(完整版)基本平面图形教案
《认识平面图形》数学教案设计

《认识平面图形》數學教案設計一、教学目标1. 让学生了解平面图形的基本概念,包括正方形、长方形、圆形、三角形等。
2. 培养学生的空间观念和形状认知能力,能够准确识别并描绘各种平面图形。
3. 通过实际操作,使学生掌握用简单的工具(如直尺、圆规)绘制基本的平面图形。
二、教学内容1. 平面图形的定义2. 平面图形的种类:正方形、长方形、圆形、三角形等3. 平面图形的特点和性质4. 如何使用直尺和圆规绘制平面图形三、教学过程1. 引入新课:教师可以通过展示一些生活中的物品,让学生观察这些物品的形状,引导他们思考这些形状的特点,并引入平面图形的概念。
2. 新知讲解:教师逐一介绍各种平面图形的定义、特点和性质,同时通过实物或图片帮助学生理解和记忆。
3. 实践操作:教师指导学生使用直尺和圆规绘制各种平面图形,让他们在实践中加深对平面图形的理解。
4. 巩固练习:设计一些相关的练习题,让学生独立完成,检查他们的学习效果。
5. 总结反馈:回顾本节课的学习内容,鼓励学生分享自己的学习感受和收获,教师给予适当的评价和建议。
四、教学资源1. 教材和参考书2. 直尺、圆规等绘图工具3. 生活中常见的平面图形物品或图片五、教学评估1. 课堂参与度:观察学生在课堂上的表现,是否积极参与讨论和实践操作。
2. 练习完成情况:通过学生的作业和测试成绩,了解他们的学习效果。
3. 反馈和自我评价:鼓励学生反思自己的学习过程,提出改进的方法。
六、教学反思1. 教学过程中是否有需要改进的地方?2. 学生在学习过程中遇到的主要问题是什么?如何解决?3. 如何更好地激发学生的学习兴趣和积极性?以上就是《认识平面图形》數學教案的设计,希望对你有所帮助。
《平面图形的认识》数学教案设计

《平面图形的认识》數學教案設計标题:《平面图形的认识》數學教案設計一、教学目标:1. 知识与技能:学生能正确识别和区分常见的平面图形,包括圆形、正方形、长方形、三角形等,并了解它们的特征。
2. 过程与方法:通过观察、比较、操作等活动,提高学生的空间观念和思维能力。
3. 情感态度价值观:激发学生对数学的兴趣,培养他们的观察力和创新能力。
二、教学重点和难点:1. 重点:认识并掌握平面图形的基本特性和分类。
2. 难点:理解和区分不同平面图形的特点。
三、教学过程:(一)引入新课教师出示各种实物模型,让学生找出其中的平面图形,引出本节课的主题——平面图形的认识。
(二)新知学习1. 认识平面图形:教师展示各种平面图形的图片,引导学生观察并说出它们的名字。
2. 学习平面图形的特性:教师逐一介绍各平面图形的特性,如圆形是所有点到圆心距离相等的图形,正方形四边都相等且四个角都是直角等。
3. 分类学习:引导学生将平面图形按照边数进行分类,如分为单边形、多边形等。
(三)实践操作分组活动,每组发一套平面图形拼图,让学生通过动手操作,进一步熟悉平面图形的形状和特性。
(四)课堂小结教师引导学生总结本节课所学的知识,强调平面图形的名称、特点以及分类。
(五)作业布置设计一些与平面图形相关的题目,让学生在课后进行练习,巩固所学知识。
四、教学评价:通过课堂观察、小组讨论、实践活动等方式,对学生的学习情况进行评价。
注重对学生参与度、理解程度、创新思维等方面的评价。
五、教学反思:在教学过程中,要关注学生的反馈,及时调整教学策略。
同时,要注重培养学生自主学习的能力,鼓励他们主动探索和发现知识。
以上就是《平面图形的认识》數學教案设计,希望对你有所帮助。
初中数学北师大七年级上册(2023年修订) 基本平面图形七年级数学教案多边形和圆的初步认识

3、难点:从生活中抽象出数学图形,并从数学角度分析问题获得概念,利用概念和性质解决简单问题。
二、教学过程
