完全平方公式练习题(1)
配完全平方公式练习题

配完全平方公式练习题一、选择题1. 完全平方公式是什么?A. (a+b)² = a² + 2ab + b²B. (a+b)² = a² - 2ab + b²C. (a-b)² = a² - 2ab + b²D. (a-b)² = a² + 2ab - b²2. 以下哪个表达式是完全平方公式的展开形式?A. x² - 6x + 9B. x² + 6x + 9C. x² - 6x - 9D. x² + 6x - 93. 根据完全平方公式,下列哪个选项是正确的?A. (3x+2)² = 9x² + 12x + 4B. (3x-2)² = 9x² - 12x + 4C. (3x+2)² = 9x² + 12x - 4D. (3x-2)² = 9x² - 12x - 4二、填空题4. 将下列表达式用完全平方公式展开:(x+5)² = _______。
5. 将下列表达式用完全平方公式展开:(2y-3)² = _______。
三、解答题6. 计算下列表达式的值:(a) (3x-1)²(b) (4y+1)²7. 利用完全平方公式,将下列表达式简化:(a) x² - 10x + 25(b) 4z² - 12z + 9四、应用题8. 在一个直角三角形中,斜边的长度为13,一条直角边的长度为5,求另一条直角边的长度。
(提示:使用完全平方公式)9. 某工厂生产的产品数量与时间的关系可以表示为:P(t) = 2t² - 12t + 20,其中t表示时间(单位:月),P(t)表示产品数量。
如果工厂希望产品数量达到或超过36件,求时间t的最小值。
完整版)完全平方公式提升练习题

完整版)完全平方公式提升练习题完全平方公式提升练题一、完全平方公式1.$(\frac{a}{2}b-c)^2$2.$(x-3y-2)(x+3y-2)$3.$(x-2y)(x^2-4y^2)(x+2y)$4.若$x^2+2x+k$是完全平方形式,则$k=x+1$5.若$x^2-7xy+M$是完全平方形式,则$M=\frac{49}{4}y^2$6.若$4a^2-Nab+81b^2$是完全平方形式,则$N=8a$7.若$25x-kxy+49y$是完全平方形式,则$k=50$二、公式的逆用8.$(2x-y)^2=4x^2-4xy+y^2$9.$(3m^2+n)^2=9m^4+6m^2n+n^2$10.$x^2-xy+y^2=(x-\frac{1}{2}y)^2+\frac{3}{4}y^2$11.$49a^2-18ab+81b^2=(7a-9b)^2$12.代数式$xy-x^2-y^2$等于$(x-y)^2-x^2-y^2$三、配方思想13.若$a+b-2a+2b+2=0$,则$a=-1$14.已知$x^2+y^2+4x-6y+13=1$,求$xy=-\frac{3}{2}$15.已知$x^2+y^2-2x-4y+5=0$,求$(x-1)^2-xy=\frac{3}{4}$16.已知$x^2+y^2+xy=2(x+y)$,求代数式$\frac{x+y}{4}$17.已知$x^2+y^2+z^2-2x+4y-6z+14=0$,则$x+y+z=1$四、完全平方公式的变形技巧18.已知$(a+b)^2=16$,$ab=4$,求$(a-b)^2=8$19.已知$2a-b=5$,$ab=2$,求$4a^2+b^2-1=44$20.已知$x-\frac{1}{x}=6$,求$x^2+\frac{1}{x^2}=37$21.已知$x^2+3x+1=0$,求$(1) x^2+\frac{1}{x^2}$,$(2) x^4+\frac{1}{x^4}$五、利用乘法公式进行计算22.$992-98\times100=-806$23.$(1-\frac{1}{2^2})(1-\frac{1}{3^2})(1-\frac{1}{4^2})=\frac{3}{4}$六、“整体思想”在整式运算中的运用24.当代数式$x^2+3x+5=7$时,求代数式$3x^2+9x-2=18$25.