人教版初二数学上册《完全平方公式》课后练习题
人教版数学八年级上册完全平方公式同步练习(解析版).doc

人教版数学八年级上册完全平方公式同步练习一、单选题(共12题;共24分)1>下列式子成立的是()A 、 (2a ・ 1) 2=4a 2 - 1B 、 (a+3b) 2=a 2+9b 2C 、 (a+b) ( - a - b) =a 2 - b 2D 、 ( - a - b) 2=a 2+2ab+b 22、已知(m ・n) 2=32,(m+n) 2=4000,则 m'+n?的值为() A 、 2014B 、 2015C 、 2016D 、 40323、若(x ・ 2y) 2=x 2 - xy+4y 2+M,则 M 为()A 、 xyB 、 - xyC 、 3xyD 、 - 3xy6、 若(x-y) 2+M=x 2+xy+y 2,则 M 的值为()A 、 xyB 、 0C 、 2xyD 、 3xy 7、 己知 a+b=l, ab=3,则 a 2+b 2 - ab 的值为() A 、 (a+b) 2=a 2+b 2B 、 (x+6) (x - 6) =x 2 ・6C 、 (x+2) 2=X 2+2X +4D 、 (x-y) 2= (y - x) 2、唐老师给出:a+b=l, a 2+b 2=2, A 、 ・1 B 、 3 C 、 3一-D、 14、下列各式正确的是()你能计算出ab 的值为( 5A、- 2C、10D、・ 108、(5x2 - 4y2) ( - 5x2+4y2)运算的结果是()A、- 25x4 - 16y4B、・ 25x4+40x2y2 - 16y4C、25x4 - 16y4D、25x°・40x2y2+16y49、已知a・b=5, (a+b) J49,贝!| a2+b2的值为()A、25B、27C、37D、4410、已知x+ =7,则"+占的值为()A、51B、49C、47D、4511、(a ・ b) 2=()A、a2 - 2ab - b2B、a2+2ab+b2C、a— b2D、a2 - 2ab+b222、下列各式屮能用完全平方公式进行因式分解的是()A、x2+x+lB、X2+2X・ 1C、x2 - 19Dx x - 6x+9二、填空题(共5题;共5分)13、己知m>0,并且使得X2+2 (m - 2) x+16是完全平方式,则m的值为______________ .14、已知a+b=4,则a— b2+8b= _______ .15、若9x2+kx+l是一个完全平方式,则k二_______ .26、如杲4“+kxy+25y2是一个完全平方公式,那么k的值是_________ .17> 若a+b=4,且ab=2,则a2+b2= __________ .三、解答题(共5题;共25分)18、计算:(x+y) 2- (x-y) (x+y)19、(a+2b) 2 - (a・2b) (a+2b)20、a, b, c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状. 21> 先化简,再求值:(2x - y) 2+ (6x3 - 8x2y+4xy2) m ( - 2x),其中x=言,y= - 2.22、如图:某校一块长为2a米的正方形空地是七年级四个班的清洁区,其中分给七年级(1)班的清洁区是一块边长为(a - 2b)米的正方形,(0<b<T),■(1)分别求出七(2)、七(3)班的清洁区的面积;(2)七(4)班的清洁区的面积比七(1)班的清洁区的面积多多少平方米?答案解析部分一、单选题1、【答案】D【考点】完全平方公式【解析】【解答】解:A、应为(2a - 1) 2=4a2 - 2a+l,故本选项错误;B、应为(a+3b);故本选项错误;C、应为(a+b) ( - a - b) = - a2 - 2ab - b2 ,故本选项错误;D、( - a - b) 2=a2+2ab+b2,正确.故选D.【分析】根据完全平方公式:(a士b) 2=a2±2ab+b2,对各选项展开后利用排除法求解.2、【答案】C【考点】完全平方公式【解析】【解答】解:(m・n) J32, m2 - 2mn+n2=32①,(m+n) 2=4000,m2+2mn+n2=4000 ②,①+②得:2m2+2n2=4032m2+n2=2016.故选:C.【分析】根据完全平方公式,即可解答.3、【答案】D【考点】完全平方公式【解析】【解答】解:.・° (x ・ 2y) 2=x2 - 4xy+4y2, 而(x - 2y) 2=x2 - xy+4y2+M,M= - 3xy.故选D・【分析】根据完全平方公式得到(x - 2y) 2=x2 - 4xy+4y2,然后根据已知得到M= - 3xy.4、【答案】D【考点】完全平方公式,平方差公式【解析】【解答】解:A、(a+b) 2=a2+2ab+b2 ,故此选项错误;B、(x+6) (x-6) 选项错误;C、(x+2) 2=X2+4X+4,故此选项错误;D、(x - y) 2=[ - (y - x) ]2= (y - x) 2,故此选项正确;故选:D.【分析】根据完全平方公式和平方差公式依次计算可判断.2+6ab+9b2, =x2 - 62,故此5、【答案】D【考点】完全平方公式【解析】【解答】解:2ab= (a+b) 2 - (a2+b2) , Va+b=l, a2+b2=2,A2ab=l - 2= - 1,解得ab二-故选D.【分析】此题只需由2ab二(a+b) 2 - (a2+b2)即可得出ab的值.6、【答案】D【考点】完全平方公式【解析】【解答】解:丁(x・y) 2+M=x2+xy+y2, /.M=x2+xy+y2 - (x - y) 2=3xy.故选D【分析】根据加数等于和减去另一个加数,计算即可得到M・7、【答案】B【考点】完全平方公式【解析】【解答】解:Va+b=l, ab=3, a2+b2 - ab= (a+b) 2 - 3ab=12 - 3x3 =・8.故选B.【分析】先利用完全平方公式得到a2+b2 - ab= (a+b) ?・3ab,然后利用整体代入的方法计算即可.8、【答案】B【考点】完全平方公式【解析】【解答】解:原式“(5x2-4y2) 2「25x4+40x2y2-16,,故选:B.【分析】根据完全平方公式,可得答案.9、【答案】C【考点】完全平方公式【解析】【解答】解:Va - b=5, (a+b) 2=49, .I (a - b) 2= (a+b) 2 - 4ab=25,/.49 - 4ab=25, • •3 b=6,Aa2+b2= (a+b) 2 - 2ab=49 - 2x6=37.故选:C.【分析】求出(a - b) 2= (a+b) 2 - 4ab=25,即可求出ab的值,根据a2+b2= (a+b) 2 - 2ab代入求出即可.10、【答案】C【考点】完全平方公式【解析】【解答】解:把x+ 1=7,两边平方得:(x+ 1) 2=x2+吉+2=49,故选C.【分析】把已知等式两边平方,利用完全平方公式化简,即可求出所求式子的值.11、【答案】D【考点】完全平方公式【解析】【解答】解:(a-b) 2=a2-2ab+b2, 故选:D.