在环节一、二、三都使用信息技术,有电子白板、几何画板、幻灯片、实物投影。电子白板适时互动,几何画板动态演示,幻灯片直观呈现,实物投影及时反馈。预期效果是丰富课堂气氛,有效突破难点,使学生对多边形、圆的概念理解深刻到位。
三、教学设计
环节一 图片欣赏 归纳概念
问题1:幻灯片展示生活中有很多美丽的图片,请同学们细心观察,其中有哪些你熟悉的平面图形?在三角形、四边形、五边形等图形中,我们从最简单的图形——三角形开始研究。
问题2:(给出三条线段)请看,用这三条线段绘制一个三角形,(三条线段在同一直线上)这时能组成三角形吗?就是要求三条线段不在同一直线上。下面连接,(三条线段一端连在一起)这样可以吗?你能比划一下吗?就是首尾顺次相连。(不封闭)这样可以吗?就是要封闭图形。由此得到三角形是由三条不在同一直线上的线段首尾顺次相连组成的封闭平面图形。(生叙述师补充后板书)
多边形和圆的初步认识
年级学科
七年级上册数学
教材版本
北师大版
一、教学目标
1、情感目标:经历从现实世界中抽象出平面图形的过程,感受图形世界的丰富多彩,在丰富的活动中发展学生有条理的思考和表达能力;
2、重点:在具体情境中认识多边形、圆、扇形及相关概念,明确多边形边数与对角线条数的关系,会根据扇形和圆的关系求扇形圆心角的度数。
小学平面图形数学教案

小学平面图形数学教案教学目标:1. 能够识别、命名和描述基本的平面图形:圆形、三角形、正方形、长方形。
2. 能够进行简单的平面图形分类和比较。
3. 能够在日常生活中应用所学的知识,认识并描述周围的环境中的平面图形。
教学准备:1. 平面图形的图片卡片或图片素材。
2. 各种平面图形的模型或实物示例。
3. 彩色笔、彩色纸、剪刀等教具。
教学内容:一、引入活动:老师拿出平面图形的模型或实物展示给学生看,让学生观察并猜测这些图形的名称。
引导学生探讨这些平面图形在日常生活中的应用。
二、知识讲授:1. 介绍平面图形:圆形、三角形、正方形、长方形的定义和特征。
2. 带领学生辨认不同的平面图形,并教授其命名规则。
三、实践活动:1. 分发彩色纸和剪刀让学生自由制作不同的平面图形。
2. 组织学生参与平面图形分类游戏,让学生搭配不同的图形进行比较。
四、总结提问:1. 请学生回答:圆形和三角形哪个边更多?正方形和长方形有什么不同?2. 引导学生总结所学的平面图形知识,帮助他们进行知识归纳和升华。
五、作业布置:请学生回家观察周围环境中的平面图形,用彩色笔在作业本上勾勒并注明图形的名称。
教学延伸:1. 组织学生游戏中加入更多的平面图形,提高学生对平面图形的识别和运用能力。
2. 带领学生实地去学校周围环境探寻不同的平面图形,拓展学生的认知领域。
小结:通过这节课的学习,学生能够初步认知和辨别基本的平面图形,为以后更深入的几何学习打下基础。
同时,也能够帮助学生在日常生活中更好地理解和应用平面图形的知识。
《认识平面图形》教案(精选4篇)

《认识平面图形》教案(精选4篇)《认识平面图形》篇1教学目标:1.通过观察、操作和讨论,使学生感知长方形、正方形、圆形、三角形的特征,知道这些常见图形的名称,并能识别这些图形,体会面与体的联系和区别。
2.通过“看、议、摸、画、拼”等活动,培养学生的动手操作、观察、思维能力,培养学生的积极探索能力和团结协作精神,发展学生的空间观念。
3.通过创造情境,认识物体图形,激发学生好奇心,求知欲,渗透热爱生活的情感教育和环保意识。
教学重点、难点:重点:掌握平面图形长方形、正方形、圆形、三角形的基本特征难点:从物体表面抽象成平面图形课前准备:长方体、正方体、圆柱、三棱柱若干;长方形、正方形、三角形、圆若干;教学过程:一、创设情境导入新课1.引入师:小朋友们,上节课我们认识了四种图形,(准备)请大家认一认,说一说。
长方体、正方体、圆柱、球和三棱柱都是立体图形,在图形王国里,除了立体图形家族外,还有平面图形家族。
(出示长方形、正方形、三角形、圆)1、你认识它们吗?那你知道它们叫什么名字?根据学生已有的经验,让学生说说这些图形的名称。