已知$a=\frac{1}{1\times2}\times\frac{2}{2\times3}\times\frac{3}{3\ti mes4}\times\cdots\times\frac{1999}{1999\times2000}$,$b=\frac{1}{2\times3}\times\frac{2}{3\times4}\times\frac{3}{4\ti mes5}\times\cdots\times\frac{1999}{2000\times2001}$,$c=\frac{1}{3\times4}\times\frac{2}{4\times5}\times\frac{3}{5\ti mes6}\times\cdots\times\frac{1999}{2001\times2002}$,求代数式$a^2+b^2+c^2-ab-ac-bc=\frac{1}{4003}$26、已知当$x=2$时,代数式$ax^5+bx^3+cx-8=10$,当$x=-2$时,代数式$ax^5+bx^3+cx-8$的值为27.当$x=2$时,代数式$ax^5+bx^3+cx-8=10$,即$32a+8b+2c=18$;当$x=-2$时,代数式$ax^5+bx^3+cx-8$的值为27,即$-32a+8b-2c=35$。
初中数学完全平方公式专项练习题

完全平方公式专项练习60题(有答案)1.(1)(x+y﹣z)(x+y+z);(2)(x+y)2﹣(x﹣y)2.2.已知a﹣b=3,ab=2,求:(1)(a+b)2 (2)a2﹣6ab+b2的值.3.已知(a+b)2=6,(a﹣b)2=2,试比较a2+b2与ab的大小.4.已知(x+y)2=7,(x﹣y)2=3.求:(1)x2+y2的值;(2)x4+y4的值;(3)x6+y6的值.5.已知a2+b2=13,ab=6,求a+b的值.6.已知x+y=3,x2+y2﹣3xy=4.求下列各式的值:(1)xy;(2)x3y+xy3.7.阅读理解:求代数式y2+4y+8的最小值.解:∵y2+4y+8=(y2+4y+4)+4=(y+2)2+4≥4∴当y=﹣2时,代数式y2+4y+8的最小值是4.仿照应用(1):求代数式m2+2m+3的最小值.仿照应用(2):求代数式﹣m2+3m+的最大值.8.已知a2+b2=1,a﹣b=,求a2b2与(a+b)4的值.9.已知实数a,b满足a(a+2)﹣(a2+b)=6,求4a2﹣4ab+b2﹣8a+4b﹣15的值.10.99.82.11.用乘法公式计算:.12.利用公式求2×20092﹣20102﹣20082的值.13.已知:x2+3x+1=0,求的值.14.已知,试求的值.15.已知a2+3a+1=0,求:①,②,③.16.已知x﹣y=6,xy=﹣8,(1)求x2+y2的值;(2)求代数式的值.17.已知(2012﹣a)•(2010﹣a)=2011,求(2012﹣a)2+(2010﹣a)2的值.18.已知x+y=1,求x2+xy+y2的值.19.如果a+b+c=0,,求(a+1)2+(b+2)2+(c+3)2的值.20.已知a+b=3,ab=﹣10,求下列各式的值.(1)a2+b2(2)a2﹣ab+b2(3)(a﹣b)2.21.若(x﹣z)2﹣4(x﹣y)(y﹣z)=0,试求x+z与y的关系.22.证明:(a+b+c)2+a2+b2+c2=(a+b)2+(b+c)2+(a+c)2.23.已知a+b+c=1,a2+b2+c2=2,求ab+bc+ca的值.24.运用完全平方公式计算(1)(x+y)2 (2)(2a+3b)2 (3)(4)(5)(a﹣1)2 (6).25.运用完全平方公式计算(1)100.22 (2)98×98 (3)372(4)(5)20082 (6).26.已知(a+b)2=3,(a﹣b)2=23,求代数式a2+b2﹣3ab的值.27.已知a+b+c=1,a2+b2+c2=2,a3+b3+c3=3,求(1)abc的值:(2)a4+b4+c4的值.28.已知m=4x2﹣12xy+10y2+4y+9,当x、y各取何值时,m的值最小?29.