【分析】利用完全平方公式展开可得.12、【答案】D【考点】完全平方公式【解析】【解答】解:根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项分析判断可知:A、x2+x+l不符合完全平方公式法分解因式的式子特点,故A错误;B、X2+2X - 1不符合完全平方公式法分解因式的式子特点,故B错误;C、X?・1不符合完全平方公式法分解因式的式子特点,故C错谋;D、x2 - 6x+9= (x - 3) 2,故D 正确.故选:D.二、填空题13、【答案】6【考点】完全平方公式【解析】【解答】解:・・•原式可化为知X2+2 (m - 2) x+42 ,A2 (m・2) =8或2 (m・2)=・8时,原式可化为(x+4) ?或(x・4) ?,/• m=6 或m= - 2.Vm>0,/• m=6・故答案为:6.【分析】将原式化为X2+2 (m - 2) x+42,再根据完全平方公式解答.14、【答案】16【考点】完全平方公式【解析】【解答】解:Ta+b=4, /.a=4 - b,Aa2= (4 ・ b) 2=16 ・ 8b+b2,A a2 - b2+8b=16.故答案为:16.【分析】把a+b=4写成a=4-b,然后两边平方并利用完全平方公式展开,再整理即可得解.15、【答案】±6【考点】完全平方公式【解析】【解答】解:V (3k±l) 2=9x2+kx+l,k=±6故答案为:±6【分析】根据完全平方公式可知:(3k±l) 2=9x2+kx+l,从而可求岀k的值.16、【答案】±20【考点】完全平方公式【解析】【解答】解:V4x2+kxy+25y2= (2x) 2+kxy+ (5y) 2, kxy=±2x2xx5y,解得k=±20.故答案为:±20.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.17、【答案】14【考点】完全平方公式【解析】【解答】解:Va+b=4, ab=2, (a+b) 2=a2+2ab+b2,:.16=a2+b2+4,.\a2+b2=14故答案为:14【分析】根据完全平方公式即可求出a2+b2的值.三、解答题18、【答案】解:(x+y) 2 - (x - y) (x+y)=x2+2xy+y2 - (x2 - y2)=2xy+2y2【考点】完全平方公式,平方差公式【解析】【分析】直接利用乘方公式法化简求出即可29、【答案】解:(a+2b) 2 - (a - 2b) (a+2b)=a2+4ab+4b2 - (a2 - 4b2)=a2+4ab+4b2 - a2+4b2=8b2+4ab【考点】完全平方公式,平方差公式【解析】【分析】根据完全平方公式和平方差公式,即可解答.20、【答案】解:由a2+b2+c2+338=10a+24b+26c,得:(孑- 10a+25) + (b2 - 24b+144) + (c2 - 26c+169) =0,即:(a ・ 5) 2+ (b - 12) 2+ (c ・ 13) 2=0,5-5=0由非负数的性质可得:<d-12 = 0,LS3解得4=12,c. =13V52+122=169=132,即a2+b2=c2,AZC=90°,即三角形ABC为直角三角形.【考点】完全平方公式,勾股定理的逆定理【解析】【分析】现对已知的式子变形,出现三个非负数的平方和等于0的形式,求岀a、b、c,再验证两小边的平方和是否等于最长边的平方即可.21>【答案】解:原式=4x2 - 4xy+y2 - 3x2+4xy - 2y2=x2 - y2 , 当x二亨,y= - 2时,原式二£ - 4二-寻.【考点】完全平方公式【解析】【分析】原式利用完全平方公式,以及多项式乘以单项式法则计算,去括号合并得到最简结果,把x 与y的值代入计算即可求出值.22、【答案】解:(1)・・・2a- (a-2b) =a+2b,・••七(2)、七(3)班的清洁区的面积为:(a+2b) (a - 2b) = (a2-4b2)平方米;(2) (a+2b) 2 - (a - 2b) 2=a2+4ab+4b2 - (a2-4ab+4b2),=8ab.答:七(2)、七(3)班的清洁区的面积都为心2-4『),七(4)班的清洁区的面积比七(1)班的清洁区的面积多8ab 平方米.【考点】完全平方公式的几何背景【解析】【分析】(1)求出七(2)、七(3)清洁区的长,然后根据矩形的面枳公式列式进行计算即可得解;(2)根据正方形的面积公式列式计算即可得解.。
最新人教版八年级数学上册第十四章《完全平方公式》课后训练

15.2.2 完全平方公式练习1.下列各式中,完全平方公式应用正确的是().A.(2a+3b)2=2a2+12ab+3b2 B.(-x+y)2=-x2+2xy+y2C.(3a-4b)2=9a2-12ab+16b2 D.(mn-4)2=m2n2-8mn+162.已知(a-2b)2=(a+2b)2+N,则N=().A.4ab B.-4ab C.8ab D.-8ab3.有若干张面积分别为a2,b2,ab的正方形和长方形纸片,阳阳从中抽取了1张面积为a2的正方形纸片,4张面积为ab的长方形纸片,若他想拼成一个大正方形,则还需要抽取面积为b2的正方形纸片().A.2张B.4张C.6张D.8张4.若x+y=3,xy=1,则x2+y2=________.5.已知x2+4x+k是完全平方式,则k=________.6.若x2+2mx+9是完全平方式,则m=________.7.计算:(1)(x+3)2-(x+2)(x-1);(2)(a+b+3)(a-b-3).8.先化简,再求值:(a+b)2+(a-b)(2a+b)-3a2,其中a=-2b 2.9.当a,b为何值时,多项式a2+b2-4a+6b+18有最小值,并求出这个最小值.10.先阅读后作答:我们已经知道,根据几何图形的面积关系可以说明完全平方公式,实际上还有一些等式也可以用这种方式加以说明,例如:(2a+b)(a+b)=2a2+3ab+b2,就可以用图(1)的面积关系来说明.①根据图(2)写出一个等式______;②已知等式:(x+p)(x+q)=x2+(p+q)x+pq,请你画出一个相应的几何图形加以说明.参考答案1.答案:D2.答案:D3.答案:B4.答案:45.答案:46.答案:±37.解:(1)原式=x2+6x+9-x2-x+2=5x+11.(2)原式=[a+(b+3)][a-(b+3)]=a2-(b+3)2=a2-b2-6b-9.8.解:(a+b)2+(a-b)(2a+b)-3a2=a2+2ab+b2+2a2-ab-b2-3a2=a B.当a=-2b2时,原式=(-22)=(-2)2-(2=1.9.分析:a2+b-4a+6b+18=(a-2)+(b+3)2+5≥5.解:∵a2+b2-4a+6b+18=(a2-4a+4)+(b2+6b+9)+5=(a-2)2+(b+3)2+5,而(a-2)2≥0,(b+3)2≥0,∴当a=2,b=-3时,原多项式有最小值,这个最小值是5.10.解:①(a+2b)(2a+b)=2a2+5ab+2b2②画出的图形如下:。
八上完全平方公式练习题及答案