2、那它们长什么样子呀?让学生用自己的语言说说长方形、正方形、三角形、圆的特征,不要求完整,对说得好的学生及时鼓励。
今天,我们就一起来研究这些图形——板书课题:认识平面图形二、合作探究操作交流1.观察发现,感知“面在体上”。
a.观察操作师:你能从自己桌面上的这些物体中,找出这样的图形吗?请大家找一找、摸一摸、说一说。
b.引导发现师:你们刚才找的这些图形的家安在哪里?c.面在体上及分离过程刚才小朋友们通过观察发现了这些图形的家都安在立体图形上,你能用我给你们准备的工具(白纸、印泥、橡皮泥等),想办法让他们的家从准备好的立体图形上搬到纸上来吗?学生独立思考、汇报交流(描、印、折、画)师:,在小组里说一说,你想用什么办法记下这些面,每个小朋友最好想得不一样,比一比,哪个小组的办法多。
师:小朋友的办法真多!师:你们想不想也来动手印一印或描一描?要求:1.小组合作完成。
平面图形数学教案

平面图形数学教案标题:平面图形数学教案一、课程目标:1. 学生能够掌握并理解基本的平面图形,如圆形、三角形、正方形和矩形等。
2. 通过观察和实践,学生能够了解这些图形的特点和性质。
3. 培养学生的空间想象力和逻辑思维能力。
二、教学内容:1. 平面图形的基本定义2. 常见的平面图形:圆形、三角形、正方形和矩形3. 各种平面图形的特点和性质4. 如何使用简单的工具(如直尺和圆规)来绘制平面图形三、教学方法:1. 讲解法:教师首先讲解平面图形的基本概念和常见的平面图形。
2. 实践法:然后,让学生用直尺和圆规亲自绘制各种平面图形,以增强他们的空间想象能力和动手能力。
3. 讨论法:最后,组织学生讨论各种平面图形的特点和性质,以培养他们的逻辑思维能力和团队合作能力。
四、教学步骤:1. 引入主题:首先,教师可以通过提问或故事引入平面图形的主题,激发学生的学习兴趣。
2. 教授新知识:接着,教师开始讲解平面图形的基本定义和常见的平面图形。
在讲解过程中,教师可以使用实物或图片帮助学生理解。
3. 实践活动:然后,教师指导学生使用直尺和圆规绘制平面图形。
在这个过程中,教师应该鼓励学生独立思考和尝试,而不是仅仅模仿老师的示例。
4. 分组讨论:最后,教师组织学生分组讨论各种平面图形的特点和性质。
每个小组都需要准备一个报告,并在全班面前分享他们的发现。
五、教学评估:1. 观察学生在实践活动中的表现,看他们是否能够正确地使用直尺和圆规,以及他们对平面图形的理解程度。
2. 通过学生的分组讨论和报告,评估他们的逻辑思维能力和团队合作能力。
3. 在课程结束时,进行一次小测验,检查学生对平面图形的知识掌握情况。
六、教学反思:1. 根据学生的表现和反馈,反思自己的教学方法是否有效,是否需要改进。
2. 思考如何更好地激发学生的学习兴趣,提高他们的学习效果。
七、课后作业:1. 绘制一幅包含多种平面图形的画。
2. 写一篇关于你最喜欢的平面图形的文章,描述它的特点和性质。
第4章基本平面图形(教案)2023-2024学年七年级上册数学(教案)(北师大版)

1.教学重点
-线段、射线与直线的定义及性质:这是基础几何概念,需要学生熟练掌握,并能应用于实际问题中。例如,理解线段的两个端点、射线的起点和延伸方向、直线的无限延伸等特性。
-角的分类及性质:重点在于区分不同类型的角,并了解它们的基本性质。如锐角、直角、钝角、周角的定义及特征。
-三角形的分类:强调三角形按角的大小分类,以及各类三角形的性质和特点。
-空间想象能力的培养:对于一些空间想象能力较弱的学生,理解图形的旋转、翻折等变换是难点,需要通过实物模型或多媒体辅助教学来帮助理解。
