55)2+6 750.∵-30<0,∴当x=55时,W最大=6 750.答:当每件售价定为55元时,每星期的销售利润最大,最大利润是6 750元.(3)由题意,得-30(x -55)2+6 750=6 480,解得x 1=52,x 2=58.∵抛物线W =-30(x -55)2+6 750的开口向下,∴当52≤x ≤58时,每星期销售利润不低于6 480元.∵在y =-30x +2 100中,y 随x 的增大而减小,∴当x =58时,y 最小=-30×58+2 100=360.答:每星期至少要销售该款童装360件.第3课时 实物抛物线1. C2.y =-13x 2. 345解:如图所示.由题知抛物线的顶点坐标为(0,11),过点B (8,8),设抛物线的解析式为y =ax 2+11,将点B 的坐标(8,8)代入抛物线的解析式,得64a +11=8.解得a =-364, ∴抛物线的解析式为y =-364x 2+11. 6.48.7.解:(1)当y =0时,-112x 2+23x +53=0, 解得x 1=10,x 2=-2(不合题意,舍去). ∴铅球推出的水平距离是10 m.(2)y =-112x 2+23x +53=-112(x 2-8x +16)+43+53=-112(x -4)2+3. 当x =4时,y 取最大值3.∴铅球行进高度不能达到4 m ,最高能达到3 m.8.15s .9.36.10.解:(1)y =-15x 2+85x =-15(x -4)2+165. ∴抛物线y =-15x 2+85x 开口向下,顶点坐标为(4,165),对称轴为直线x =4. (2)令y =0,得-15x 2+85x =0. 解得x 1=0,x 2=8.∴球飞行的最大水平距离是8 m.(3)要让球刚好进洞而飞行最大高度不变,则球飞行的最大水平距离为10 m. ∴抛物线的对称轴为直线x =5,顶点为(5,165).设此时对应的抛物线解析式为y =a (x -5)2+165. 又∵点(0,0)在此抛物线上,∴25a +165=0,a =-16125. ∴y =-16125(x -5)2+165, 即y =-16125x 2+3225x. 11.解:(1)由题意,得点B 的坐标为(0,4),点C 的坐标为(3,172), ∴⎩⎪⎨⎪⎧4=c ,172=-16×32+3b +c. 解得⎩⎪⎨⎪⎧b =2,c =4. ∴该抛物线的函数关系式为y =-16x 2+2x +4. ∵y =-16x 2+2x +4=-16(x -6)2+10, ∴拱顶D 到地面OA 的距离为10 m.(2)当x =6+4=10时,y =-16x 2+2x +4=-16×102+2×10+4=223>6, ∴这辆货车能安全通过.(3)当y =8时,-16x 2+2x +4=8,即x 2-12x +24=0,∴x 1=6+23,x 2=6-2 3. ∴两排灯的水平距离最小是6+23-(6-23)=43(m ).。

2019-2020学年人教版九年级上册数学22.3 实际问题与二次函数 同步练习(有答案)

2019-2020学年人教版九年级上册数学22.3 实际问题与二次函数 同步练习(有答案)

22.3 实际问题与二次函数同步练习一、选择题1、一件工艺品进价为100元,标价135元售出,每天可售出100件,根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为( )A.5元B.10元C.0元D.3600元2、若某商品的利润y(元)与售价x(元)之间的函数关系式是y=-x2+8x+9,且售价x的范围是1≤x≤3,则最大利润是( )A.16元B.21元C.24元D.25元3、某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段护栏需要每间隔0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m,如图所示,则防护栏不锈钢支柱的总长度至少为( )A.50mB.100mC.160mD.200m4、有一座抛物线形拱桥,正常水位桥下面宽度为20米,拱顶距离水平面4米,如图建立直角坐标系,若正常水位时,桥下水深6米,为保证过往船只顺利航行,桥下水面宽度不得小于18米,则当水深超过多少米时,就会影响过往船只的顺利航行()A.2.76米B.6.76米 C.6 D.7米5、把160元的电器连续两次降价后的价格为y元,若平均每次降价的百分率是x,则y与x的函数关系式为()A.y=320(x﹣1)B.y=320(1﹣x)C.y=160(1﹣x2)D.y=160(1﹣x)26、如图所示,△ABC为等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG边长也为2,且AC与DE在同一直线上,△ABC从C点与D点重合开始,沿直线DE向右平移,直到点A与点E重合为止,设CD的长为x,△ABC与正方形DEFG 重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()7、在1~7月份,某地的蔬菜批发市场指导菜农生产和销售某种蔬菜,并向他们提供了这种蔬菜每千克售价与每千克成本的信息如图所示,则出售该种蔬菜每千克利润最大的月份可能是()A.1月份 B.2月份 C.5月份 D.7月份8、向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax2+bx+c(a≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )A.第8秒 B.第10秒 C.第12秒 D.第15秒二、填空题9、某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天销售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为____________元时,该服装店平均每天的销售利润最大10、如图所示,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50m长的篱笆围成中间有一道篱笆的养鸡场,设它的长为xm,要使鸡场的面积最大,鸡场的长为m.11、如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上,C点在斜边上,设矩形的一边AB=x m,矩形的面积为y m2,则y的最大值为 m2.12、用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长20m,当矩形的长、宽各取某个特定的值时,菜园的面积最大,这个最大面积是m2.13、某种商品的进价为40元,在某段时间内若以每件x元出售,可卖出(100﹣x)件,当x= 时才能使利润最大.14、某果园有100棵橘子树,平均每一棵树结600个橘子.根据经验估计,每多种一棵树,平均每棵树就会少结5个橘子.设果园增种x棵橘子树,果园橘子总个数为y个,则果园里增种棵橘子树,橘子总个数最多.15、如图是抛物线型拱桥,当拱顶离水面2 m时,水面宽4 m,水面下降2 m,则水面宽度增加m.三、简答题16、如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?17、图中是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,建立如图所示的平面直角坐标系:(1)求拱桥所在抛物线的解析式;(2)当水面下降1m时,则水面的宽度为多少?18、位于郑州市二七区的二七德化步行街是郑州最早的商业文化购物步行街,在郑州乃至中原都相当有名,德化步行街某店铺经营某种品牌童装,购进时的单价是40元,根据市场调查,当销售单价是60元时,每天销售量是200件,销售单价每降低1元,就可多售出20件.(1)求出销售量y(件)与销售单价x(元)之间的函数关系式;(2)求出销售该品牌童装获得的利润w(元)与销售单价x(元)之间的函数关系式;(3)若童装厂规定该品牌童装的销售单价不低于56元且不高于60元,则此服装店销售该品牌童装获得的最大利润是多少?19、丑橘,又名不知火,是近年来颇受欢迎的柑橘品种.临近春节一水果经销商以6元/千克的价格购进10000千克丑橘,为了保鲜放在冷藏室里,但每天仍有50千克丑橘变质丢弃,且每存放一天需要各种费用共300元,据预测,每天每千克丑橘的市场价格会在进价的基础上上涨0.1元.(1)设x天后每千克丑橘的售价为p元,直接写出p与x的函数关系式;(不要求写出函数自变量的取值范围);(2)若存放x天后将该批丑橘一次性售出,设销售总金额为y元,求出y与x的函数关系式;(3)该水果店将这批丑橘存放多少天后一次性售出,可以获得最大利润,最大利润为多少?20、某化工材料经销公司购进一种化工原料若干千克,物价部门规定其销售单价不低于进价,不高于60元/千克,经市场调查发现:销售单价定为60元/千克时,每日销售20千克;如调整价格,每降价1元/千克,每日可多销售2千克.(1)已知某天售出该化工原料40千克,则当天的销售单价为元/千克;(2)该公司现有员工2名,每天支付员工的工资为每人每天90元,每天应支付其他费用108元,当某天的销售价为46元/千克时,收支恰好平衡.①求这种化工原料的进价;②若公司每天的纯利润(收入﹣支出)全部用来偿还一笔10000元的借款,则至少需多少天才能还清借款?21、某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润y A(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出y B与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A与x之间的关系,并求出y A与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?参考答案一、选择题1、A2、C3、C4、B.5、D解:第一次降价后的价格是160(1﹣x),第二次降价为160(1﹣x)×(1﹣x)=160(1﹣x)2则y与x的函数关系式为y=160(1﹣x)2.6、A【解答】解:设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y∴当C从D点运动到E点时,即0≤x≤2时,y=×2×2﹣(2﹣x)×(2﹣x)=﹣x2+2x.当A从D点运动到E点时,即2<x≤4时,y=×[2﹣(x﹣2)]×[2﹣(x﹣2)]=x2﹣4x+8,∴y与x之间的函数关系由函数关系式可看出A中的函数图象与所求的分段函数对应.7、C【解答】解:设x月份出售时,每千克售价为y1元,每千克成本为y2元.根据图甲设y1=kx+b,∴,∴,∴y1=﹣x+7.根据图乙设y2=a(x﹣6)2+1,∴4=a(3﹣6)2+1,∴a=,∴y2=(x﹣6)2+1.∵y=y1﹣y2,∴y=﹣x+7﹣[(x﹣6)2+1],∴y=﹣x2+x﹣6.∵y=﹣x2+x﹣6,∴y=﹣(x﹣5)2+.∴当x=5时,y有最大值,即当5月份出售时,每千克收益最大.故选C.8、B二、填空题9、2210、2511、30012、解:设矩形的长为xm,则宽为m,菜园的面积S=x•=﹣x2+15x=﹣(x﹣15)2+,(0<x≤20)∵当x<15时,S随x的增大而增大,∴当x=15时,S最大值=m2,故答案为:.13、70.解:设获得的利润为w元,由题意可得,w=(x﹣40)(100﹣x)=﹣(x﹣70)2+900,∴当x=70时,w取得最大值,14、1015、(4-4)三、简答题16、【解答】解:(1)当y=15时,15=﹣5x2+20x,解得,x1=1,x2=3,答:在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;(2)当y=0时,0═﹣5x2+20x,解得,x1=0,x2=4,∵4﹣0=4,∴在飞行过程中,小球从飞出到落地所用时间是4s;(3)y=﹣5x2+20x=﹣5(x﹣2)2+20,∴当x=2时,y取得最大值,此时,y=20,答:在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.17、【解答】解:(1)由题意设抛物线解析式为:y=ax2+b(a≠0)∵当拱顶离水面2m时,水面宽4m∴点C(0,2),点B(2,0)代入得:解得∴拱桥所在抛物线的解析式为y=﹣(2)当水位下降1m时,水位纵坐标为﹣1令y=﹣1则﹣1=﹣解得x=±∴水面宽度为【点评】本题为二次函数应用题,考查了待定系数法和通过数形结合求出图象上点坐标.18、解:(1)根据题意得,y=200+(60﹣x)×20=﹣20x+1400,所以销售量y件与销售单价x元之间的函数关系式为y=﹣20x+1400(40≤x≤60);(2)W=(x﹣40)y=(x﹣40)(﹣20x+1400)=﹣20x2+2200x﹣56000,所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式W=﹣20x2+2200x﹣56000;(3)根据题意得56≤x≤60,w=﹣20x2+2200x﹣56000=﹣20(x﹣55)2+4500∵a=﹣20<0,∴抛物线开口向下,∴当56≤x≤60时,W随x的增大而减小,∴x=56时,W有最大值,最大值=﹣20(56﹣55)2+4500=4480(元).所以商场销售该品牌童装获得的最大利润是4480元.19、解:(1)由题意得:p=0.1x+6;(2)由题意得:y=p(10000﹣50x)=﹣5x2+700x+60000;(3)设丑橘的总利润为w,则:w=y﹣300x﹣300x﹣6×10000=﹣5x2+100x=﹣5x(x﹣20),∵﹣5<0,∴w有最大值,当x=10时,最大值为500.答:这批丑橘存放40天后一次性售出可以获得最大利润,最大利润为500.【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.20、解:(1)设某天售出该化工原料40千克时的销售单价为x元/千克,(60﹣x)×2+20=40,解得,x=50,故答案为:50;(2)①设这种化工原料的进价为a元/千克,当销售价为46元/千克时,当天的销量为:20+(60﹣46)×2=48(千克),则(46﹣a)×48=108+90×2,解得,a=40,即这种化工原料的进价为40元/千克;②设公司某天的销售单价为x元/千克,每天的收入为y元,则y=(x﹣40)[20+2(60﹣x)]=﹣2(x﹣55)2+450,∴当x=55时,公司每天的收入最多,最多收入450元,设公司需要t天还清借款,则t≥10000,解得,t≥,∵t为整数,∴t=62.即公司至少需62天才能还清借款.21、解:(1)由题意得,将坐标(2,2.4)(4,3.2)代入函数关系式y B=ax2+bx,求解得:∴y B与x的函数关系式:y B=﹣0.2x2+1.6x(2)根据表格中对应的关系可以确定为一次函数,故设函数关系式y A=kx+b,将(1,0.4)(2,0.8)代入得:,解得:,则y A=0.4x;(3)设投资B产品x万元,投资A产品(15﹣x)万元,总利润为W万元,W=﹣0.2x2+1.6x+0.4(15﹣x)=﹣0.2(x﹣3)2+7.8即当投资B3万元,A12万元时所获总利润最大,为7.8万元.。