八上完全平方公式练习题及答案一.选择题 1.图①是一个边长为的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是2.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:2 =a+2ab+b.你根据图乙能得到的数学公式是223.如图,你能根据面积关系得到的数学公式是4.如图,是一个长为2a宽为2b的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图拼成一个新的正方形,则中间空白部分的面积是5.如图的图形面积由以下哪个公式表示2二.填空题7.如图,在一个矩形中,有两个面积分别为a、b的正方形.这个矩形的面积为 _________228.如图,边长为的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形,若拼成的矩形一边长为2,则另一边长是 _________ .9.有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为 _________ .10.如图1和图2,有多个长方形和正方形的卡片,图1是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证等式a=a+ab成立.根据图2,利用面积的不同表示方法,写出一个代数恒等式_________ .211.如图,正方形广场的边长为a米,中央有一个正方形的水池,水池四周有一条宽度为路,那么水池的面积用含a、b的代数式可表示为 _________ 平方米.的环形小12.如图,请写出三个代数式、、ab之间的等量关系是 _________ .2213.如图,长为a,宽为b的四个小长方形拼成一个大正方形,且大正方形的面积为64,中间小正方形的面积为16,则a= _________ ,b= _________ .三.解答题 14.阅读学习:数学中有很多等式可以用图形的面积来表示.如图1,它表示=m+3mn+2n,22观察图2,请你写出,,ab之间的关系 _________ .小明用8个一样大的长方形,,拼成了如图甲乙两种图案,图案甲是一个正方形,图案甲中间留下了一个边长为2的正方形;图形乙是一个长方形.①a﹣4ab+4b= _________②ab= _________ .222215.我们已经知道,根据几何图形的面积关系可以说明完全平方公式,说明如下:如图1,正方形ABCD的面积=正方形EBNH的面积++正方形MHFD222的面积.即:=a+2ab+b.还有一些等式也可以用上述方式加以说明,请你尝试完成.如图2,长方形ABNM的面积=长方形EBCF的面积+长方形AEFD的面积﹣长方形HNCF的面积﹣ _________ 的面积,即:= _________ .计算= _________ .仿照上述方法,画图并说明.16.阅读下列文字,我们知道对于一个图形,通过不同的方法计算图形的面积,可以得到一个数学等式,例如由图221可以得到=a+3ab+2b.请解答下列问题:写出图2中所表示的数学等式 _________ ;利用中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a+b+c的值;图3中给出了若干个边长为a和边长为b的小正方形纸片.若干个长为a和宽为b的长方形纸片,利用所给22的纸片拼出一个几何图形,使得计算它的面积能得到数学公式:2a+5ab+2b=.22217.如图1,将一个长为4a,宽为2b的长方形,沿图中虚线均匀分成4个小长方形,然后按图2形状拼成一个正方形.图2的空白部分的边长是多少?若2a+b=7,且ab=3,求图2中的空白正方形的面积.22观察图2,用等式表示出,ab和的数量关系.18.动手操作:如图①是一个长为2a,宽为2b的长方形,沿图中的虚线剪开分成四个大小相等的长方形,然后按照图②所示拼成一个正方形.提出问题:观察图②,请用两种不同的方法表示阴影部分的面积;22请写出三个代数式,,ab之间的一个等量关系.问题解决:根据上述中得到的等量关系,解决下列问题:已知:x+y=6,xy=3.求:的值.2第1课时完全平方公式要点感知 =______.即两个数的和的平方,等于它们的_____加上_____.222预习练习1-1 计算:=+2·_____·_____+=_____. 1- 填空:2=_____;2=_____;2=_____;2=_____.知识点1 完全平方公式的几何意义1.如图,将完全相同的四个长方形纸片拼成一个正方形,则可得出一个等式为A.2=a2+2ab+bB.2=a2-2ab+bC.a2-b2=D.2=2+4ab2.下列四个图形中,图①是长方形,图②、③、④是正方形.把图①、②、③三个图形拼在一起,其面积为S,则S=_____;图④的面积P=_____;则P_____S.3.下列计算结果为2ab-a-b的是A. B. C.- D.-24.若关于x的多项式x2-8x+m是2的展开式,则m的值为A.4B.16C.±D.±165.计算2的结果为_____.26.化简代数式-2x,所得的结果是_____.知识点运用完全平方公式计算7.直接运用公式计算:2; 2; 2; 2.8.运用完全平方公式计算:2012;99.82.9.计算:2-2; 22; .10.下列运算中,错误的运算有12①2=4x2+y2,②2=a2-9b2,③2=x2-2xy+y2,④=x-x +.4A.1个B.2个C.3个D.4个222211.已知=8,=2,则m+n=A.10B.6C.5D.3212.计算:-=_____.13.若2=2,则代数式x2-2x+5的值为_____.14.由完全平方公式可知:32+2×3×5+52=2=64,运用这一方法计算:224.321 0+8.642×0.670+0.670=_____.15.计算:2; 2;; 2-2+2.16.先化简,再求值:2b2+-2,其中a=-3,b=1.挑战自我17.观察下列关于自然数的等式:223-4×1=5①52-4×22=9②72-4×32=13③…根据上述规律解决下列问题:完成第四个等式:92-4×_____2=_____;写出你猜想的第n个等式,并验证其正确性.参考答案课前预习要点感知a2±2ab+b2平方和它们的积的2倍22222222预习练习1-12a a 1 1 a+4a+11-a+2ab+ba-2ab+b 25+30p+9p 4x-28xy+49y 当堂训练22221.D2.a+b+2ab2=.D4.B.a-6a+6.x+17.原式=9+30p+25p2.原式=49x2-28x+4.原式=4a2+20a+25.原式=4x2-12xy+9y2.8.原式=2=4001.原式=2=960.04.422442249.原式=-5x-10x.原式=a-2ab+b.原式=-x+2xy-y.课后作业10.C 11.C 12.2x+ 13. 14.2515.原式=4m2+12mn+9n2.原式=x2-4xy+4y2.原式=a4-2a2+1.原式=36b2.16.-3.17.417第n个等式为2-4n2=2-1.左边=2-4n2=4n2+4n+1-4n2=4n+1,右边=2-1=4n+2-1=4n+1.∵左边=右边,∴2-4n2=2-1.2平方差、完全平方公式讲义知识点平方差公式:完全平方公式:完全平方式:完全平方公式公式变形:例1.利用完全平方公式计算:21012例2.已知a+b=3,ab=2,求a2+b2;若已知a+b=10,a2+b2=4,求ab的值。
八年级数学上册《完全平方公式》练习题及答案解析