本章节的教学难点与重点紧密联系课本内容,教师在教学过程中应针对这些核心知识进行深入讲解,通过实例分析、图形操作、逻辑推理等教学策略,帮助学生理解难点,掌握重点,提高几何学科素养。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解线段、射线与直线的基本概念。线段是有限长度的,有两个端点;射线有一个起点,向一个方向无限延伸;直线则是无限制地延伸。它们是构成复杂图形的基础。这些基本图形在建筑、设计等领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。通过分析一个简单的房屋设计图,我们可以看到线段、射线和直线是如何被用来表示墙壁和屋顶的。
-平行线的性质与判定:掌握平行线的定义、性质以及判定方法,如同位角、内错角、同旁内角等。
-四边形的定义及性质:掌握矩形、菱形、平行四边形的定义及性质,如对边平行、对角相等、对角线互相平分等。
-图形的全等:理解全等图形的概念,掌握SSS、SAS、ASA、AAS全等三角形的判定方法。
2.教学难点
-平行线的判定:对于初中生来说,理解并熟练运用平行线的判定方法是一个难点,特别是同位角、内错角等概念的运用。
七年级数学上册(北师版)第四章 基本平面图形 教案

第四章基本平面图形4.1 线段、射线、直线1.在现实情境中进一步理解线段、射线、直线,并会用不同的方式表示.(重点)2.通过操作活动,了解“两点确定一条直线”的几何事实.阅读教材P106~107,完成预习内容.(一)知识探究1图形表示方法端点个数延伸情况线段线段AB或线段a 2个不向任何一方延伸射线射线AB或射线a 1个向一方无限延伸直线直线AB或直线a 0 向两方无限延伸2.直线的几何事实:两点确定一条直线.(1)表示线段、射线、直线的时候,都要在字母前注明“线段”“射线”“直线”.(2)用两个大写字母表示直线或线段时,两个字母可以交换位置,表示射线的两个大写字母不能交换位置,必须把端点字母放在前面.(二)自学反馈1.如图,在直线l上有A、B、C三点,则图中线段共有(C)A.1条B.2条C.3条D.4条2.下列图形中的线段和射线,能够相交的是(D)活动1 小组讨论例1 如图,已知平面上三点A,B,C.(1)画线段AB;(2)画直线BC;(3)画射线CA;(4)如何由线段AB得到射线AB和直线AB呢?(5)直线AB与直线BC有几个公共点?解:(1)(2)(3)题解答如图①所示.(4)将线段AB向AB方向延伸得到射线AB,将线段AB向两个方向延伸得到直线AB,如图②所示.(5)直线AB与直线BC有一个公共点,如图③所示.例2(1)过一点A可以画几条直线?(2)过两点A,B可以画几条直线?(3)如果你想将一根细木条固定在墙上,至少需要几个钉子?解:(1)无数条.(2)1条.(3)2个.活动2 跟踪训练1.用两个钉子把直木条钉在墙上,木条就固定了,这说明(B) A.一条直线上只有两点B.两点确定一条直线C.过一点可画无数条直线D.直线可向两端无限延伸2.如图,在平面内有A、B、C三点.(1)画直线AC,线段BC,射线AB;(2)在线段BC上任取一点D(不同于B、C),连接线段AD;(3)数数看,此时图中线段共有6条.解:(1)(2)如图.(3)图中有线段6条.活动3 课堂小结1.掌握线段、射线、直线的表示方法.2.理解线段、射线、直线的联系和区别.3.经过两点有且只有一条直线.4.2 比较线段的长短1.借助具体情境,了解“两点之间的所有连线中,线段最短”的性质.(重点) 2.能借助直尺、圆规等工具比较两条线段的长短. 3.能用尺规作一条线段等于已知线段.阅读教材P110~111,完成预习内容. (一)知识探究1.两点之间的所有连线中,线段最短.2.我们把两点之间线段的长度,叫做这两点之间的距离.3.如图,点M 把线段AB 分成相等的两条线段AM 与BM ,点M 叫做线段AB 的中点.这时AM =BM =12AB(或AB =2AM=2BM).(二)自学反馈1.把弯曲的河道改直,这样能缩短航程,这样做的道理是(B) A .