人教版九年级上册数学实际问题与二次函数同步训练(含答案)

人教版九年级上册数学实际问题与二次函数同步训练(含答案)

人教版九年级上册数学22.3实际问题与二次函数同步训练一、单选题1.飞机着陆后滑行的距离s (单位:米)关于滑行时间t (单位:秒)的函数表达式为2s at bt =+,当滑行时间为10秒时,滑行距离为450米;当滑行时间为20秒时,滑行距离为600米,则飞机的最大滑行距离为( )A .600米B .800米C .1000米D .1200米 2.据省统计局公布的数据,合肥市2021年一月GDP 总值约为6百亿元人民币,若合肥市三月GDP 总值为y 百亿元人民币,平均每个月GDP 增长的百分率为x ,则y 关于x 的函数表达式是( )A .y =6(1+2x )B .y =6(1﹣x )2C .y =6(1+x )2D .y =6+6(1+x )+6(1+x )2 3.某超市将进价为40元件的商品按50元/件出售时,每月可售出500件.经试销发现,该商品售价每上涨1元,其月销量就减少10件.超市为了每月获利8000元,则每件应涨价多少元?若设每件应涨价x 元,则依据题意可列方程为( )A .(5040)(500)8000-+-=x xB .(40)(50010)8000+-=x xC .(5040)(50010)8000-+-=x xD .(50)(50010)8000--=x x 4.在平面直角坐标系中,O 为坐标原点.二次函数致2y x bx c =++的图象与x 轴只有一个交点,且经过点()2,A m c -,()2,B m c +,则AOB 的面积为( ) A .8 B .12 C .16 D .4 5.已知关于x 的方程20x bx c ++=的两个根分别是-1和3,若抛物线22y x bx c =+-与y 轴交于点A ,过A 作AB y ⊥轴,交抛物线于另一交点B ,则AB 的长为( ) A .2 B .3 C .1 D .1.5 6.平面直角坐标系中,点A 的坐标为()0,1,点B 的坐标为()2,1,连接AB ,当抛物线2y x c =+与线段AB 有公共点时,c 的取值范围为( )A .3c <-B .31c -≤≤C .1c >D .01c ≤≤ 7.如图,在长为20m 、宽为14m 的矩形花圃里建有等宽的十字形小径,若小径的宽不超过1m ,则花圃中的阴影部分的面积有( )A .最小值247B .最小值266C .最大值247D .最大值266 8.如图,正方形ABCD 中,AB =4cm ,动点E 从点A 出发,沿折线AB BC -运动到点C 停止,过点E 作EF AE ⊥交CD 于点F ,设点E 的运动路程为x cm ,DF =y cm ,则y 与x 对应关系的图象大致是( )A .B .C .D .二、填空题9.如图,某拱桥桥洞的形状是抛物线,若取水平方向为x 轴,拱桥的拱点O 为原点建立直角坐标系,它可以近似地用函数218y x =-表示(单位:m ).已知目前桥下水面宽4m ,若水位下降1.5m ,则水面宽为______m .10.如图是一个横断面为抛物线形状的拱桥,此时水面宽AB 为3米,拱桥最高点C 离水面的距离CO 也为3米,则当水位上升1米后,水面的宽度为____米.11.如图所示,用长为21米的篱笆,一面利用墙(墙的最大可用长度a 为10米),围成中间隔有一道篱笆的长方形花圃,为便于进出,开了3道宽为1米的门.设花圃的宽AB 为x 米,面积为S 平方米,则S 与x 的之间的函数表达式为 __;自变量x 的取值范围为 __.12.亮亮推铅球,铅球行进高度y (m )与水平距离x (m )之间的关系为()215312y x =--+,则小明推铅球的成绩是______m . 13.随着经济的发展和人们生活水平的提高,越来越多的人选择乘飞机出行.某种型号的飞机着陆后滑行的距离s (单位:m )与滑行的时间(单位:s )的函数关系式为260 1.5s t t =-,那么飞机着陆后滑行_____s 停下.14.如图,物体从点A 抛出,物体的高度y (m )与飞行时间t (s )近似满足函数关系式y =−15(t −3)2+5.(1)OA =______m .(2)在飞行过程中,若物体在某一个高度时总对应两个不同的时间,则t 的取值范围是________.15.跳台滑雪是2022年北京冬奥会比赛项目之一.一名参赛运动员起跳后,他的飞行路线可以看作是抛物线21240453y x x =-++的一部分(如图所示),则这名运动员起跳后的最大飞行高度是______m .16.某企业研发出了一种新产品准备销售,已知研发、生产这种产品的成本为30元/件,据调查年销售量y (万件)关于售价x (元/件)的函数解析式为:()()21404060806070x x y x x ⎧-+≤<⎪=⎨-+≤≤⎪⎩,则当该产品的售价x 为________.(元/件)时,企业销售该产品获得的年利润最大.三、解答题17.甲、乙两家水果店经销同一种水果,采取不同的降价措施增加销售额,提高利润.(1)甲水果店原售价每千克20元,连续两次降价后每千克12.8元,每次降价的百分率相同.求每次降价的百分率;(2)乙水果店原来每千克盈利6元,每天可售出60千克.经市场调查发现,若每千克降价0.5元,日销售量将增加10千克.在进货价不变的情况下,乙水果店决定采取适当的降价措施增加销售盈利.乙水果店降价多少元时,每天销售这种水果获利最多?最多可获利多少元?18.朝天城区某水果店王阿姨到水果批发市场打算购进一种水果销售,经过讨价还价,实际价格每千克比原来少2元,发现原来买这种水果80千克的钱,现在可买88千克.(1)现在实际购进这种水果每千克多少元?(2)王阿姨准备购进这种水果销售,若这种水果的销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系.①求y与x之间的函数关系式;①请你帮王阿姨拿个主意,将这种水果的销售单价定为多少时,能获得最大利润?最大利润是多少?19.精准扶贫工作已经进入攻坚阶段,贫苦户李大叔在政府的帮助下,建起塑料大棚,种植优质草莓,今年二月份正式上市销售.在30天的试销中,每天的销售量与销售天数x满足一次函数关系,部分数据如下表:设第x天的售价为y元/千克,y关于x的函数关系满足如下图像:已知种植销售草莓的成本为5元/千克,每天的利润是w元.(利润=销售收入﹣成本)(1)将表格中的最后一列补充完整;(2)求y关于x的函数关系式;(3)求销售草莓的第几天时,当天的利润最大?最大利润是多少元?20.如图,预防新冠肺炎疫情期间,某校在校门口用塑料膜围成一个临时隔离区,隔离区分成两个区域,中间用塑料膜隔开.学校利用围墙作为一边,用总长为48m的塑料膜围成了如图所示的两块矩形区域;已知围墙的可用长度不超过21m,设AB的长为x m,矩形区域ABCD的面积y m2.(1)求y与x之间的函数解析式,并求出自变量x的取值范围;(2)当矩形ABCD的面积为84m2时,求AB的长度;(3)当AB的长度是多少时,矩形区域ABCD的面积y取得最大值,最大值是多少?答案第1页,共1页 参考答案:1.A2.C3.C4.A5.A6.B7.A8.A9.81011. 2324S x x =-+1463≤<x 12.1113.2014.1650≤t ≤6且t ≠3 15.4516.5017.(1)20%(2)乙水果店每千克该种水果降价1.5元时,销售盈利最多,每天可获利405元 18.(1)实际购进这种水果每千克20元(2)①11440y x y =-+;①销售单价定为30元时利润最大,最大利润为1100元 19.(1)见解析(2)y =119(020)29(2030)x x x ⎧-+<≤⎪⎨⎪<≤⎩ (3)销售草莓的第30天时,当天的利润最大,最大利润是272元 20.(1)y =﹣3x 2+48x ,9≤x <16(2)14米(3)AB 的长度是9m 时,矩形区域ABCD 的面积y 取得最大值,最大值是189m 2。