八年级数学上册《完全平方公式》练习题及答案解析学校:___________姓名:___________班级:____________一、单选题1.下列计算正确的是( )A .236a a a ⋅=B .()32639a a =C .2225420a a a ⋅=D .444235a a a +=2.若多项式294x mx -+是一个完全平方式,则m 的值为( )A .12B .12±C .6D .6±3.我们经常利用完全平方公式以及变形公式进行代数式变形.已知关于a 的代数式2A a a =+,请结合你所学知识,判断下列说法正确的有( )个①当2a =-时,2A =;①存在实数a ,使得104A +<; ①若10A -=,则2213a a +=;①已知代数式A 、B 、C 满足A B -=B C -=22218A B C AB AC BC ++---=.A .4B .3C .2D .14.阅读材料:我们把形如2ax bx c ++的二次三项式(或其中一部分)配成完全平方式的方法叫做配方法.配方法的基本形式就是完全平方公式的逆写,即222)2(a ab b a b ±+=±.例如:2(1)3x -+,2(2)2x x -+,2213224x x ⎛⎫-+ ⎪⎝⎭是224x x -+的三种不同形式的配方.则下列说法正确的个数是( ) ①2(2)2x x +-和2(31)x ++都是224x x ++不同形式的配方①22(1)4x k x --+是完全平方式,则k 的值为3 ①23534b b +-有最小值,最小值为2 A .0 B .1 C .2 D .35.小亮想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多2m ,当他把绳子的下端拉开8m 后,下端刚好接触到地面,则学校旗杆的高度为( )A .10mB .12mC .15mD .18m6.如图所示,在这个运算程序当中,若开始输入的x 是2,则经过2021次输出的结果是( )A .1B .3C .4D .8二、填空题7.若m ,n 是关于x 的方程x 2-3x -3=0的两根,则代数式m 2+n 2-2mn =_____.8.若x =3是关于x 的一元一次方程mx ﹣n =3的解,则代数式10﹣3m +n 的值是___.9.如果用公式222()2a b a ab b +=++计算2()a b c ++,那么第一步应该写成2()a b c ++=________.三、解答题10.已知xy (1)求代数式2x 2+2y 2﹣ x y 的值;(2)2x y 的值.11.先阅读理解下面的例题,再按要求解答下列问题.例题:求代数式248y y ++的最小值.解:22248444(2)4y y y y y ++=+++=++①()220y +≥①()2244y ++≥①代数式248y y ++的最小值为4.(1)求代数式222x x --的最小值.(2)若269|1|0a a b -+++=,则b a =_________.(3)某居民小区要在一块一边靠墙(墙长15m )的空地上建一个长方形花园ABCD ,花园一边靠墙,另三边用总长为20m 的栅栏围成.如图,设()m AB x =,请问:当x 取何值时,花园的面积最大?最大面积是多少?12.图a 是由4个长为m ,宽为n 的长方形拼成的,图b 是由这四个长方形拼成的正方形,中间的空隙,恰好是一个小正方形.(1)用m 、n 表示图b 中小正方形的边长为 .(2)用两种不同方法表示出图b 中阴影部分的面积;(3)观察图b ,利用(2)中的结论,写出下列三个代数式之间的等量关系,代数式2()m n +,2()m n -,mn ;(4)根据(3)中的等量关系,解决如下问题:已知7a b +=,5ab =,求2()a b -的值.参考答案:1.D【分析】运用同底数幂的乘法,积的乘方,单项式乘单项式,合并同类项的运算法则分别对各项进行运算,即可得出结果【详解】解:A 、235a a a ⋅=,故A 不符合题意;B 、()326327a a =,故B 不符合题意; C 、2245420a a a =,故C 不符合题意;D 、444235a a a +=,故D 符合题意.故选:D .【点睛】本题主要考查同底数幂的乘法,积的乘方,单项式乘单项式,合并同类项,解答的关键是对这些知识点的运算法则的掌握与应用.2.B【分析】利用完全平方公式的结构特征解答即可.【详解】解:①9x 2-mx +4是一个完全平方式,①-m =±12,①m =±12.故选:B .【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.3.B【分析】利用代数式的值可判断①,利用完全平方公式可判断①,利用公式变形,整体代入求值可判断①,根据A B -=B C -=A C -=222A B C AB AC BC ++---配方得出(222111222++,然后代入求值可判断①. 【详解】解①当2a =-时,()2222A =--=,故①正确; ①存在实数a ,使得221110442A a a a ⎛⎫+=++=+≥ ⎪⎝⎭,故①不正确; ①若10A -=,①21a a +=,当0,01a =≠,①0a ≠, ①11a a-=-, 则2221123a a a a ⎛⎫+=-+= ⎪⎝⎭; 故①正确;①已知代数式A 、B 、C 满足A B -=B C -=①()()A C A B B C -=-+-=则222A B C AB AC BC ++--- =()22212222222A B C AB AC BC ++---=()()()222111222A B B C A C -+-+-=(222111222++ =18;故①正确,①正确的个数有3个,故选B .【点睛】本题考查代数式求值,完全平方公式性质,二次根式的混合运算,掌握完全平方公式及其变形公式,和代数式求值方法是解题关键.4.C【分析】①各式化简得到结果,比较即可作出判断;①利用完全平方公式的结构特征判断即可;①原式配方后,求出最小值,即可作出判断.【详解】解:①①(x +2)2-2x= x 2+2x +4,(x +1)2+3= x 2+2x +4,①(x +2)2-2x 和(x +1)2+3都是x 2+2x +4不同形式的配方,符合题意;①x 2-2(k -1)x +4是完全平方式,则k -1=2或k -1=-2,即k =3或-1,不符合题意;①原式=34(b 2-4b +4)+2=34(b -2)2+2,当b =2时,取得最小值,最小值为2,符合题意. 故选:C .【点睛】此题考查了配方法的应用,以及偶次方的非负性,熟练掌握完全平方公式是解本题的关键.5.C【分析】根据题意设旗杆的高AB 为x m ,则绳子AC 的长为(x +2)m ,再利用勾股定理即可求得AB 的长,即旗杆的高.【详解】解:根据题意画出图形如下所示:则BC =8m ,设旗杆的高AB 为x m ,则绳子AC 的长为(x +2)m ,在Rt①ABC 中,AB 2+BC 2=AC 2,即x 2+82=(x +2)2,解得x =15,故AB =15m ,即旗杆的高为15m .故选:C .【点睛】此题考查了学生利用勾股定理解决实际问题的能力,在应用勾股定理解决实际问题时,勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.6.C【分析】根据运算程序代值求解得到输出结果的规律求解即可.