两点确定一条直线 B .两点之间线段最短 C .线段有两个端点 D .线段可以比较大小2.线段AB =6厘米,点C 在直线AB 上,且BC =3厘米,则线段AC 的长为(C) A .3厘米 B .9厘米 C .3厘米或9厘米 D .6厘米 3.M 是线段AB 上的一点,其中不能判定点M 是线段AB 中点的是(A) A .AM +BM =AB B .AM =BM C .AB =2BM D .AB =2AM活动1 小组讨论例1 如图,已知线段AB ,用尺规作一条线段等于已知线段AB.解:作图步骤如下: (1)作射线A ′C ′;(2)用圆规在射线A ′C ′上截取A ′B ′=AB. 线段A ′B ′就是所求作的线段.例2 在直线l 上顺次取A ,B ,C 三点,使得AB =4 cm ,BC =3 cm.如果点O 是线段AC 的中点,那么线段OB 的长度是多少? 解:如图:∵AB =4 cm ,BC =3 cm ,∴AC =AB +BC =7 cm. ∵O 是线段AC 的中点,∴AO =12AC =12×7=3.5(cm).∴OB =AB -AO =4-3.5=0.5(cm).活动2 跟踪训练1.如图,已知点C 是线段AB 的中点,点D 是线段AC 的中点,完成下列填空.(1)AB =2BC ,BC =2AD ; (2)BD =3AD ,AB =4AD.2.如图是A 、B 两地之间的公路,在公路工程改造计划时,为使A 、B 两地行程最短,应如何设计线路?在图中画出.你的理由是两点之间线段最短.解:图略.3.如图,已知线段a 、b ,求作线段AB ,使AB =2a +b.解:如图,线段AB 为所作.4.如图,点C 是线段AB 上一点,点M 、N 、P 分别是线段AC ,BC ,AB 的中点. (1)若AB =10 cm ,则MN =5cm ;(2)若AC =3 cm ,CP =1 cm ,求线段PN 的长.解:∵AC =3,CP =1, ∴AP =AC +CP =4, ∵P 是线段AB 的中点, ∴AB =2AP =8. ∴CB =AB -AC =5.∵N 是线段CB 的中点,∴CN =12CB =52.∴PN =CN -CP =52-1=32.活动3 课堂小结1.本节课学习了线段的性质和两点之间的距离的定义.2.本节课学会了画一条线段等于已知线段,学会了比较线段的长短.4.3 角1.通过丰富的实例,进一步理解角的有关概念和角的表示方法,能在具体情境中进行角的表示.(重点)2.认识角的常用度量单位:度、分、秒,并会进行简单的计算.(难点)阅读教材P114~115,完成预习内容.(一)知识探究1.角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点.角也可以看成是由一条射线绕它的端点旋转而成的.2.一条射线绕它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角.终边继续旋转,当终边旋转到与始边再次重合时,所成的角叫做周角.3.角的表示方法:角用“∠”表示,读做“角”.(1)用三个大写字母表示.(2)用表示角的顶点的字母表示.(3)用一个数字或一个希腊字母(α、β、γ、θ)表示.3.1平角=180°,1周角=360°.4.1°=60′,1′=60″.(二)自学反馈1.下列图形中,能用∠ABC,∠B,∠1表示同一个角的是(D)2.2 700″=45′=0.75度.活动1 小组讨论例1 计算:(1)1.45°等于多少分?等于多少秒?(2)1 800″等于多少分?等于多少度?解:(1)60′×1.45=87′,60″×87=5 220″即 1.45°=87′=5 220″.(2)1 800″×160=30′,30′×160=0.5°.例2 如图所示,OA表示什么方向的一条射线?并画出表示下列方向的射线.