人教版九年级数学上册22.3实际问题与二次函数同步练习题含答案

 人教版九年级数学上册22.3实际问题与二次函数同步练习题含答案

人教版九年级数学上册22.3实际问题与二次函数同步练习题一.选择题(共10小题)1.二次函数y=﹣x2﹣8x+c的最大值为0,则c的值等于()A.4B.﹣4C.﹣16D.162.二次函数y=ax2+bx+a(a≠0)的最大值是零,则代数式|a|+化简结果为()A.a B.1C.﹣a D.03.已知一个三角形的面积S与底边x的关系是S=x2﹣2x+6,要使S有最小值,则x的值为()A.1B.2C.﹣1D.54.已知:抛物线y=x2﹣6x+c的最小值为1,那么c的值是()A.10B.9C.8D.75.在半径为4的圆中,挖去一个边长为xcm的正方形,剩下部分面积为ycm2,则关于y与x之间函数关系式为()A.y=πx2﹣4x B.y=16π﹣x2C.y=16﹣x2D.y=x2﹣4x6.已知正方形ABCD,设AB=x,则正方形的面积y与x之间的函数关系式为()A.y=4x B.y=x2C.x=D.7.某产品进货单价为9元,按10一件售出时,能售100件,如果这种商品每涨价1元,其销售量就减少10件,设每件产品涨x元,所获利润为y元,可得函数关系式为()A.y=﹣10x2+110x+10B.y=﹣10x2+100xC.y=﹣10x2+100x+110D.y=﹣10x2+90x+1008.某乡镇企业现在年产值是15万元,如果每增加100元投资,一年增加250元产值,那么总产值y(万元)与新增加的投资额x(万元)之间函数关系为()A.y=25x+15B.y=2.5x+1.5C.y=2.5x+15D.y=25x+1.59.用长为12m的铝合金型材做一个形状如图所示的矩形窗框,则做成的窗框的最大透光面积为()A.4m2B.6m2C.12m2D.16m210.直角三角形两直角边之和为定值,其面积S与一直角边x之间的函数关系大致图象是下列中的()A.B.C.D.二.填空题(共7小题)11.若二次函数y=kx2+k2﹣3有最大值1,则k的值是.12.二次函数y=2x2﹣2x+6的最小值是.13.一根长为40cm的铁丝,把它弯成一个矩形框,设矩形的长为xcm,矩形的面积为y(cm2),试写出y与x的函数关系式:.(注意标注自变量x的取值范围)14.正方形的边长是x,面积是A,请写出A与x的关系式:.它与y=x2的图象有什么不同?.15.你知道吗?平时我们在跳绳时,绳甩到最高处的形状可近似地看为抛物线,如图,正在甩绳的甲、乙两名学生拿绳的手间距离为4m,距地面均为1m,学生丙、丁分别站在距甲拿绳的手水平距离1m、2.5m处,绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高1.5m,则学生丁的身高为m(建立的平面直角坐标系如图所示).16.周长为13cm的矩形铁板上剪去一个等边三角形(这个等边三角形的一边是矩形的宽),则矩形宽为cm,长为cm时,剩下的面积最大,这个最大面积是.17.已知二次函数y=x2﹣2(m﹣1)x+m2﹣2m﹣3的图象与函数y=﹣x2+6x的图象交于y 轴一点,则m=.三.解答题(共8小题)18.y=﹣2x2+4x+1,且2≤x≤4,求y的最大值,如有最小值,再求出最小值.19.如图,将两张长为8,宽为2的矩形纸条交叉放置.(1)求证:重叠部分的图形是菱形;(2)求重叠部分图形的周长的最大值和最小值.(要求画图、推理、计算)20.用一根长为40cm的铁丝围成一个半径为r的扇形,求扇形的面积y与它的半径r之间的函数关系式,这个函数是二次函数吗?请写出半径r的取值范围.21.如图,某涵洞的截面是抛物线的一部分,现水面宽AB=1.6m,涵洞顶点O到水面的距离为2.4m,求涵洞所在抛物线的解析式.22.学开车的人不仅需要熟悉交通规则、掌握驾驶要领,还要掌握为使车子停止前进而刹车后汽车继续滑行的距离.资料显示,当路况良好、路面于燥时,刹车后汽车滑行的距离与车速之间的对应关系如表所示:(1)绘制汽车滑行的距离s(单位:m)相对于车速v(单位:km/h)的图象.(2)证明汽车滑行的距离s(单位:m)及车速v(单位:km/h)之间有如下的关系:s=v(3)利用以上信息估计上表所未填出的车速及所对应的汽车滑行的距离.(4)在路况不良时,表中的滑行距离须分别修正为45,72,105,144及189m,在这种情况下,(2)中的函数关系应如何调整?23.如图,一位运动员推铅球,铅球运行高度y m与水平距离x m之间的函数关系式是y=﹣x2+x+.问:此运动员能把铅球推出多远?24.如图,一元二次方程x2+2x﹣3=0的两根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x 轴的两个交点C,B的横坐标,且此抛物线过点A(3,6).(1)求此二次函数的解析式;(2)设此抛物线的顶点为P,对称轴与线段AC相交于点G,则P点坐标为,G 点坐标为;(3)在x轴上有一动点M,当MG+MA取得最小值时,求点M的坐标.25.如图,抛物线y=﹣x2+4x﹣3与坐标轴交与A、B、C三点,点M在线段BC上,将线段OM绕O点逆时针旋转90゜,点M的对应点N恰好落在第一象限的抛物线上,求N 点的坐标.人教版九年级数学上册22.3实际问题与二次函数同步练习题参考答案一.选择题(共10小题)1.二次函数y=﹣x2﹣8x+c的最大值为0,则c的值等于()A.4B.﹣4C.﹣16D.16【解答】解:y=﹣x2﹣8x+c=﹣(x﹣4)2+16+c,∵最大值为0,∴16+c=0,解得c=﹣16.故选:C.2.二次函数y=ax2+bx+a(a≠0)的最大值是零,则代数式|a|+化简结果为()A.a B.1C.﹣a D.0【解答】解:因为函数的最大值是0,所以=0,则|a|+=|a|=﹣a.故选:C.3.已知一个三角形的面积S与底边x的关系是S=x2﹣2x+6,要使S有最小值,则x的值为()A.1B.2C.﹣1D.5【解答】解:∵S=x2﹣2x+6=(x﹣1)2+5,∴当x=1时,S有最小值5.故选:A.4.已知:抛物线y=x2﹣6x+c的最小值为1,那么c的值是()A.10B.9C.8D.7【解答】解:因为二次函数y=x2﹣6x+c的最小值为1,所以==1,解得c=10.故选:A.5.在半径为4的圆中,挖去一个边长为xcm的正方形,剩下部分面积为ycm2,则关于y与x之间函数关系式为()A.y=πx2﹣4x B.y=16π﹣x2C.y=16﹣x2D.y=x2﹣4x【解答】解:圆面积是16π,正方形面积是x2,则函数关系式是:y=16π﹣x2.故选:B.6.已知正方形ABCD,设AB=x,则正方形的面积y与x之间的函数关系式为()A.y=4x B.y=x2C.x=D.【解答】解:由正方形面积公式得:y=x2.故选:B.7.某产品进货单价为9元,按10一件售出时,能售100件,如果这种商品每涨价1元,其销售量就减少10件,设每件产品涨x元,所获利润为y元,可得函数关系式为()A.y=﹣10x2+110x+10B.y=﹣10x2+100xC.y=﹣10x2+100x+110D.y=﹣10x2+90x+100【解答】解:由题意,得y=(10+x﹣9)(100﹣10x),y=﹣10x2+90x+100.故选:D.8.某乡镇企业现在年产值是15万元,如果每增加100元投资,一年增加250元产值,那么总产值y(万元)与新增加的投资额x(万元)之间函数关系为()A.y=25x+15B.y=2.5x+1.5C.y=2.5x+15D.y=25x+1.5【解答】解:新增加的投资额x万元,则增加产值万元.这函数关系式是:y=2.5x+15.故选:C.9.用长为12m的铝合金型材做一个形状如图所示的矩形窗框,则做成的窗框的最大透光面积为()A.4m2B.6m2C.12m2D.16m2【解答】解:设窗框的长为x,∴宽为,∴y=x,即y=﹣x2+4x,∵<0∴y有最大值,即:y最大===6m2.故选:B.10.直角三角形两直角边之和为定值,其面积S与一直角边x之间的函数关系大致图象是下列中的()A.B.C.D.【解答】解:设直角三角形两直角边之和为a,其中一直角边为x,则另一直角边为(a ﹣x).根据三角形面积公式则有:y=ax﹣x2,以上是二次函数的表达式,图象是一条抛物线,故选B.二.填空题(共7小题)11.若二次函数y=kx2+k2﹣3有最大值1,则k的值是﹣2.