【详解】解:把x =2代入得:2÷2=1,把x =1代入得:1+5=6,把x =6代入得:6÷2=3,把x =3代入得:3+5=8,把x =8代入得:8÷2=4,把x =4代入得:4÷2=2,把x =2代入得:2÷2=1,……以此类推,可知每6个一循环,且输入次数与输出结果的对应规律是:61n +对应1;62n +对应6;63n +对应3;64n +对应8;65n +对应4;6n +6对应2;①202163365=⨯+,①经过2021次输出的结果是4.故选:C .【点睛】本题考查运算程序背景下的数字规律,根据运算程序算出输出结果,然后找到输出结果的规律是解决问题的关键.7.21【分析】先根据根与系数的关系得到m +n =3,m n =﹣3,再根据完全平方公式变形得到m 2+n 2﹣2mn =(m +n )2﹣4mn ,然后利用整体代入的方法计算.【详解】解:①m ,n 是关于x 的方程x 2-3x -3=0的两根,①m +n =3,m n =﹣3,①m 2+n 2﹣2mn =(m +n )2﹣4mn =32﹣4×(﹣3)=21.故答案为:21.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2b a =-,x 1x 2c a =. 8.7【分析】根据题意得到﹣3m +n =﹣3,然后代入代数式10﹣3m +n 求解即可.【详解】解:由题意得:3m ﹣n =3,①﹣3m +n =﹣3,①原式=10﹣3=7.故答案为:7.【点睛】此题考查了一元一次方程的解的含义以及解一元一次方程,解题的关键是熟练掌握一元一次方程的解的含义.9.22()2()a b c a b c ++++【分析】利用完全平方公式即可得.【详解】[]2222()()()2()a b c a b c a b c a b c ++=++=++++,故答案为:22()2()a b c a b c ++++.【点睛】本题考查了完全平方公式,熟记公式是解题关键.10.(1)27;(2)【分析】(1)求得x +y 和x y 的值,再利用完全平方公式变形求值即可;(2)根据x <1,先分母开方,约分,再代入求值即可;(1)解:原式=2x 2+4xy +2y 2﹣5xy =2(x +y )2﹣5xy ,①2x =2y ==,①x +y =24,(221xy ==,①原式=2×42﹣5×1=2×16﹣5=27;(2)解:①x =21,①x yx yx y =x y=1 =﹣1= 【点睛】本题考查了二次根式的性质,二次根式的混合运算,完全平方公式,掌握相关运算法则是解题关键.11.(1)−3; (2)13; (3)当x 取5时,花园的面积最大,最大面积是50m 2.【分析】(1)根据阅读材料将所求的式子变形为()213x --,再根据非负数的性质得出最小值; (2)根据阅读材料将所求的式子变形为()23|1|0a b -++=,再根据非负数的性质求出a 、b ,代入b a 计算即可;(3)先根据矩形的面积公式列出式子,再根据阅读材料将式子变形,求出最值即可.(1)解:()222213x x x --=--,①()210x -≥,①()2133x --≥-,①代数式222x x --的最小值为−3;(2)①()2269|1|3|1|0a a b a b -+++=-++=,①a −3=0,b +1=0,①a =3,b =−1, ①1133b a -==, 故答案为:13; (3)设()m AB x =,由题意可得,花园的面积为:()()()2222022202102550x x x x x x x -=-+=--=--+, ①()2250x --≤,①当x =5时,花园的面积取得最大值,此时花园的面积是50,BC 的长是20−2×5=10<15,答:当x 取5时,花园的面积最大,最大面积是50m 2.【点睛】本题考查了完全平方公式的变形及应用,非负数的性质,解题的关键是明确题意,找出所求问题需要的条件.12.(1)m n -;(2)方法①:2()()()m n m n m n --=-,方法①:2()4m n mn +-;(3)22()()4m n m n mn -=+-;(4)29.【分析】(1)根据图形即可得出图b 中小正方形的边长为m n -;(2)直接利用正方形的面积公式得到图中阴影部分的面积为2()m n -;也可以用大正方形的面积减去4个长方形的面积得到图中阴影部分的面积为2()4m n mn +-;(3)根据图中阴影部分的面积是定值得到等量关系式;(4)利用(3)中的公式得到22()()4a b a b ab -=+-.【详解】解:(1)图b 中小正方形的边长为m n -.故答案为m n -;(2)方法①:2()()()m n m n m n --=-;方法①:2()4m n mn +-;(3)因为图中阴影部分的面积不变,所以22()()4m n m n mn -=+-;(4)由(3)得:22()()4a b a b ab -=+-,7a b +=,5ab =,2()a b ∴-222a ab b =-+2()4a b ab =+-2745=-⨯4920=-29=.【点睛】本题考查了完全平方公式的几何背景,列代数式,可以根据题中的已知数量利用代数式表示其他相关的量.。
完全平方公式练习题

完全平方公式练习题完全平方公式是我们研究二次函数时常用的一种求解方法,它能够帮助我们快速得到方程的解。
为了更好地掌握这一公式,接下来将提供一些完全平方公式的练习题,供大家练习和巩固知识。
题目一:求解下列二次方程的解1. $x^2+6x+9=0$2. $2x^2+4x+2=0$3. $x^2+5x+4=0$4. $3x^2-6x+3=0$题目二:根据给定的二次方程,填写完整的平方形式1. $x^2+8x+16=(x + \_\_)^2$2. $x^2+12x+36=(x + \_\_)^2$3. $x^2+10x+25=(x + \_\_)^2$4. $x^2-4x+4=(x - \_\_)^2$题目三:利用完全平方公式,将下列二次方程转化为标准形式1. $y=x^2+6x+9$2. $y=2x^2+8x+8$3. $7y=x^2+14x+7$4. $2y=x^2-6x+3$题目四:根据给定的完全平方形式,写出原始的二次方程1. $(x + 3)^2=x^2+6x+\_\_$2. $(x + 5)^2=x^2+10x+\_\_$3. $(x + 2)^2=x^2+4x+\_\_$4. $(x - 4)^2=x^2-8x+\_\_$题目五:利用完全平方公式,求解下列二次方程的解1. $x^2+8x=7$2. $x^2-12x=-36$3. $x^2-10x+25=4$4. $x^2+5x-6=0$题目六:解答下列问题1. 对于给定的二次方程,什么情况下可以利用完全平方公式求解?2. 完全平方公式有哪些应用场景?3. 如何通过完全平方公式将一个二次方程转化为完全平方形式?4. 完全平方公式的推导过程是什么?通过以上练习题和问题的学习和思考,相信大家对于完全平方公式的应用有了更深入的理解和掌握。
希望大家能够善于应用完全平方公式,解决实际问题,提高数学解题能力。
人教版八年级上册数学 14.2.2完全平方公式 同步习题(含解析)