(1)北偏西60°;(2)南偏东30°;(3)西南方向.解:OA表示北偏东30°的射线.(1)如图中的射线OB.(2)如图中的射线OC.(3)如图中的射线OD. 活动2 跟踪训练1∠1 ∠3 ∠3 ∠4 ∠5∠BCE ∠BAC ∠BAE、∠BAC∠DAB ∠ABC2.8时30分,时针与分针所成的角是75°.3.计算:180°-(45°17′+52°57′).解:81°46′.活动3 课堂小结1.角的表示方法.2.度、分、秒之间的换算.4.4 角的比较1.会比较角的大小.(重点)3.在操作活动中认识角的平分线,并运算角平分线的定义解决角的计算.(难点)阅读教材P118~119,完成预习内容. (一)知识探究1.比较两个角的大小,我们可以用量角器量出角的度数,然后比较它们的大小,也可以把两个角的顶点及一条边重合,另一条边放在重合边的同侧,然后比较它们的大小,这两种方法分别叫度量法和叠合法.2.角平分线定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线. (二)自学反馈1.将∠1、∠2的顶点和其中一边重合,另一边都落在重合边的同侧,且∠1>∠2,那么∠1的另一边落在∠2的(C) A .另一边上 B .内部 C .外部 D .无法判断 2.细心想一想,看谁做得最快.(1)如图1,若OB 是∠AOC 的平分线,则∠AOC =2∠AOB =2∠BOC ,∠AOB =∠BOC =12∠AOC .(2)如图2,若OB 是∠AOC 的平分线,OC 是∠BOD 的平分线,你能从中找出哪些相等的角? 解:∠AOB =∠BOC =∠COD ,∠AOC =∠BOD.活动1 小组讨论例 如图,已知点O 为直线AB 上一点,OM ,ON 分别是∠AOC ,∠BOC 的平分线,求∠MON 的度数.解:∵点A ,O ,B 在一条直线上, ∴∠AOB =180°.∵∠AOC +∠BOC =∠AOB , ∴∠AOC +∠BOC =180°.又∵OM ,ON 分别是∠AOC 和∠BOC 的平分线, ∴∠MOC =12∠AOC ,∠CON =12∠BOC.∴∠MOC +∠CON =12(∠AOC +∠BOC)=12×180°=90°.又∵∠MON =∠MOC +∠CON ,∴∠MON =90°.活动2 跟踪训练如图,点A 、O 、B 在一直线上,∠AOC =80°,∠COE =50°,OD 是∠AOC 的平分线. (1)试比较∠DOE 与∠AOE ,∠AOC 与∠BOC 的大小;(2)求∠DOE的度数;(3)OE是∠BOC的平分线吗?为什么?解:(1)∠DOE<∠AOE,∠AOC<∠BOC.(2)90°.(3)是,因为∠COE=∠BOE=50°活动3 课堂小结1.会用量角器度量角,并会比较两个角的大小.2.记住角平分线的定义.4.5 多边形和圆的初步认识1.在具体情境中认识多边形、正多边形、圆、扇形.(重点) 2.能根据扇形和圆的关系求扇形的圆心角的度数.(难点)阅读教材P122~124,完成预习内容. (一)知识探究1.三角形、四边形、五边形、六边形等都是多边形.它们都是由若干条不在同一直线上的线段首尾顺次相连组成的封闭平面图形.连接多边形不相邻两个顶点的线段叫做多边形的对角线. 2.各边相等,各角也相等的多边形叫做正多边形.3.平面上,一条线段绕着它固定的一个端点旋转一周,另一个端点形成的图形叫做圆.固定的端点称为圆心.圆上任意两点间的部分叫做圆弧.由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形.顶点在圆心的角叫做圆心角. (二)自学反馈1.如图所示的图形中,属于多边形的有(A)A .3个B .4个C .5个D .6个2.若一个多边形有12个内角,则这个多边形为12边形,若一个多边形有20个顶点,则这个多边形为20边形. 3.画一个半径是2 cm 的圆,并在其中画一个圆心角为90°的扇形,你会计算这个扇形的面积吗?