【解答】解:∵二次函数y=kx2+k2﹣3有最大值1,∴k<0,k2﹣3=1,解得,k=﹣2,故答案为:﹣2.12.二次函数y=2x2﹣2x+6的最小值是.【解答】解:y=2x2﹣2x+6=2(x2﹣x)+6=2(x﹣)2+,可见,二次函数的最小值为.故答案为.13.一根长为40cm的铁丝,把它弯成一个矩形框,设矩形的长为xcm,矩形的面积为y(cm2),试写出y与x的函数关系式:y=﹣x2+20x(10≤x<20).(注意标注自变量x的取值范围)【解答】解:矩形的另一边长是:(20﹣x)cm;则面积y=x(20﹣x)=﹣x2+20x,根据线段为正值可得到:x>0,20﹣x>0,20﹣x≤x,解得10≤x<20.故答案为:y=﹣x2+20x(10≤x<20).14.正方形的边长是x,面积是A,请写出A与x的关系式:A=x2.它与y=x2的图象有什么不同?它与y=x2的图象完全一样.【解答】解:∵正方形的边长是x,面积是A,∴A与x的关系式为:A=x2,∴它与y=x2的图象完全一样.故答案为:A=x2,它与y=x2的图象完全一样.15.你知道吗?平时我们在跳绳时,绳甩到最高处的形状可近似地看为抛物线,如图,正在甩绳的甲、乙两名学生拿绳的手间距离为4m,距地面均为1m,学生丙、丁分别站在距甲拿绳的手水平距离1m、2.5m处,绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高1.5m,则学生丁的身高为m(建立的平面直角坐标系如图所示).【解答】解:设所求的函数的解析式为y=ax2+bx+c,由已知,函数的图象过(﹣1,1),(0,1.5),(3,1)三点,易求其解析式为y=﹣x2+x+,∵丁头顶的横坐标为1.5,∴代入其解析式可求得其纵坐标为m.16.周长为13cm的矩形铁板上剪去一个等边三角形(这个等边三角形的一边是矩形的宽),则矩形宽为cm,长为cm时,剩下的面积最大,这个最大面积是(4﹣).【解答】解:设矩形的宽为x,长为(﹣x),则剪去三角形后剩下的面积为(﹣x)x﹣x•x,经整理,得:y=x2+x,当x==4﹣时,y取得最大值,y最大=(4﹣),此时长为(+).17.已知二次函数y=x2﹣2(m﹣1)x+m2﹣2m﹣3的图象与函数y=﹣x2+6x的图象交于y 轴一点,则m=﹣1或3.【解答】解:依题意,在y=﹣x2+6x中,x=0时,y=0;在y=x2﹣2(m﹣1)x+m2﹣2m﹣3中,x=0时,y=m2﹣2m﹣3=0;即m2﹣2m﹣3=0,解得m=﹣1或3.三.解答题(共8小题)18.y=﹣2x2+4x+1,且2≤x≤4,求y的最大值,如有最小值,再求出最小值.【解答】解:当x=2时,y=1,当x=2时,y=﹣15,又∵y=﹣2x2+4x+1=﹣2(x﹣1)2+3.∴x=1时,y最大值=3,综上所述若2≤x≤4时,y=﹣2x2+4x+1的最大值是1、最小值是﹣15.19.如图,将两张长为8,宽为2的矩形纸条交叉放置.(1)求证:重叠部分的图形是菱形;(2)求重叠部分图形的周长的最大值和最小值.(要求画图、推理、计算)【解答】(1)证明:过点A作AE⊥BC于E,AF⊥CD于F,∵两条纸条宽度相同(对边平行),∴AB∥CD,AD∥BC,AE=AF,∴四边形ABCD是平行四边形,∵S▱ABCD=BC•AE=CD•AF,又∵AE=AF,∴BC=CD,∴四边形ABCD是菱形;(2)解:当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,由勾股定理:x2=(8﹣x)2+22,得:4x=17,即菱形的最大周长为17cm.当两张纸条如图所示放置时,即是正方形时取得最小值为:2×4=8.20.用一根长为40cm的铁丝围成一个半径为r的扇形,求扇形的面积y与它的半径r之间的函数关系式,这个函数是二次函数吗?请写出半径r的取值范围.【解答】解:∵用一根长为40cm的铁丝围成一个半径为r的扇形,∴扇形的弧长为:(40﹣2r)cm,∴扇形的面积y与它的半径r之间的函数关系式为:y=r(40﹣2r)=﹣r2+20r,此函数是二次函数,<r<20.21.如图,某涵洞的截面是抛物线的一部分,现水面宽AB=1.6m,涵洞顶点O到水面的距离为2.4m,求涵洞所在抛物线的解析式.【解答】解:根据题意得:A (﹣0.8,﹣2.4),设涵洞所在抛物线解析式为y =ax 2,把x =﹣0.8,y =﹣2.4代入得:a =﹣, 则涵洞所在抛物线解析式为y =﹣x 2.22.学开车的人不仅需要熟悉交通规则、掌握驾驶要领,还要掌握为使车子停止前进而刹车后汽车继续滑行的距离.资料显示,当路况良好、路面于燥时,刹车后汽车滑行的距离与车速之间的对应关系如表所示:(1)绘制汽车滑行的距离s (单位:m )相对于车速v (单位:km /h )的图象.(2)证明汽车滑行的距离s (单位:m )及车速v (单位:km /h )之间有如下的关系: s =v (3)利用以上信息估计上表所未填出的车速及所对应的汽车滑行的距离.(4)在路况不良时,表中的滑行距离须分别修正为 45,72,105,144及189m ,在这种情况下,(2)中的函数关系应如何调整?【解答】解:(1)如图,(2)设函数解析式为y =av 2+bv +c ,代入(48,22.5),(64,36),(80,52.5)得,,解得,函数解析式为s=v,因此汽车滑行的距离s(单位:m)及车速v(单位:km/h)之间有如下的关系:s=v;(3)如表:(4)在路况不良时,表中的滑行距离须分别修正后的数据恰好是对应原数据的2倍,因此将(2)中的每一项对乘以2即可,所得关系式为s=v+.23.如图,一位运动员推铅球,铅球运行高度y m与水平距离x m之间的函数关系式是y=﹣x2+x+.问:此运动员能把铅球推出多远?【解答】解:令y=﹣x2+x+=0,整理得:x2﹣8x﹣20=0,(x﹣10)(x+2)=0,解得x1=10,x2=﹣2(舍去),答:该运动员此次掷铅球的成绩是10m.24.如图,一元二次方程x2+2x﹣3=0的两根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x 轴的两个交点C,B的横坐标,且此抛物线过点A(3,6).(1)求此二次函数的解析式;(2)设此抛物线的顶点为P,对称轴与线段AC相交于点G,则P点坐标为(﹣1,﹣2),G点坐标为(﹣1,2);(3)在x轴上有一动点M,当MG+MA取得最小值时,求点M的坐标.【解答】解:(1)解方程x2+2x﹣3=0得x1=﹣3,x2=1.∴抛物线与x轴的两个交点坐标为:C(﹣3,0),B(1,0),设抛物线的解析式为y=a(x+3)(x﹣1).∵A(3,6)在抛物线上,∴6=a(3+3)•(3﹣1),∴a=,∴抛物线解析式为y=x2+x﹣.(2)由y=x2+x﹣=(x+1)2﹣2,∴抛物线顶点P的坐标为(﹣1,﹣2),对称轴方程为x=﹣1.设直线AC的解析式为y=kx+b,∵A(3,6),C(﹣3,0)在该直线上,∴,∴直线AC的解析式为:y=x+3.将x=﹣1代入y=x+3得y=2,∴G点坐标为(﹣1,2).(3)作A关于x轴的对称点A′(3,﹣6),连接A′G,A′G与x轴交于点M即为所求的点.设直线A′G的解析式为y=kx+b.∴,∴直线A′G的解析式为y=﹣2x,令x=0,则y=0.∴M点坐标为(0,0).25.如图,抛物线y=﹣x2+4x﹣3与坐标轴交与A、B、C三点,点M在线段BC上,将线段OM绕O点逆时针旋转90゜,点M的对应点N恰好落在第一象限的抛物线上,求N 点的坐标.【解答】解:∵y=﹣x2+4x﹣3=﹣(x﹣3)(x﹣1),∴抛物线和x轴交于A(1,0),B(3,0)两点,当x=0时,y=﹣3,∴抛物线与y轴交于C(0,﹣3),对称轴为x==2,顶点纵坐标y=﹣4+4×2﹣3=1,顶点坐标D(2,1),∴OC=OB,∴△OBC是等腰直角三角形,∴∠OCB=∠OBC=45°,连结MN,BN.则OM=ON,∵∠COB=∠MOA=90°,∴∠COB﹣∠MOB=∠MON﹣∠MOB,∴∠COM=∠BON,在△OCM与△OBN中,,∴△OCM≌△OBN(SAS),∴∠OCB=∠OBN=45°,∴∠NBC=90°,由B(3,0),C(0,﹣3)可得直线BC解析式为:y=x﹣3,设直线BN的解析式为y=﹣x+m,由B(3,0),可得﹣3+m=0,解得m=3,则直线BN的解析式为y=﹣x+3,联立抛物线和直线解析式可得,解得或(不合题意,舍去)∴N坐标为:N(2,1).。