计算:5062+1012×505+5052﹣10102.30.先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题(1)若x2+2y2﹣2xy+4y+4=0,求x y的值.(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b﹣41,且c是△ABC中最长的边,求c的取值范围.31.如果36x2+(m+1)xy+25y2是一个完全平方式,求m的值.32.已知多项式4x2+1,添上一项,使它成为一个完全平方式,你有哪几种方法?33.如果x2+2(m﹣2)x+9是完全平方式,那么m的值等于_________ .34.已知a2﹣4a+4+9b2+6b+1=0,求a、b的值.35.试说明:(a2+3a)(a2+3a+2)+1是一个完全平方式.36.已知a=2002,b=2003,c=2004,求a2+b2+c2﹣ab﹣ac﹣bc的值.37.代数式(a+1)(a+2)(a+3)(a+4)+1是一个完全平方式吗?请说明你的理由.38.已知(a+1)(a+2)(a+3)(a+4)+m是一个完全平方式,求常数m的值.39.x,y都是自然数,求证:x2+y+1和y2+4x+3的值不能同时是完全平方.40.试求出所有整数n,使得代数式2n2+n﹣29的值是某两个连续自然数的平方和.41.若x2+2xy+y2﹣a(x+y)+25是完全平方式,求a的值.42.已知二次三项式9x2﹣(m+6)x+m﹣2是一个完全平方式,试求m的值.43.观察下列等式:1×32×5+4=72=(12+4×1+2)22×42×6+4=142=(22+4×2+2)23×52×7+4=232=(32+4×3+2)24×62×8+4=342=(42+4×4+2)2…(1)根据你发现的规律,12×142×16+4是哪一个正整数的平方;(2)请把n(n+2)2(n+4)+4写成一个整数的平方的形式.44.(1)当a=﹣2,b=1时,求两个代数式(a+b)2与a2+2ab+b2的值;(2)当a=﹣2,b=﹣3时,再求以上两个代数式的值;(3)你能从上面的计算结果中,发现上面有什么结论.结论是:_________ ;(4)利用你发现的结论,求:19652+1965×70+352的值.45.当a=﹣3,b=1,时,分别求代数式(a﹣b)2与a2﹣2ab+b2的值,并比较计算结果;你有什么发现?利用你发现的结果计算:20122﹣2×2012×2011+20112.46.一个正整数a恰好等于另一个正整数b的平方,则称正整数a为完全平方数.如64=82,64就是一个完全平方数;若a=29922+29922×29932+29932.求证:a是一个完全平方数.47.用图说明公式:(a+b+c+d)2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd.48.观察如图图形由左到右的变化,计算阴影部分的面积,并用面积的不同表达形式写出相应的代数恒等式.49.如图所示:(1)指出图中有多少个边长为a的正方形?有多少个边长为b的正方形?有多少个两边长分别为a和b的矩形?(2)请在图中指出面积为(a+2b)2的图形,利用乘法公式计算结果,并利用图形的关系验证相应的结果.50.计算:(1)(x3n+1)(x3n﹣1)﹣(x3n﹣1)2;(2)(2x n+1)2(﹣2x n+1)2﹣16(x n+1)2(x n﹣1)2.51.阅读下列文字:我们知道对于一个图形,通过不同的方法计算图形的面积时,可以得到一个数学等式,例如由图(a)可以得到a2+3ab+2b2=(a+2b)(a+b).请解答下列问题:(1)写出图(b)中所表示的数学等式_________ ;(2)试画出一个长方形,使得计算它的面积能得到2a2+3ab+b2=(2a+b)(a+b).52.如图是用四个长、宽分别为a、b(a>b)的相同长方形和一个小正方形镶嵌而成的正方形图案.(1)用含有a、b的代数式表示小正方形的面积.