解:半径是2 cm 的圆的面积为4π cm 2,因为一个周角是360°,所以圆心角为90°的扇形面积是圆面积的14.所以这个扇形的面积是π cm 2.活动1 小组讨论例1 如图,从一个多边形的同一个顶点出发,分别连接这个顶点与其不相邻的各顶点,这种线段叫多边形的对角线.多边形的边数 4 5 6 7 … 从一个顶点引 对角线的条数1234…经过n 边形的一个顶点可以画(n -3)条对角线.例2 将一个圆分割成三个扇形,它们的圆心角的度数比为1∶2∶3,求这三个扇形的圆心角的度数. 解:因为一个周角为360°,所以分成的三个扇形的圆心角分别是: 360°×11+2+3=60°,360°×21+2+3=120°,360°×31+2+3=180°.活动2 跟踪训练1.观察如图所示图形,回答下列问题:(1)从八边形ABCDEFGH 的顶点A 出发,可以画出多少条对角线?分别用字母表示出来;(2)这些对角线将八边形分割成多少个三角形?解:(1)5条,它们分别是线段AC ,AD ,AE ,AF ,AG.(2)6个三角形.事实上,经过多边形的一个顶点有(n -3)条对角线,并将多边形分成(n -2)个三角形.2.半径为1的圆中,扇形AOB 的圆心角为120°,请在圆内画出这个扇形并求它的面积. 解:画图略,面积是π3.活动3 课堂小结1.了解多边形、正多边形、圆的相关概念.2.知道多边形的内角、顶点、对角线和边数之间的数量关系. 3.学会根据扇和圆的关系求扇形圆心角的度数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
龙文教育个性化辅导教案提纲(第次课)教师: 学生: 日期: 星期: 时段: 课题基本平面图形
教学目标与考点分析线段、射线、直线的性质、区别与联系,会比较线段的大小.
线段中点的概念,并会进行线段的相关计算.
角的概念,会比较角的大小,了解角平分线的定义,会进行角的相关计算.
教学重点难点线段射线直线线段角相关计算
教学方法探究法、讲练结合、归纳总结
教学过程
知识要点:
一、线段、射线、直线
1、线段、射线、直线的定义
(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。
线段可以量出长度。
(2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。
射线无法量出长度。
(3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。
直线无法量出长度。
2、线段、射线、直线的表示方法
(1)线段的表示方法有两种:一是用两个端点来表示,二是用一个小写的英文字母来表示。
(2)射线的表示方法只有一种:用端点和射线上的另一个点来表示,端点要写在前面。
(3)直线的表示方法有两种:一是用直线上的两个点来表示,二是用一个小写的英文字母来表示。
3、直线公理:过两点有且只有一条直线。
简称两点确定一条直线。
4、线段的比较
(1)叠合比较法;(2)度量比较法。
5、线段公理:“两点之间,线段最短”。
连接两点的线段的长度,叫做这两点的距离。
6、线段的中点:如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点。
若C是线段AB的中点,则:AC=BC=
2
1AB或AB=2AC=2BC。
二、角
1、角的概念:
(1)角可以看成是由两条有共同端点的射线组成的图形。
两条射线叫角的边,共同的端点叫角的顶点。
(2)角还可以看成是一条射线绕着他的端点旋转所成的图形。
2、角的表示方法:角用“∠”符号表示
(1)分别用两条边上的两个点和顶点来表示。
(顶点必须在中间)
(2)在角的内部写上阿拉伯数字,然后用这个阿拉伯数字来表示角。