人教新版九年级数学上册22-3实际问题与二次函数 同步练习【含答案】

人教新版九年级数学上册22-3实际问题与二次函数 同步练习【含答案】

22.3实际问题与二次函数一、单选题1.某农产品市场经销一种销售成本为40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨一元,月销售量就减少10千克.设销售单价为每千克x 元,月销售利润为y 元,则y 与x 的函数关系式为( ) A .y =(x ﹣40)(500﹣10x )B .y =(x ﹣40)(10x ﹣500)C .y =(x ﹣40)[500﹣10(x ﹣50)]D .y =(x ﹣40)[500﹣10(50﹣x )] 2.出售某种文具盒,若每个可获利x 元,一天可售出(6-x)个.当一天出售该种文具盒的总利润y 最大时,x 的值为( )A .1B .2C .3D .4 3.如图是抛物线形拱桥,当拱顶高离水面2m 时,水面宽4m ,水面下降2.5m ,水面宽度增加( )A .1 mB .2 mC .3 mD .6 m 4.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA ,O 恰为水面中心,安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA 的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y (m )与水平距离x (m )之间的关系式是2y x 2x 3=-++,则下列结论:(1)柱子OA 的高度为3m ;(2)喷出的水流距柱子1m 处达到最大高度;(3)喷出的水流距水平面的最大高度是4m ;(4)水池的半径至少要3m 才能使喷出的水流不至于落在池外.其中正确的有( )A .1个B .2个C .3个D .4 5.如图,隧道的截面是抛物线,可以用y= 21416x -+表示,该隧道内设双行道,限高为3m,那么每条行道宽是()A.不大于4m B.恰好4m C.不小于4m D.大于4m,小于8m6.周长8m的铝合金制成如图所示形状的矩形窗柜,使窗户的透光面积最大,那么这个窗户的最大透光面积是()m2A.45B.83C.4D.567.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系:y=-0.1x2+2.6x+43 (0≤x≤30).y值越大,表示接受能力越强.如果学生的接受能力逐步增强,则x的取值范围是()A.0≤x≤13B.13≤x≤26C.0≤x≤26D.13≤x≤30 8.如图1,△ABC是直角三角形,△A=90°,AB=8cm,AC=6cm点P从点A出发,沿AB方向以2cm/s的速度向点B运动;同时点Q从点A出发,沿AC方向以1cm/s的速度向点C运动,其中一个动点到达终点,则另一个动点也停止运动,则三角形APQ的最大面积是()A.8cm2B.16cm2C.24cm2D.32cm29.某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆.当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则相应地减少了10张床位租出.如果每张床位每天以20元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是()A.140元B.150元C.160元D.180元10.如图所示,已知ABC 中,8BC BC =,上的高4h D =,为BC 上一点,//EF BC ,交AB 于点E ,交AC 于点(F EF 不过A 、)B ,设E 到BC 的距离为x ,则DEF 的面积y 关于x 的函数的图象大致为( ).A .B .C .D .二、填空题11.如图,一座抛物线型拱桥,桥下水面宽度是4m 时,拱高为2m ,一艘木船宽2m.要能顺利从桥下通过,船顶点与桥拱之间的间隔应不少于0.3m ,那么木船的高不得超过 ______m.12.如图,有一个横截面边缘为抛物线的隧道入口,隧道入口处的底面宽度为8m ,两侧距底面4m 高处各有一盏灯,两灯间的水平距离为6m ,则这个隧道入口的最大高度为_________m .13.数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:已知该运动服的进价为每件60元,设售价为x(x≥100)元,则月销量是___________件,销售该运动服的月利润为___________元(用含x的式子表示).14.某商场以30元/件的进价购进一批商品,按50元/件出售,平均每天可以售出100件.经市场调查,单价每降低5元,则平均每天的销售量可增加20件.若该商品想要平均每天获利1400元,则每件应降价多少元?设每件应降价x元,可列方程为_________.15.某体育公园的圆形喷水池的水柱如图△所示,如果曲线APB表示落点B离点O最远的一条水流(如图△),其上的水珠的高度y(米)关于水平距离x(米)的函数解析式为y=-x2+4x+94,那么圆形水池的半径至少为_______米时,才能使喷出的水流不落在水池外.三、解答题16.如图是把一个抛物线形桥拱,量得两个数据,画在纸上的情形.小明说只要建立适当的坐标系,就能求出此抛物线的表达式.你认为他的说法正确吗?如果不正确,请说明理由;如果正确,请你帮小明求出该抛物线的表达式.17.一条隧道的截面如图所示,它的上半部分是一个半圆,下半部分是一个矩形,矩形的一边长为2.5m.(1)求隧道截面的面积S()2m关于半圆半径r()m的函数解析式;(2)当半圆半径为2m时,求截面的面积.(π取3.14,结果精确到0.1)18.在足球比赛中,当守门员远离球门时,进攻队员常常会使用“吊射”的战术(把球高高地挑过守门员的头顶,射入球门).一位球员在离对方球门30m的M处起脚吊射,假如球飞行的路线是一条抛物线,在离球门14m时,足球达到最大高度323m.若以球门底部为坐标原点建立平面直角坐标系,球门PQ的高度为2.44m.(1)通过计算,说明球是否会进球门.(2)如果守门员站在距离球门2m远处,而守门员跳起后最多能摸到2.75m高处,他能否在空中截住这次吊射?19.如图,有长为24m的篱笆,一面利用墙(墙的最大可用长度a为10m),围成中间隔有一道篱笆的长方形花圃(由两个小矩形花圃组成).设花圃的一边AB为x m,面积为S m2.(1)求S与x之间的函数表达式(写出自变量的取值范围).(2)如果要围成面积为45m2的花圃,那么AB的长是多少米?(3)能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.答案1.C2.C3.B4.D5.A6.B7.A8.B9.C10.C11.1.212.64713.2400x + 2252024000x x -+-14.(5030)1002014005x x ⎛⎫--+⨯= ⎪⎝⎭15.9216.正确. 22003x y =或236200y x =-+ 17.(1)21π52S r r =+;(2)当2r 时,2π1016.3S =+≈()2m . 18.(1)球不会进球门;(2)守门员不能在空中截住这次吊射. 19.(1)S =-3x 2+24x(143≤x<8);(2)AB 的长为5m ;(3)能围成面积比45m 2更大的花圃,最大面积为1403m 2,,此时AB =143m ,BC =10m .。

【新】人教版九年级数学上册22.3 实际问题与二次函数同步练习含答案

《实际问题与二次函数》同步练习1带答案1.已知函数y=21x 2-x-12,当函数y 随x 的增大而减小时,x 的取值范围是( ) A. x <1 B. x >1 C. x >-4 D. -4<x <62.某商店购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,如果提高售价,才能在半月内获得最大利润?3.某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA ,O 恰在水面中心,安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA 的任一平面上,抛物线形状如图(1)所示.图(2)建立直角坐标系,水流喷出的高度y (米)与水平距离x (米)之间的关系是4522++-=x x y .请回答下列问题: (1) 柱子OA 的高度是多少米?(2) 喷出的水流距水平面的最大高度是多少米?(3) 若不计其他因素,水池的半径至少要多少米才能使喷出的水流不至于落在池外?4.当运动中的汽车撞到物体时,汽车所受到的损坏程度可以用“撞击影响”来衡量.某型汽车的撞击影响可以用公式I=2v 2来表示,其中v (千米/分)表示汽车的速度.① 列表表示I 与v 的关系;② 当汽车的速度扩大为原来的2倍时,撞击影响扩大为原来的多少倍?5.如图,正方形EFGH 的顶点在边长为a 的正方形ABCD 的边上,若AE=x ,正方形EFGH 的面积为y.(1) 求出y 与x 之间的函数关系式;(2) 正方形EFGH 有没有最大面积?若有,试确定E 点位置;若没有,说明理由.答案:1、A 2、售价为35元时,在半月内可获得最大利润 3、(1)45 (2)49 (3)25 4、①略 ②4倍 5、(1)y=2x 2-2ax+a 2 (2) 有.当点E 是AB 的中点时,面积最大.。

人教版九年级数学上册《实际问题与二次函数》同步练习(含答案)

22.3 本质问题与二次函数 ( 一)知识点1、二次函数常用来解决最优化的问题,这个问题本质是求函数的最大(小)值。

2、抛物线y ax2bx c(a0) 的极点是它的最高(低)点,当x=b时,二次函数有最大(小)值2a4ac b2y=。

4a一、选择题1、进入夏天后,某电器商场为减少库存,对电热取暖器连续进行两次降价。

若设均匀每次降价的百分率是 x,降价后的价钱为y 元,原价为 a 元,则 y 与 x 之间的函数关系式为()A 、y2a(x1)B、y2a(1 x)C、y a(1 x2 ) D 、y a(1x)22、某商铺从厂家以每件21 元的价钱购进一批商品,该商品能够自行订价。

若每件商品的售价为x 元,则可卖处 (350- 10x)件商品。

商品所获取的收益y 元与售价 x 的函数关系为()A 、y10 x2560x 7350B 、y10x2560x 7350C、y10 x2350x D 、y10 x2350x 73503、某产品的进货价钱为90 元,按 100 元一个售出时,能售500 个,假如这类商品每涨价 1 元,其销售量就减少10 个,为了获取最大收益,其订价应定为()A 、130 元B、 120 元C、110 元D、 100 元4、小明在跳远竞赛中跳出了满意的一跳,函数h 3.5t 4.9t 2(t单位s,h单位m)可用来描绘她的重心的高度变化,则她从起跳后到重心处于最高地点时所用的时间是()A 、0.71s B、 0.70s C、 0.63s D、 0.36s5、如图,正△ ABC 的边长为 3cm,动点 P 从点 A 出发,以每秒1cm 的速度,沿 A→ B→ C 的方向运动,到达点 C 时停止,设运动时间为x(秒),y PC 2,则 y 对于 x 的函数图像大概为()A B C D第5题6、已知二次函数y ax2bx c(a 0) 的图像以下图,现有以下结论:① abc>0;② b24ac <0;③c<4b;④a+b>0.则此中正确的结论的个数是()A 、1B、 2C、3D、47、如图,已知:正方形ABCD 边长为 1, E、 F、 G、 H 分别为各边上的点,且AE=BF=CG=DH,设小正方形 EFGH 的面积为s,AE 为 x,则 s 对于 x 的函数图象大概是()A B C D第7题8、某厂有很多形状为直角梯形的铁皮边角料,为节俭资源,现要按图中所示的方法从这些边角料上截取矩形(暗影部分)片备用,当截取的矩形面积最大时,矩形两边长x、 y 应分别为()A 、 x=10,y=14B、x=14,y=10C、 x=12,y=15 D 、x=15,y=12第6题第8题二、填空题1、已知卖出盒饭的盒数x(盒)与所获收益y(元)知足关系式:y x21200x 357 600,则卖出盒饭数目为盒时,获取最大收益为元。