14.2.2完全平方公式同步习题一.选择题(共10小题)1.计算:(2x﹣y)2=()A.4x2﹣4xy+y2B.4x2﹣2xy+y2C.4x2﹣y2D.4x2+y22.若a﹣b=5,ab=﹣6,则a2﹣3ab+b2的值为()A.13B.19C.25D.313.若x2+y2=(x+y)2+A=(x﹣y)2﹣B,则A、B的数量关系为()A.相等B.互为相反数C.互为倒数D.无法确定4.若x+y=6,x2+y2=20,求x﹣y的值是()A.4B.﹣4C.2D.±25.计算(x+3y)2﹣(x﹣3y)2的结果是()A.12xy B.﹣12xy C.6xy D.﹣6xy6.若(ax+3y)2=4x2+12xy+by2,则a,b的值分别为()A.a=4,b=3B.a=2,b=3C.a=4,b=9D.a=2,b=9 7.小淇将(2019x+2020)2展开后得到a1x2+b1x+c1;小尧将(2020x﹣2019)2展开后得到a2x2+b2x+c2,若两人计算过程无误,则a1﹣a2的值为()A.﹣1B.﹣4039C.4039D.18.下列等式成立的是()A.(a+1)2=(a﹣1)2B.(﹣a﹣1)2=(a+1)2C.(﹣a+1)2=(a+1)2D.(﹣a﹣1)2=(a﹣1)29.设m=xy,n=x+y,p=x2+y2,q=x2﹣y2,其中,①当n=3时,q=6.②当p=时,m=.则下列正确的是()A.①正确②错误B.①正确②正确C.①错误②正确D.①错误②错误10.如果(x+3)2=x2+ax+9,那么a的值为()A.3B.±3C.6D.±6二.填空题(共5小题)11.已知a,b满足a﹣b=1,ab=2,则a+b=.12.计算(a﹣2b)2﹣2a(3a﹣4b)的结果是.13.已知(2020+x)(2018+x)=55,则(2020+x)2+(2018+x)2=.14.用简便方法计算:10.12﹣2×10.1×0.1+0.01=.15.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出如图,此表揭示了(a+b)n (n为非负整数)展开式的各项系数的规律,例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1;…根据以上规律,(a+b)5展开式共有六项,系数分别为.拓展应用:(a﹣b)4=.三.解答题(共3小题)16.已知:x+y=5,xy=3.求:①x2+5xy+y2;②x4+y4.17.利用整式乘法公式计算:(1)2012;(2)19992﹣1998×2000.18.同学们知道,完全平方公式是:(a+b)2=a2+b2+2ab,(a﹣b)2=a2+b2﹣2ab,由此公式我们可以得出下列结论:ab=[a+b)2﹣(a2+b2)]①(a﹣b)2=(a+b)2﹣4ab②利用公式①和②解决下列问题:已知m满足(3m﹣2020)2+(2019﹣3m)2=5,(1)求(3m﹣2020)(2019﹣3m)的值;(2)求(6m﹣4039)2的值.参考答案1.解:(2x﹣y)2=4x2﹣4xy+y2,故选:A.2.解:∵a﹣b=5,ab=﹣6,∴a2﹣3ab+b2=(a﹣b)2﹣ab=52﹣(﹣6)=31,故选:D.3.解:∵x2+y2=(x+y)2+(﹣2xy)=(x﹣y)2﹣(﹣2xy),∴A=﹣2xy,B=﹣2xy,∴A=B.故选:A.4.解:∵x+y=6,x2+y2=(x+y)2﹣2xy=20,∴2xy=62﹣20=16,∴xy=8,∴(x﹣y)2=x2+y2﹣2xy=20﹣2×8=4,∴x﹣y=±2,故选:D.5.解:原式=x2+6xy+9y2﹣(x2﹣6xy+9y2)=x2+6xy+9y2﹣x2+6xy﹣9y2=12xy.故选:A.6.解:(ax+3y)2=4x2+12xy+by2,则a2x2+6axy+9y2=4x2+12xy+by2,故a2=4且6a=12,b=9,解得:a=2,b=9.故选:D.7.解:∵(2019x+2020)2展开后得到a1x2+b1x+c1;∴a1=20192,∵(2020x﹣2019)2展开后得到a2x2+b2x+c2,∴a2=20202,∴a1﹣a2=20192﹣20202=(2019+2020)(2019﹣2020)=﹣4039,故选:B.8.解:A、(a+1)2≠(a﹣1)2,原等式不成立,故此选项不符合题意;B、(﹣a﹣1)2=(a+1)2,原等式成立,故此选项符合题意;C、(﹣a+1)2≠(a+1)2,原等式不成立,故此选项不符合题意;D、(﹣a﹣1)2≠(a﹣1)2,原等式不成立,故此选项不符合题意;故选:B.9.解:当n=3时,即x+y=3,由可得,x﹣y=2,因此,x=,y=,∴q=x2﹣y2═﹣==6,因此①正确;当p=时,即x2+y2=,又∴x﹣y=2,∴x2﹣2xy+y2=4,∴﹣2xy=4,∴m=xy=,因此②正确;故选:B.10.解:∵(x+3)2=x2+6x+9,∴a=6.故选:C.11.解:因为a﹣b=1,ab=2,所以a2+b2=(a﹣b)2+2ab=12+2×2=1+4=5,所以(a+b)2=a2+b2+2ab=5+2×2=9,所以a+b=±3.故答案为:±3.12.解:(a﹣2b)2﹣2a(3a﹣4b)=a2﹣4ab+4b2﹣6a2+8ab=﹣5a2+4ab+4b2,故答案为:﹣5a2+4ab+4b2.13.解:∵(2020+x)(2018+x)=55,∴(2020+x)2+(2018+x)2=[(2020+x)﹣(2018+x)]2+2(2020+x)(2018+x)=22+2×55=114.故答案为114.14.解:原式=(10.1﹣0.1)2=102=100.故答案是:100.15.解:(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.(a﹣b)4=a4﹣4a3b+6a2b2﹣4ab3+b4.故答案为:1 5 10 10 5 1,a4﹣4a3b+6a2b2﹣4ab3+b4.16.解:①∵x+y=5,xy=3,∴x2+5xy+y2=(x+y)2+3xy=52+3×3=34;②∵x+y=5,xy=3,∴x2+y2=(x+y)2﹣2xy=52﹣2×3=19,∴x4+y4=(x2+y2)2﹣2x2y2=192﹣2×32=343.17.解:(1)原式=(200+1)2=2002+2×200×1+12=40401;(2)原式=19992﹣(1999﹣1)(1999+1)=19992﹣19992+1=1.18.解:(1)设3m﹣2020=x,2019﹣3m=y,∴x2+y2=5且x+y=﹣1,∴(3m﹣2020)(2019﹣3m)=xy=[(x+y)2﹣(x2+y2)]=﹣2;(2)(6m﹣4039)2=[(3m﹣2020)﹣(2019﹣3m)]2=(3m﹣2020)2+(2019﹣3m)2﹣2(2019﹣3m)(3m﹣2020)=x2+y2﹣2xy=5+4=9.。
八年级数学上册14.2.2完全平方公式课时练习(含解析)(新版)新人教版

1 2 ), 2
1 2 y 都是完全平方式, 4
25 ,n=±1, 16 16 16 当 n=1 时,原式= ;当 n=-1 时,原式= ; 9 41
(3)单项式可以为-1,-9x2,6x,-6x. 12.多项式 x2+1 加上一个整式后是含 x 的二项的完全平方式.