(3)在角的内部写上小写的希腊字母,然后用这个希腊字母来表示角。
(4)直接用一个大写英文字母来表示。
3、角的度量:会用量角器来度量角的大小。
4、角的单位:角的单位有度、分、秒,用°、′、″表示,角的单位是60进制与时间单位是类似的。
度、分、秒的换算:1°=60′,1′=60″。
5、锐角、直角、钝角、平角、周角的概念和大小
(1)平角:角的两边成一条直线时,这个角叫平角。
(2)周角:角的一边旋转一周,与另一边重合时,这个角叫周角。
(3)0°<锐角<90°,直角=90°,90°<钝角<180°,平角=180°,周角=360°。
6、画两个角的和,以及画两个角的差
(1)用量角器量出要画的两个角的大小,再用量角器来画。
(2)三角板的每个角的度数,30°、60°、90°、45°。
7、角的平分线
从角的顶点出发将一个角分成两个相等的角的射线叫角的平分线。
若BD 是∠ABC 的平分线,则有:∠ABD=∠CBD=
2
1∠ABC ;∠ABC=2∠ABD=2∠CBD 8、角的计算
一、选择题
1、如图,以O为端点的射线有()条
A、3
B、4
C、5
D、6
2、平面上有任意三点,经过其中两点画一条直线,可以画()直线
A、1条
B、2条
C、3条
D、1条或者3条
3、点C在线段AB上,不能判断点C是线段AB中点的式子是()
1D、AC=BC
A、AB=2AC
B、AC+BC=AB
C、BC=AB
2
4、下列画图语句中,正确的是()
A、画射线OP=3cm
B、连结A、B两点
C、画出A、B两点的中点
D、画出A、B两点的距离
5、下列说法中正确的是()
A、角是由两条射线组成的图形
B、一条射线就是一个周角
C、两条直线相交,只有一个交点
D、如果线段AB=BC,那么B叫做线段AB的中点
6、如图,∠AOB=90°,以O为顶点的锐角共有()个
A、6
B、5
C、4
D、3
7、按下列线段的长度,点A、B、C一定在同一直线上的是()
A、AB=2cm,BC=2cm,AC=2cm
B、AB=1cm,BC=1cm,AC=2cm
C、AB=2cm,BC=1cm,AC=2cm B、AB=3cm,BC=1cm,AC=1cm
8、8点30分时,时钟的时针与分针所夹的锐角是()
A、70°
B、75°
C、80°
D、60°
9、直线l上有两点A、B,直线l外两点C、D,过其中两点画直线,共可以画()
A、4条直线
B、6条直线
C、4条或6条直线
D、无数条直线
10、或∠1和∠2为锐角,则∠1+∠2满足()
A、0°<∠1+∠2<90°
B、0°<∠1+∠2<180°
C、∠1+∠2<90°
D、90°<∠1+∠2<180°
二、填空题
11、如图,点A、B、C、D在直线l上
(1)AC=_______-CD;AB + _______ + CD=AD;
(2)图中共有________条线段,共有_______条射线,以点C为端点的射线是________。
12、45°=______直角=_______平角。
13、(1)23°30′=________°;(2)78.36°= ______°____′________″。
14、如图,∠AOD=∠AOC+_______=∠DOB+_______。
三、解答题
15、如图,M是线段AC的中点,N是线段BC的中点。
(1)如果AC=8cm,BC=6cm,求MN的长
(2)如果AM=5cm,CN=2cm,求线段AB的长
16、如图,∠AOC和∠BOD都是直角,且∠AOB=150°,求∠COD的度数。
教学反思
三、本次课后作业:
四、学生对于本次课的评价:
○特别满意○满意○一般○差
学生签字:
五、教师评定:
1、学生上次作业评价:○非常好○好○一般○需要优化
2、学生本次上课情况评价:○非常好○好○一般○需要优化
教师签字:
班主任签字:
教务主任签字:___________
龙文教育教务处。