(用两种不同的形式来表示)(2)如果已知大正方形图案的面积为28,小正方形的面积是6,求a2+b2+ab的值.53.图1是一个长为2a,宽为2b的长方形,沿图中虚线剪开,可分成四块小长方形.(1)你认为图1的长方形面积等于_________ ;(2)将四块小长方形拼成一个图2的正方形.请用两种不同的方法求图2中阴影部分的面积.方法1:_________ ;方法2:_________ ;(3)观察图2直接写出代数式(a+b)2、(a﹣b)2、ab之间的等量关系_________ ;(4)把四块小长方形不重叠地放在一个长方形的内部(如图3),未被覆盖的部分用阴影表示.求两块阴影部分的周长和(用含m、n的代数式表示).54.已知x1,x2,x3,…,x n中每一个数值只能取﹣2,0,1中的一个,且满足x1+x2+…+x n=﹣17,x12+x22+…+x n2=37,求x13+x23+…+x n3的值.55.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1,系数和为4;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1,系数和为8;…根据以上规律,解答下列问题:(1)(a+b)4展开式共有_________ 项,系数分别为_________ ;(2)(a+b)n展开式共有_________ 项,系数和为_________ .56.阅读下列材料并解答后面的问题:利用完全平方公式(a±b)2=a2±2ab+b2,通过配方可对a2+b2进行适当的变形,如a2+b2=(a+b)2﹣2ab或a2+b2=(a﹣b)2+2ab.从而使某些问题得到解决.例:已知a+b=5,ab=3,求a2+b2的值.解:a2+b2=(a+b)2﹣2ab=52﹣2×3=19.问题:(1)已知a+=6,则a2+= _________ ;(2)已知a﹣b=2,ab=3,求a4+b4的值.57.阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.例如:(x﹣1)2+3、(x﹣2)2+2x、(x﹣2)2+x2是x2﹣2x+4的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项﹣﹣见横线上的部分).请根据阅读材料解决下列问题:(1)比照上面的例子,写出x2﹣4x+2三种不同形式的配方;(2)将a2+ab+b2配方(至少两种形式);(3)已知a2+b2+c2﹣ab﹣3b﹣2c+4=0,求a+b+c的值.58.1261年,我国宋代数学家杨辉写了一本书《详解九章算术》.书中记载了一个用数字排成的三角形我们叫作杨辉三角形(a+b)0=1 (1)(a+b)1=a+b…1 1(a+b)2=a2+2ab+b2…1 2 1(a+b)3=a3+3a2b+3ab2+b3…1 3 3 1(a+b)4=a4+4a3b+6a2b2+4ab3+b4…••1 4 6 4 1(1)请写出第五行的数字_________ ;(2)第n行杨辉三角形数字与(a+b)n的展开结果关系如上图所示,请写出(a+b)5的展开结果;(3)已知(a﹣b)1=a﹣b,(a﹣b)2=a2﹣2ab+b2,(a﹣b)3=a3﹣3a2b+3ab2﹣b3(a﹣b)4=a4﹣4a3b+6a2b2﹣4ab3+b4.请写出(a﹣b)5的展开结果.59.先阅读下面一段文字,然后猜想,解答问题:由32=9=4+5,发现有32+42=52成立;又52=25=12+13,仍然有52+122=132;而72=49=24+25,还是有72+242=252…(1)猜想92=81=x+y(x、y均为正整数,且x<y),并且92+x2=y2,则x= _________ ,y= _________ .(2)是否大于1的奇数都有上面这样的规律?证明你的猜想.60.