例题:x2+1+ 2x =(x+1)2. (1)按上例再写出两个加上一个单项式后是含 x 的二项式的完全平方式的式子(不能用已知的例题): ①x2+1+ =(x-1)2; ②x2+1+ =(
1 2 x +1)2. 2
(2)按上例写出一个加上一个多项式后是一个含 x 的二项式的完全平方式 x2+1+ =(x2+1)2. 【答案】(1)-2x,
1 4 x ;(2) x 4 x 2 . 4
【解析】例题∵(x+1)2=x2+2x+1, ∴应填入 2x; (1)①∵(x-1)2=x2-2x+1, ∴应填入-2x;
3 . 4
【解析】4a2-2a+1-3a2=a2-2a+1=(a-1)2, 4a2-2a+1-2a=4a2-4a+1=(2a-1)2, 4a2-2a+1+6a=4a2+4a+1=(2a+1)2, 4a2-2a+1-=4a2-2a+
1 1 =(2a- )2, 4 2 3 . 4
所以,加上的单项式为-3a2 或-2a 或 6a 或-
16 16 或 ;(3)-1,-9x2,6x,-6x. 9 41 1 2 1 b =(2a+ b)2;④a2-ab+b2, 4 2
新人教版八年级数学上册14.2.2完全平方公式(第1课时)完全平方公式练习(含答案)

第1课时完全平方公式要点感知(a±b)2=______.即两个数的和(或差)的平方,等于它们的_____加上(或减去)_____.预习练习1-1 计算:(2a+1)2=(_____)2+2·_____·_____+(_____)2=_____.1-2 填空:(1)(a+b)2=_____;(2)(a-b)2=_____;(3)(5+3p)2=_____;(4)(2x-7y)2=_____.知识点1 完全平方公式的几何意义1.如图,将完全相同的四个长方形纸片拼成一个正方形,则可得出一个等式为( )A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b)D.(a+b)2=(a-b)2+4ab2.下列四个图形中,图①是长方形,图②、③、④是正方形.把图①、②、③三个图形拼在一起(不重合),其面积为S,则S=_____;图④的面积P=_____;则P_____S.3.下列计算结果为2ab-a2-b2的是( )A.(a-b)2B.(-a-b)2C.-(a+b)2D.-(a-b)24.若关于x的多项式x2-8x+m是(x-4)2的展开式,则m的值为( )A.4B.16C.±4D.±165.计算(a-3)2的结果为_____.6.化简代数式(x+1)2-2x,所得的结果是_____.知识点2 运用完全平方公式计算7.直接运用公式计算:(1)(3+5p)2; (2)(7x-2)2; (3)(-2a-5)2; (4)(-2x+3y)2. 8.运用完全平方公式计算:(1)2012;(2)99.82.9.计算:(1)(2x-1)2-(3x+1)2;(2)(a-b)2(a+b)2; (3)(x+y)(-x+y)(x 2-y 2).10.下列运算中,错误的运算有( )①(2x+y)2=4x 2+y 2,②(a-3b)2=a 2-9b 2,③(-x-y)2=x 2-2xy +y 2,④(x-21)2=x 2-x +41. A.1个 B.2个 C.3个 D.4个 11.已知(m-n)2=8,(m+n)2=2,则m 2+n2= ( )A.10B.6C.5D.312.(包头中考)计算:(x+1)2-(x+2)(x-2)=_____.13.若(x-1)2=2,则代数式x 2-2x+5的值为_____.14.由完全平方公式可知:32+2×3×5+52=(3+5)2=64,运用这一方法计算:4.321 02+8.642×0.679 0+0.679 02=_____.15.计算:(1)(-2m-3n)2; (2)(x-2y)2; (3)(a-1)(a+1)(a 2-1); (4)(a+3b)2-2(a+3b)(a-3b)+(a-3b)2.16.先化简,再求值:2b 2+(a+b)(a-b)-(a-b)2,其中a=-3,b=21. 挑战自我17.(安徽中考)观察下列关于自然数的等式:32-4×12=5①52-4×22=9②72-4×32=13③…根据上述规律解决下列问题:(1)完成第四个等式:92-4×_____2=_____; (2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性.参考答案课前预习要点感知a2±2ab+b2平方和它们的积的2倍预习练习1-1 2a 2a 1 1 4a2+4a+1 1-2 (1)a2+2ab+b2(2)a2-2ab+b2(3)25+30p+9p2 (4)4x2-28xy+49y2当堂训练1.D2.a2+b2+2ab(a+b) 2=3.D4.B5.a2-6a+96.x2+17.(1)原式=9+30p+25p2.(2)原式=49x2-28x+4.(3)原式=4a2+20a+25.(4)原式=4x2-12xy+9y2.8.(1)原式=(200+1)2=40 401.(2)原式=(100-0.2)2=9 960.04.9.(1)原式=-5x2-10x.(2)原式=a4-2a2b2+b4.(3)原式=-x4+2x2y2-y4.课后作业10.C 11.C 12.2x+5 13.6 14.2515.(1)原式=4m2+12mn+9n2.(2)原式=x2-4xy+4y2.(3)原式=a4-2a2+1.(4)原式=36b2.16.-3.17.(1)4 17(2)第n个等式为(2n+1)2-4n2=2(2n+1)-1.左边=(2n+1)2-4n2=4n2+4n+1-4n2=4n+1,右边=2(2n+1)-1=4n+2-1=4n+1.∵左边=右边,∴(2n+1)2-4n2=2(2n+1)-1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乘法公式 同步练习
一、选择题:
1.下列式子能成立的是( )
A .(a−b)2 = a 2−ab+b 2
B .(a+3b)2 = a 2+9b 2
C .(a+b)2 = a 2+2ab+b 2
D .(x+3)(x−3) = x 2−x−9
2.下列多项式乘法中,可以用平方差公式计算的是( )
A .( 2m−3n)(3n− 2m)
B .(−5xy+4z)(−4z−5xy)
C .(−21a−31b)( 31b+2
1a) D .(b+c−a)(a−b−c) 3.下列计算正确的是( )
A .( 2a+b)( 2a−b) = 2a 2−b 2
B .(0.3x+0.2)(0.3x−0.2) = 0.9x 2−0.4
C .(a 2+3b 3)(3b 3−a 2) = a 4−9b 6
D .( 3a−bc)(−bc− 3a) = − 9a 2+b 2c 2
4.计算(−2y−x)2的结果是( )
A .x 2−4xy+4y 2
B .−x 2−4xy−4y 2
C .x 2+4xy+4y 2
D .−x 2+4xy−4y 2
5.下列各式中,不能用平方差公式计算的是( )
A .(−2b−5)(2b−5)
B .(b 2+2x 2)(2x 2−b 2)
C .(−1− 4a)(1− 4a)
D .(−m 2n+2)(m 2n−2)
6.下列各式中,能够成立的等式是( )
A .(x+y)2 = x 2+y 2
B .(a−b)2 = (b−a)2
C .(x−2y)2 = x 2−2xy+y 2
D .(21a−b)2 =4
1a 2+ab+b 2 二、解答题:
1.计算:
(1)(
31x+32y 2)( 31x−3
2y 2); (2)(a+2b−c)(a−2b+c); (3)(m−2n)(m 2+4n 2)(m+2n);
(4)(a+2b)( 3a−6b)(a 2+4b 2);
(5)(m+3n)2(m−3n)2;
(6)( 2a+3b)2−2( 2a+3b)(a−2b)+(−a+2b)2.