人教版九年级上册数学实际问题与二次函数同步训练(含答案)

人教版九年级上册数学22.3 实际问题与二次函数同步训练一、单选题1.已知某二次函数,当x <1时,y 随x 的增大而减小;当x >1时,y 随x 的增大而增大,则该二次函数的解析式可以是() A .y 2= 2(x 1)+B .y 2= 2(x 1)-C .=-y 2 2(x 1)+D .=-y 2 2(x 1)-2.在羽毛球比赛中,某次羽毛球的运动路线可以看作是抛物线214y x bx c =-++的一部分,其中出球点B 离地面O 点的距离是1m ,球落地点A 到O 点的距离是4m ,那么这条抛物线的解析式是( ) A .213144y x x =-++B .213144y x x =-+-C .213144y x x =--+D .213144y x x =---3.如图,某拱桥呈抛物线形状,桥的最大高度是16米,跨度是40米,在线段AB 上离中心M 处5米的地方,桥的高度是( )A .12米B .13米C .14米D .15米4.把一根长4a 的铁丝分成两段,每一段弯曲成一个正方形,面积和最小是( )A .2aB .2aC .22aD .24a5.某商品的利润y (元)与售价x (元)之间的函数关系式为y =﹣x 2+8x +9,且售价x 的范围是1≤x ≤3,则最大利润是( ) A .16元B .21元C .24元D .25元6.如图,一个涵洞的截面边缘是抛物线形.现测得当水面宽 1.6m AB =时,涵洞顶点与水面的距离是2m .这时,离开水面1.5m 处,涵洞的宽DE 为( )A B C .0.4 D .0.87.从底面竖直向上抛出一小球,小球的高度h (单位:m )与小球运动时间t (单位:s )之间的关系式是:h =30t ﹣5t 2,这个函数图象如图所示,则小球从第3s 到第5s 的运动路径长为( )A .15mB .20mC .25mD .30m8.小敏在某次投篮中,篮球的运动路线是抛物线215y x =-+3.5的一部分(如图),若命中篮圈中心,则他与篮底的水平距离l 是( )A .3.5mB .3.8mC .4mD .4.5m二、填空题9.矩形的周长为12cm ,设其一边长为xcm ,面积为2cm y ,则y 与x 的函数关系式及自变量x 的取值范围是_________.10.飞机着陆后滑行的距离s (单位:米)与滑行的时间t (单位:秒)之间的函数关系式是21.560s t t =-+,飞机着陆后滑行_____秒才能停下来.11.飞机着陆后滑行的距离s (单位:米)与滑行的时间t (单位:秒)之间的函数关系式是s =96t ﹣1.2t 2,那么飞机着陆后_____秒停下.12.有一个抛物线形的立交桥拱,这个桥拱的最大高度为16m ,跨度为40m .现将它的图形放在坐标系里(如图所示).若在离跨度中心M 点10m 处垂直竖立一铁柱支撑拱顶,这铁柱长______米.13.如图,铅球运动员掷铅球的高度y (m)与水平距离x (m)之间的函数关系式是: 21251233y x x =-++,则该运动员此次掷铅球的成绩是________ m .14.某商品的进价为每件50元,售价为每件60元,每个月可卖出200件.如果每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72元),设每件商品的售价上涨x 元(x 为整数),每个月的销售利润为y 元,那么y 与x 的函数关系式是____________.15.“十一”黄金周,某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m (件)与每件的销售价x (元),满足关系:m =140-x .写出商场卖这种商品每天的销售利润 y 与每件的售价x 之间的函数关系式是_________.16.按照防疫要求,学生在进校时必须排队接受体温检测,某校统计了学生早晨到校情况,发现从7:00开始,在校门口的学生人数y 随时间x (单位:分钟)的变化情况的图象是如图所示的某抛物线的一部分,则校门口排队等待体温检测的学生最多时有 ______人.三、解答题17.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为件:(2)当每件商品降价多少元时,该商店每天销售利润最大?18.某商场要经营一种新上市的文具,进价为20元/件,试营销阶段发现:当销售价格为25元/件时,每天的销售量为250件,如调整价格,每上涨1元,每天的销售量就减少10件.(1)请写出商场销售这种文具,每天所得的销售利润w(元)与销售价格/x(元件)之间的函数关系式;(2)销售价格为多少元时,该文具的销售利润最大?(3)商场的营销部结合上述情况,提出了A,B两种营销方案.方案A:该文具的销售价格高于进价且不超过30元/件;方案B:每天销售量不少于10件,且每件文具的利润至少为25元.请通过计算说明哪种方案的最大利润更高.19.如图,在△ABC中,△ABC=90°,AB=8cm,BC=6cm,动点P,Q分别从点A,B同时开始移动(移动方向如图所示),点P的速度为2cm/s,点Q的速度为1cm/s,点P移动到B点后停止,点Q也随之停止运动,设P、Q从点A、B同时出发,运动时间为ts,四边形APQC的面积是S(1)试写出S与t之间的函数关系式,并确定自变量的取值范围;(2)若S是21cm2时,确定t值;(3)t为何值时,S有最大(或最小)值,求出这个最值.20.某商厦灯具部投资销售一种进价为每件20元的护眼台灯,销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并直接写出自变量x的取值范围.(2)如果想要每月获得的利润为2000元,那么每月的单价定为多少元?(3)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?参考答案:1.B 2.A 3.D 4.C 5.C 6.D 7.B 8.C9.y =−x 2+6x (0<x <6) 10.20 11.40 12.12 13.1014.()2101002000012y x x x =-++≤≤15.21704200y x x =-+- 16.164 17.(1)26(2)当每件商品降价15元时,该商店每天销售利润最大. 18.(1)w = -10x 2+700x -10000(2)销售价格为35元/件时,该文具每天的销售利润最大 (3)方案A 的最大利润更高,理由见解析 19.(1)S =t 2-4t +24(0≤t ≤4) (2)t =1或t =3(3)t =2时,S 有最小值2020.(1)w =-10x 2+700x -10000(20≤x ≤32)(2)如果张明想要每月获得的利润为2000元,张明每月的单价定为30元 (3)当销售单价定为32元时,每月可获得最大利润,最大利润是2160元。