操作与探究(1)比较下列两个算式结果的大小(在横线上填“>”“=”“<”(每空1分)①32+42_________ 2×3×4;②()2+()2_________ 2××;③(﹣2)2+(﹣3)2_________ 2×(﹣2)×(﹣3);④(﹣)2+(﹣)2_________ 2×(﹣)×(﹣)⑤(﹣4)2+(﹣4)2_________ 2×(﹣4)×(﹣4)…(2)观察并归纳(1)中的规律,用含a,b的一个关系式把你的发现表示出来.(3)若已知mn=8,且m,n都是正数,试求2m2+2n2的最小值.参考答案:1.解:(1)原式=(x+y)2﹣z2=x2+2xy+y2﹣z2;(2)原式=(x+y+x﹣y)(x+y﹣x+y)=4xy.2.解:(1)将a﹣b=3两边平方得:(a﹣b)2=a2+b2﹣2ab=9,把ab=2代入得:a2+b2=13,则(a+b)2=a2+b2+2ab=13+4=17;(2)a2﹣6ab+b2=a2+b2﹣6ab=13﹣12=13.解:∵(a+b)2=a2+b2+2ab=6①,(a﹣b)2=a2+b2﹣2ab=2②,∴①+②得:2(a2+b2)=8,即a2+b2=4;①﹣②得:4ab=4,即ab=14.解:(1)∵(x+y)2=7,(x﹣y)2=3,x2+2xy+y2=7,x2﹣2xy+y2=3,∴x2+y2=5,xy=1;(2)x4+y4=(x2+y2)2﹣2x2y2=25﹣2=23;(3)x6+y6=(x2+y2)(x4﹣x2y2+y4)=5×(23﹣1)=1105.解:∵a2+b2=13,ab=6,(a+b)2=a2+2ab+b2=a2+b2+2ab=13+2×6=25,∴a+b==±5.6.解:(1)∵x+y=3,∴(x+y)2=9,∴x2+y2+2xy=9,∴x2+y2=9﹣2xy,代入x2+y2﹣3xy=4,∴9﹣2xy﹣3xy=4,解得:xy=1.(2)∵x2+y2﹣3xy=4,xy=1,∴x2+y2=7,又∵x3y+xy3=xy(x2+y2),∴x3y+xy3=1×7=77.解:应用(1)m2+2m+3=(m2+2m+1)+2=(m+1)2+2≥2,∴当m=﹣1时,m2+2m+3的最小值是2,应用(2)﹣m2+3m+=﹣(m2﹣3m+)++=﹣(m﹣)2+3≤3,∴当m=时,﹣m2+3m+的最大值是38.解:a2+b2=1,a﹣b=,∴(a﹣b)2=a2+b2﹣2ab,∴ab=﹣[(a﹣b)2﹣(a2+b2)]=﹣×(﹣1)=,∴a2b2=(ab)2=()2=;∵(a+b)2=(a﹣b)2+4ab=+4×=,∴(a+b)4=[(a+b)2]2=9.解:∵a(a+2)﹣(a2+b)=6,∴a2+2a﹣a2﹣b=6,∴2a﹣b=6,原式=(2a﹣b)2﹣4(2a﹣b)﹣15,当2a﹣b=6时,原式=62﹣4×6﹣15=﹣3 10.解:99.82=(100﹣0.2)2,=1002﹣2×100×0.2+0.22,=10000﹣40+0.04,=9960.0411.解:===164012.解:设a=2009,原式=2a2﹣(a+1)2﹣(a﹣1)2=2a2﹣a2﹣2a﹣1﹣a2+2a﹣1=﹣213.解:∵x≠0,∴已知方程变形得:x+3+=0,即x+=﹣3,则x2+=(x+)2﹣2=9﹣2=714.解:对式子两边平方得,a2+﹣2=,∴a2+=,∴()2=a2++2,=+2,=,∴=±15.解:①∵a2+3a+1=0,∴a≠0,∴在等式的两边同时除以a,得a+3+=0,∴a+=﹣3;②由①知,a+=﹣3,则(a+)2=+2=9,解得,=7;③由②知,=7,则()2=+2=49,解得,=4716.解:(1)∵x﹣y=6,xy=﹣8,∴(x﹣y)2=x2+y2﹣2xy,∴x2+y2=(x﹣y)2+2xy=36﹣16=20;(2)∵(x+y+z)2+(x﹣y﹣z)(x﹣y+z)﹣z(x+y),=(x2+y2+z2+2xy+2xz+2yz)+[(x﹣y)2﹣z2]﹣xz﹣yz,=x2+y2+z2+xy+xz+yz+x2+y2﹣xy﹣z2﹣xz﹣yz,=x2+y2,又∵x2+y2=20,∴原式=2017.解:∵(2012﹣a)•(2010﹣a)=2011,∴(2012﹣a)2+(2010﹣a)2=[(2012﹣a)﹣(2010﹣a)]2+2(2012﹣a)(2010﹣a)=4+2×2011=402618.