2.利用乘法公式进行简便运算:
①20042;
②999.82;
③(2+1)(22+1)(24+1)(28+1)(216+1)+1
参考答案
一、选择题
1. 答案:C
说明:利用完全平方公式(a−b)2 = a 2−2ab+b 2,A 错;(a+3b)2 = a 2+ 2a(3b)+(3b)2 = a 2+6ab+9b 2,B 错;(a+b)2 = a 2+2ab+b 2,C 正确;利用平方差公式(x+3)(x−3) = x 2−9,D 错;所以答案为C .
2. 答案:B
说明:选项B ,(−5xy+4z)(−4z−5xy) = (−5xy+4z)(−5xy −4z),符合平方差公式的形式,可以用平方差公式计算;而选项A 、C 、D 中的多项式乘法都不符合平方差公式的形式,不能用平方差公式计算,所以答案为B .
3. 答案:D
说明:( 2a+b)( 2a−b) = ( 2a)2−b 2 = 4a 2−b 2,A 错;(0.3x+0.2)(0.3x−0.2) =
(0.3x)2−0.22 = 0.09x 2−0.04,B 错;(a 2+3b 3)(3b 3−a 2) = (3b 3)2−(a 2)2 = 9b 6−a 4,C 错;( 3a−bc)(−bc− 3a) = (−bc )2−( 3a)2 = b 2c 2− 9a 2 = − 9a 2+b 2c 2,D 正确;所以答案为
D .
4. 答案:C
说明:利用完全平方公式(−2y−x)2 = (−2y)2+2(−2y)(−x)+(−x)2 = 4y 2+4xy+x 2,所以答案为C .
5. 答案:D
说明:选项D ,两个多项式中−m 2n 与m 2n 互为相反数,2与−2也互为相反数,因此,不符合平方差公式的形式,不能用平方差公式计算,而其它三个选项中的多项式乘法都可以用平方差公式计算,答案为D .
答案:B
说明:利用完全平方公式(x+y)2 = x 2+2xy+y 2,A 错;(x−2y)2 = x 2−2x(2y)+(2y)2
= x 2−4xy+4y 2,C 错;(
21a−b)2 = (21a)2−2(21a)b+b 2 =4
1a 2−ab+b 2,D 错;只有B 中的式子是成立的,答案为B . 二、解答题
1. 解:(1)(
31x+32y 2)( 31x−32y 2) = (31x)2−(32y 2)2 =91x 2−9
4y 4. (2) (a+2b−c)(a−2b+c)
= [a+(2b−c)][a−(2b−c)]
= a2−(2b−c)2
= a2−(4b2−4bc+c2)
= a2−4b2+4bc−c2
(3)(m−2n)(m2+4n2)(m+2n)
= (m−2n)(m+2n)(m2+4n2)
= (m2−4n2)(m2+4n2)
= m4−16n4
(4)(a+2b)( 3a−6b)(a2+4b2)
= (a+2b)•3•(a−2b)(a2+4b2)
= 3(a2−4b2)(a2+4b2)
= 3(a4−16b4)
= 3a4−48b4
(5) 解1:(m+3n)2(m−3n)2
= (m2+6mn+9n2)(m2−6mn+9n2)
= [(m2+9n2)+6mn][(m2+9n2)−6mn]
= (m2+9n2)2−(6mn)2
= m4+ 18m2n2+81n4− 36m2n2
= m4− 18m2n2+81n4
解2:(m+3n)2(m−3n)2
= [(m+3n)(m−3n)]2
= [m2−(3n)2]2
= (m2−9n2)2
= m4− 18m2n2+81n4
(6)解1:( 2a+3b)2−2( 2a+3b)(a−2b)+(−a+2b)2
= 4a2+12ab+9b2−2(2a2+3ab−4ab−6b2)+a2−4ab+4b2 = 4a2+12ab+9b2− 4a2−6ab+8ab+12b2+a2−4ab+4b2 = a2+10ab+25b2
解2:( 2a+3b)2−2( 2a+3b)(a−2b)+(−a+2b)2
= ( 2a+3b)2−2( 2a+3b)(a−2b)+(a−2b)2
= [( 2a+3b)−(a−2b)]2
= (a+5b)2
= a2+10ab+25b2
2. 解:①20042
= (2000+4)2
= 20002+2•2000•4+42
= 4000000+16000+16
= 4016016
②999.82
= (1000−0.2)2
= (1000)2−2×1000×0.2+(0.2)2
= 1000000−400+0.04
= 999600.04
③(2+1)(22+1)(24+1)(28+1)(216+1)+1
= (2−1)(2+1)(22+1)(24+1)(28+1)(216+1)+1
= (22−1)(22+1)(24+1)(28+1)(216+1)+1
= (24−1)(24+1)(28+1)(216+1)+1
= (28−1)(28+1)(216+1)+1
= (216−1)(216+1)+1
=232−1+1
= 232.。