九年级数学上册223实际问题与二次函数同步测试含解析新版新人教版含答案

实际问题与二次函数一、选择题(共4小题)1.(如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A. cm2B.cm2 C.cm2 D.cm22.图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y=﹣(x﹣80)2+16,桥拱与桥墩AC的交点C恰好在水面,有AC⊥x轴,若OA=10米,则桥面离水面的高度AC为()A.16米B.米C.16米D.米3.河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=﹣x2,当水面离桥拱顶的高度DO是4m时,这时水面宽度AB为()A.﹣20m B.10m C.20m D.﹣10m4.如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD的最大面积是()A.60m2B.63m2C.64m2D.66m2二、填空题(共3小题)5.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为m2.6.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为元时,该服装店平均每天的销售利润最大.7.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y= .三、解答题(共23小题)8.为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函数关系:y=﹣10x+1200.(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额﹣成本);(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?9.某商场有A,B两种商品,若买2件A商品和1件B商品,共需80元;若买3件A商品和2件B商品,共需135元.(1)设A,B两种商品每件售价分别为a元、b元,求a、b的值;(2)B商品每件的成本是20元,根据市场调查:若按(1)中求出的单价销售,该商场每天销售B商品100件;若销售单价每上涨1元,B商品每天的销售量就减少5件.①求每天B商品的销售利润y(元)与销售单价(x)元之间的函数关系?②求销售单价为多少元时,B商品每天的销售利润最大,最大利润是多少?10.图1中的摩天轮可抽象成一个圆,圆上一点离地面的高度y(m)与旋转时间x(min)之间的关系如图2所示.(3)根据图中的信息,请写出摩天轮的直径.11.某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?12.(2015•天水)天水“伏羲文化节”商品交易会上,某商人将每件进价为8元的纪念品,按每件9元出售,每天可售出20件.他想采用提高售价的办法来增加利润,经实验,发现这种纪念品每件提价1元,每天的销售量会减少4件.(1)写出每天所得的利润y(元)与售价x(元/件)之间的函数关系式.(2)每件售价定为多少元,才能使一天所得的利润最大?最大利润是多少元?13.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?14.某种商品的进价为40元/件,以获利不低于25%的价格销售时,商品的销售单价y(元/件)与销售数)由题意知商品的最低销售单价是元,函数.求出y与x的函数关系式及x的取值范围;(2)在(1)的条件下,当销售单价为多少元时,所获销售利润最大,最大利润是多少元?15.某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)与每件销售价(不写出自变量x的取值范围);(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?16.某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?17.如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?18.某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A处的正上方,假设每次发出的乒乓球的运动路线固定不变,且落在中线上.在乒乓球运行时,设乒乓球与端点A的水平距离为x(米),与桌(1)当t为何值时,乒乓球达到最大高度?(2)乒乓球落在桌面时,与端点A的水平距离是多少?(3)乒乓球落在桌面上弹起后,y与x满足y=a(x﹣3)2+k.①用含a的代数式表示k;②球网高度为0.14米,球桌长(1.4×2)米.若球弹起后,恰好有唯一的击球点,可以将球沿直线扣杀到点A,求a的值.19.如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?20.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足下列关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x 天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价﹣成本)(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?21.某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?【提示:每天销售利润=日销售量×(每件销售价格﹣每件成本)】(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.22.某动车站在原有的普通售票窗口外新增了无人售票窗口,普通售票窗口从上午8点开放,而无人售票窗口从上午7点开放,某日从上午7点到10点,每个普通售票窗口售出的车票数y1(张)与售票时间x (小时)的变化趋势如图1,每个无人售票窗口售出的车票数y2(张)与售票时间x(小时)的变化趋势是以原点为顶点的抛物线的一部分,如图2,若该日截至上午9点,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同.(1)求图2中所确定抛物线的解析式;(2)若该日共开放5个无人售票窗口,截至上午10点,两种窗口共售出的车票数不少于900张,则至少需要开放多少个普通售票窗口?23.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人.设新工人李明第X天生产的粽子数量为y只,y与x满足如下关系:y=(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图形来刻画.若李明第x 天创造的利润为w元,求w关于x的函数表达式,并求出第几天的利润最大,最大利润时多少元?(利润=出厂价﹣成本)24.大学毕业生小王响应国家“自主创业”的号召,利用银行小额无息贷款开办了一家饰品店.该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件.为了获得更大的利润,现将饰品售价调整为60+x(元/件)(x>0即售价上涨,x<0即售价下降),每月饰品销量为y(件),月利润为w(元).(1)直接写出y与x之间的函数关系式;(2)如何确定销售价格才能使月利润最大?求最大月利润;(3)为了使每月利润不少于6000元应如何控制销售价格?25.一种进价为每件40元的T恤,若销售单价为60元,则每周可卖出300件,为提高利益,就对该T恤进行涨价销售,经过调查发现,每涨价1元,每周要少卖出10件,请确定该T恤涨价后每周销售利润y (元)与销售单价x(元)之间的函数关系式,并求出销售单价定为多少元时,每周的销售利润最大?26.某超市对进货价为10元/千克的某种苹果的销售情况进行统计,发现每天销售量y(千克)与销售价x(元/千克)存在一次函数关系,如图所示.(1)求y关于x的函数关系式(不要求写出x的取值范围);(2)应怎样确定销售价,使该品种苹果的每天销售利润最大?最大利润是多少?27.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?28为了解都匀市交通拥堵情况,经统计分析,都匀彩虹桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度为20辆/千米时,车流速度为80千米/小时.研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求彩虹桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使彩虹桥上车流速度大于40千米/小时且小于60千米/小时,应控制彩虹桥上的车流密度在什么范围内?(3)当车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.当20≤x≤220时,求彩虹桥上车流量y的最大值.29.某校在基地参加社会实践话动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的面积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:(1)设AB=x米(x>0),试用含x的代数式表示BC的长;(2)请你判断谁的说法正确,为什么?(1)请用含x的式子表示:①销售该运动服每件的利润是()元;②月销量是()件;(直接写出结果)(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?2016年人教版九年级数学上册同步测试:22.3 实际问题与二次函数参考答案与试题解析一、选择题(共4小题)1.如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A. cm2B.cm2 C.cm2 D.cm2【考点】二次函数的应用;展开图折叠成几何体;等边三角形的性质.【分析】如图,由等边三角形的性质可以得出∠A=∠B=∠C=60°,由三个筝形全等就可以得出AD=BE=BF=CG=CH=AK,根据折叠后是一个三棱柱就可以得出DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO为矩形,且全等.连结AO证明△AOD≌△AOK就可以得出∠OAD=∠OAK=30°,设OD=x,则AO=2x,由勾股定理就可以求出AD=x,由矩形的面积公式就可以表示纸盒的侧面积,由二次函数的性质就可以求出结论.【解答】解:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC.∵筝形ADOK≌筝形BEPF≌筝形AGQH,∴AD=BE=BF=CG=CH=AK.∵折叠后是一个三棱柱,∴DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO都为矩形.∴∠ADO=∠AKO=90°.连结AO,在Rt△AOD和Rt△AOK中,,∴Rt△AOD≌Rt△AOK(HL).∴∠OAD=∠OAK=30°.设OD=x,则AO=2x,由勾股定理就可以求出AD=x,∴DE=6﹣2x,∴纸盒侧面积=3x(6﹣2x)=﹣6x2+18x,=﹣6(x﹣)2+,∴当x=时,纸盒侧面积最大为.故选C.【点评】本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,矩形的面积公式的运用,二次函数的性质的运用,解答时表示出纸盒的侧面积是关键.2.图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y=﹣(x﹣80)2+16,桥拱与桥墩AC的交点C恰好在水面,有AC⊥x轴,若OA=10米,则桥面离水面的高度AC为()A.16米B.米C.16米D.米【考点】二次函数的应用.【专题】计算题.【分析】先确定C点的横坐标,然后根据抛物线上点的坐标特征求出C点的纵坐标,从而可得到AC的长.【解答】解:∵AC⊥x轴,OA=10米,∴点C的横坐标为﹣10,当x=﹣10时,y=﹣(x﹣80)2+16=﹣(﹣10﹣80)2+16=﹣,∴C(﹣10,﹣),∴桥面离水面的高度AC为m.故选B.【点评】本题考查了二次函数的应用:利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.3.河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=﹣x2,当水面离桥拱顶的高度DO是4m时,这时水面宽度AB为()A.﹣20m B.10m C.20m D.﹣10m【考点】二次函数的应用.【分析】根据题意,把y=﹣4直接代入解析式即可解答.【解答】解:根据题意B的纵坐标为﹣4,把y=﹣4代入y=﹣x2,得x=±10,∴A(﹣10,﹣4),B(10,﹣4),∴AB=20m.即水面宽度AB为20m.故选C.【点评】本题考查了点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.4.如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD的最大面积是()A.60m2B.63m2C.64m2D.66m2【考点】二次函数的应用.【专题】应用题;压轴题.【分析】设BC=xm,表示出AB,矩形面积为ym2,表示出y与x的关系式,利用二次函数性质求出面积最大值即可.【解答】解:设BC=xm,则AB=(16﹣x)m,矩形ABCD面积为ym2,根据题意得:y=(16﹣x)x=﹣x2+16x=﹣(x﹣8)2+64,当x=8m时,y max=64m2,则所围成矩形ABCD的最大面积是64m2.故选C.【点评】此题考查了二次函数的应用,熟练掌握二次函数性质是解本题的关键.二、填空题(共3小题)5.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为75 m2.【考点】二次函数的应用.【分析】设垂直于墙的材料长为x米,则平行于墙的材料长为27+3﹣3x=30﹣3x,表示出总面积S=x(30﹣3x)=﹣3x2+30x=﹣3(x﹣5)2+75即可求得面积的最值.【解答】解:设垂直于墙的材料长为x米,则平行于墙的材料长为27+3﹣3x=30﹣3x,则总面积S=x(30﹣3x)=﹣3x2+30x=﹣3(x﹣5)2+75,故饲养室的最大面积为75平方米,故答案为:75.【点评】本题考查了二次函数的应用,解题的关键是从实际问题中抽象出函数模型,难度不大.6.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为22 元时,该服装店平均每天的销售利润最大.【考点】二次函数的应用.【分析】根据“利润=(售价﹣成本)×销售量”列出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;把二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答.【解答】解:设定价为x元,根据题意得:y=(x﹣15)[8+2(25﹣x)]=﹣2x2+88x﹣870∴y=﹣2x2+88x﹣870,=﹣2(x﹣22)2+98∵a=﹣2<0,∴抛物线开口向下,∴当x=22时,y最大值=98.故答案为:22.【点评】此题题考查二次函数的实际应用,为数学建模题,借助二次函数解决实际问题,解决本题的关键是二次函数图象的性质.7.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y= a(1+x)2.【考点】根据实际问题列二次函数关系式.【专题】计算题.【分析】由一月份新产品的研发资金为a元,根据题意可以得到2月份研发资金为a×(1+x),而三月份在2月份的基础上又增长了x,那么三月份的研发资金也可以用x表示出来,由此即可确定函数关系式.【解答】解:∵一月份新产品的研发资金为a元,2月份起,每月新产品的研发资金与上月相比增长率都是x,∴2月份研发资金为a×(1+x),∴三月份的研发资金为y=a×(1+x)×(1+x)=a(1+x)2.故填空答案:a(1+x)2.【点评】此题主要考查了根据实际问题二次函数列解析式,此题是平均增长率的问题,可以用公式a(1±x)2=b来解题.三、解答题(共23小题)8.为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额﹣成本);(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?【考点】二次函数的应用.【分析】(1)根据“总利润=单件的利润×销售量”列出二次函数关系式即可;(2)将得到的二次函数配方后即可确定最大利润.【解答】解:(1)S=y(x﹣40)=(x﹣40)(﹣10x+1200)=﹣10x2+1600x﹣48000;(2)S=﹣10x2+1600x﹣48000=﹣10(x﹣80)2+16000,则当销售单价定为80元时,工厂每天获得的利润最大,最大利润是16000元.【点评】此题主要考查了二次函数的性质在实际生活中的应用,最大销售利润的问题常利函数的增减性来解答,要注意应该在自变量的取值范围内求最大值(或最小值).9.某商场有A,B两种商品,若买2件A商品和1件B商品,共需80元;若买3件A商品和2件B商品,共需135元.(1)设A,B两种商品每件售价分别为a元、b元,求a、b的值;(2)B商品每件的成本是20元,根据市场调查:若按(1)中求出的单价销售,该商场每天销售B商品100件;若销售单价每上涨1元,B商品每天的销售量就减少5件.①求每天B商品的销售利润y(元)与销售单价(x)元之间的函数关系?②求销售单价为多少元时,B商品每天的销售利润最大,最大利润是多少?【考点】二次函数的应用;二元一次方程组的应用.【分析】(1)根据题意列方程组即可得到结论;(2)①由题意列出关于x,y的方程即可;②把函数关系式配方即可得到结果.【解答】解:(1)根据题意得:,解得:;(2)①由题意得:y=(x﹣20)【100﹣5(x﹣30)】∴y=﹣5x2+350x﹣5000,②∵y=﹣5x2+350x﹣5000=﹣5(x﹣35)2+1125,∴当x=35时,y最大=1125,∴销售单价为35元时,B商品每天的销售利润最大,最大利润是1125元.【点评】此题主要考查了二次函数的应用以及用配方法求出最大值,准确分析题意,列出y与x之间的二次函数关系式是解题关键.10.图1中的摩天轮可抽象成一个圆,圆上一点离地面的高度y(m)与旋转时间x(min)之间的关系如图2所示.(3)根据图中的信息,请写出摩天轮的直径.【考点】二次函数的应用.【分析】(1)直接结合图象写出有关点的纵坐标即可;(2)利用函数的定义直接判断即可.(3)最高点的纵坐标减去最低点的纵坐标即可求得摩天轮的半径.所以y是x的函数;(3)∵最高点为70米,最低点为5米,∴摩天轮的直径为65米.【点评】本题考查了二次函数的应用,解题的关键是从实际问题中抽象出函数模型,难度不大.11.某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?【考点】二次函数的应用.【专题】压轴题.【分析】(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)根据线段AB经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(3)利用总利润=单位利润×产量列出有关x的二次函数,求得最值即可.售价相等,都为42元;(2)设线段AB所表示的y1与x之间的函数关系式为y=k1x+b1,∵y=k1x+b1的图象过点(0,60)与(90,42),∴∴,∴这个一次函数的表达式为;y=﹣0.2x+60(0≤x≤90);(3)设y2与x之间的函数关系式为y=k2x+b2,∵经过点(0,120)与(130,42),∴,解得:,∴这个一次函数的表达式为y2=﹣0.6x+120(0≤x≤130),设产量为xkg时,获得的利润为W元,当0≤x≤90时,W=x[(﹣0.6x+120)﹣(﹣0.2x+60)]=﹣0.4(x﹣75)2+2250,∴当x=75时,W的值最大,最大值为2250;当90≤x≤130时,W=x[(﹣0.6x+120)﹣42]=﹣0.6(x﹣65)2+2535,由﹣0.6<0知,当x>65时,W随x的增大而减小,∴90≤x≤130时,W≤2160,∴当x=90时,W=﹣0.6(90﹣65)2+2535=2160,因此当该产品产量为75kg时,获得的利润最大,最大值为2250.【点评】本题考查了二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型,难度不大.12.天水“伏羲文化节”商品交易会上,某商人将每件进价为8元的纪念品,按每件9元出售,每天可售出20件.他想采用提高售价的办法来增加利润,经实验,发现这种纪念品每件提价1元,每天的销售量会减少4件.(1)写出每天所得的利润y(元)与售价x(元/件)之间的函数关系式.(2)每件售价定为多少元,才能使一天所得的利润最大?最大利润是多少元?【考点】二次函数的应用.【分析】(1)根据题中等量关系为:利润=(售价﹣进价)×售出件数,根据等量关系列出函数关系式;(2)将(1)中的函数关系式配方,根据配方后的方程式即可求出y的最大值.【解答】解:(1)根据题中等量关系为:利润=(售价﹣进价)×售出件数,列出方程式为:y=(x﹣8)[20﹣4(x﹣9)],即y=﹣4x2+88x﹣448(9≤x≤14);(2)将(1)中方程式配方得:y=﹣4(x﹣11)2+36,∴当x=11时,y最大=36元,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22.3 实际问题与二次函数
测试时间:25分钟
一、选择题
1.(2018安徽阜阳颍上月考)一个网球发射器向空中发射网球,网球飞行的路线呈一条抛物线,如果网球距离地面的高度h(米)关于运行时间t(秒)的函数解析式为
h=-180
t 2
+14
t+1(0≤t ≤20),那么网球到达最高点时所需的时间是 秒.( ) A.7 B.8 C.9 D.10
2.(2017甘肃定西临洮期中)某市中心广场有各种音乐喷泉,其中一个喷水管喷水的最大高度为3m,此时距喷水管的水平距离为12
m,如图所示,这个喷泉喷出水流轨迹的函数解析式是( )
A.y=-3 x -12 2
+3 B.y=-3 x +12
2
+3
C.y=-12 x -12 2
+3
D.y=-12 x
+12 2+3
3.(2017河北保定涿州一模)如图,正方形ABCD 的边长为5,点E 是AB 上一点,点F 是AD 延长线上一点,且BE=DF.四边形AEGF 是矩形,则矩形AEGF 的面积y 与BE 的长x 之间的函数关系式为( )
A.y=5-x
B.y=5-x 2
C.y=25-x
D.y=25-x 2
4.如图是抛物线形拱桥,已知水位在AB 位置时,水面宽为4 m,水位上升3m,就达到警戒线CD,这时水面CD 宽4 若洪水到来时水位以每小时0.25m 的速度上升,那么水过警戒线后 小时淹到拱桥顶.( )
A.6
B.12
C.18
D.24
二、填空题
5.(2017上海奉贤一模)用一根长为8m的木条,做一个矩形的窗框.如果这个矩形窗框宽为xm,那么这个窗户的面积y(m2)与x(m)之间的函数关系式为(不写自变量的取值范围).
6.如图,某公路隧道横截面为抛物线,其最大高度为8m,以隧道底部宽AB所在直线为x轴,以
x2+b,则隧道AB的垂直平分线为y轴建立如图所示的平面直角坐标系,抛物线解析式为y=-1
2
底部宽AB是m.
三、解答题
7.(2017内蒙古鄂尔多斯中考)某商场试销A、B两种型号的台灯,下表是两次进货情况统计:
(1)求A、B两种型号台灯的进价各为多少元;
(2)经试销发现,A型号台灯售价x(元)与销售数量y(台)满足关系式2x+y=140,此商场决定两种型号台灯共进货100台,并一周内全部售出,若B型号台灯售价定为20元,求A型号台灯售价定为多少时,商场可获得最大利润,并通过计算说明商场获得最大利润时的进货方案.
8.(2017辽宁朝阳中考)今年是“精准扶贫”攻坚关键年,某扶贫工作队为对口扶贫村引进建立了一村集体企业,并无偿提供一笔无息贷款作为启动资金,双方约定:①企业生产出的产品全部由扶贫工作队及时联系商家收购;②企业从生产销售的利润中,要保证按时发放工人每月最低工资32000元.已知该企业生产的产品成本为20元/件,月生产量y(千件)与出厂价x(元)(25≤x ≤50)的函数关系可用图中的线段AB 和BC 表示,其中AB 的解析式为y=-1
x+m(m 为常数).
(1)求该企业月生产量y(千件)与出厂价x(元)之间的函数关系式,并写出自变量x 的取值范围;
(2)当该企业生产出的产品出厂价定为多少元时,月利润W(元)最大?最大利润是多少?[月利润=(出厂价-成本)×月生产量-工人月最低工资]
22.3 实际问题与二次函数
测试时间:25分钟
一、选择题
1.答案 D ∵h=-180
t 2
+14t+1=-180
(t-10)2
+94
(0≤t ≤20),∴当t=10时,h 取得最大值,故选D. 2.答案 C 设函数解析式为y=a x -12 2+3,将点(0,0)代入,得1
4a+3=0,解得
a=-12,∴函数解
析式为
y=-12 x -12 2
+3,故选
C.
3.答案 D ∵BE=x(0≤x<5),∴AE=5-x,AF=5+x,∴y=AE ·AF=(5-x)(5+x)=25-x 2
.故选D. 4.答案 B 设抛物线解析式为y=ax 2
+h,又∵B(2 6,0),D(2 3,3),∴ 24a +ℎ=0,12a +ℎ=3,
解得
a =−1
4,ℎ=6.
∴y=-14x 2+6,∴M(0,6),即OM=6m,∴MN=OM -ON=3m,∵MN
0.25
=12,∴水过警戒线后12小时
淹到拱桥顶.故选B.
二、填空题
5.答案 y=-x 2
+4x
解析 易知这个矩形窗框的长为(4-x)m,则这个窗户的面积y(m 2
)与x(m)之间的函数关系式为y=x(4-x)=-x 2
+4x,即y=-x 2
+4x. 6.答案 8
解析 ∵y=-1x 2
+b,隧道横截面的最大高度为8m,∴b=8,∴抛物线解析式为y=-1x 2
+8.当y=0时,有0=-1
2x 2
+8,解得x=4或-4,∴隧道底部宽AB 是4+4=8(m).
三、解答题
7.解析 (1)设A 、B 两种型号台灯的进价分别为m 元、n 元, 由题意得 5m +3n =230,10m +4n =440,
解得 m =40,n =10.
答:A 、B 两种型号台灯的进价分别为40元、10元.
(2)∵A 型号台灯售价x(元)与销售数量y(台)满足关系式2x+y=140,即y=-2x+140,则B 型号台灯共进货100-y=(2x-40)台, 设商场可获得利润为w 元,
则w=(x-40)(-2x+140)+(20-10)(2x-40)=-2x 2
+240x-6000=-2(x-60)2
+1200, ∵-2<0,
∴A 型号台灯售价定为60元时,商场可获得最大利润,为1200元. 8.解析 (1)把(40,3)代入y=-120x+m,得3=-1
20×40+m, ∴m=5,
∴y=-1
20x+5(25≤x ≤40), 设BC 的解析式为y=kx+b,
把(40,3),(50,2)代入y=kx+b,得 3=40k +b ,2=50k +b ,
解得 k =−1
10,b =7,
∴y=-110
x+7(40≤x ≤50),
综上所述:y= -1
20x +5(25≤x ≤40),
-110x +7(40<x ≤50).
(2)设该企业生产出的产品出厂价定为x 元时,月利润W(元)最大, 根据题意得,当25≤x ≤40时,W=1000 -1
20x +5 (x-20)-32000
=-50x 2
+6000x-132000=-50(x-60)2
+48000,当x=40时,W 有最大值,为28000元.
x+7(x-20)-32000
当40<x≤50时,W=1000-1
10
=-100x2+9000x-172000=-100(x-45)2+30500,当x=45时,W有最大值,为30500元.
综上,当该企业生产出的产品出厂价定为45元时,月利润最大,最大利润是30500元.。

相关文档
最新文档