解:x2+xy+y2=(x+y)2=×1=.19.解:由,去分母,得(b+2)(c+3)+(a+1)(c+3)+(a+1)(b+2)=0,而(a+1)2+(b+2)2+(c+3)2=[(a+1)+(b+2)+(c+3)]2﹣2[(b+2)(c+3)+(a+1)(c+3)+(a+1)(b+2)] =(a+b+c+6)2=(0+6)2=3620.解:(1)a2+b2=(a+b)2﹣2ab=9+20=29;(2)a2﹣ab+b2=(a+b)2﹣3ab=9+30=39;(3)原式=(a+b)2﹣4ab=9+49=5821.解:∵x﹣z=x﹣y+y﹣z,∴原式可化为[(x﹣y)+(y﹣z)]2﹣4(x﹣y)(y﹣z)=0,(x﹣y)2﹣2(x﹣y)(y﹣z)+(y﹣z)2=0,(x﹣y﹣y+z)2=0,∴x+z=2y22.证明:(a+b+c)2+a2+b2+c2=[(a+b)+c]2+a2+b2+c2,=(a+b)2+2(a+b)c+c2+a2+b2+c2,=(a+b)2+2ac+2bc+c2+a2+b2+c2,=(a+b)2+(a2+2ac+c2)+(b2+2bc+c2),=(a+b)2+(a+c)2+(b+c)223.解:∵a+b+c=1,∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac=1,∵a2+b2+c2=2,∴2+2ab+2bc+2ac=1,解得ab+bc+ac=﹣24.解:(1)原式=x2+2xy+y2;(2)原式=4a2+12ab+9b2;(3)原式=m2+4m+16;(4)原式=x2+x+;(5)原式=a2﹣2a+1;(6)原式=﹣2ab+9b225.(1)原式=(100+0.2)2=10000+40+0.04=10040.04;(2)原式=(100﹣2)2=10000﹣400+4=9604;(3)原式=(40﹣3)2=1600﹣240+9=1351;(4)原式=(20+)2=400+20+=420;(5)原式=(2000+8)2=4000000+32000+64=4032064;(6)原式=(14+)2=196++=217.26.解:∵(a+b)2=a2+2ab+b2=3①,(a﹣b)2=a2﹣2ab+b2=23②,∴①+②得:2(a2+b2)=26,即a2+b2=13,①﹣②得:4ab=﹣20,即ab=﹣5,则原式=13+15=2827.解:(1)(a+b+c)2=a2+b2+c2+2(ab+bc+ac),即1=2+2(ab+bc+ac),∴ab+bc+ac=﹣,a3+b3+c3﹣3abc=(a+b+c)(a2+b2+c2﹣ab﹣ac﹣bc),即3﹣3abc=2+,∴abc=;(2)(a+b+c)(a3+b3+c3)=a4+b4+c4+7(ab+bc+ac)﹣abc(a+b+c),即:3=a4+b4+c4+7×(﹣)﹣×1,a4+b4+c4=28.解:m=4x2﹣12xy+10y2+4y+9=(2x﹣3y)2+(y+2)2+5,由于m等于两个非负数的和加上5,所以最小值是0+5=5,即m=5,即2x﹣3y=0,y+2=0,∴x=﹣3,y=﹣2.故m=5,x=﹣3,y=﹣229.解:原式=5062+2×506×505+5052﹣10102=(506+505)2﹣10102=10112﹣10102=(1011+1010)(1011﹣1010)=202130.解:(1)x2+2y2﹣2xy+4y+4=x2﹣2xy+y2+y2+4y+4=(x﹣y)2+(y+2)2=0,∴x﹣y=0,y+2=0,解得x=﹣2,y=﹣2,∴x y=(﹣2)﹣2=;(2)∵a2+b2=10a+8b﹣41,∴a2﹣10a+25+b2﹣8b+16=0,即(a﹣5)2+(b﹣4)2=0,a﹣5=0,b﹣4=0,解得a=5,b=4,∵c是△ABC中最长的边,∴5≤c<931.解:∵36x2+(m+1)xy+25y2=(6x)2+(m+1)xy+(5y)2,∴(m+1)xy=±2•6x•5y,∴m+1=±60,∴m=59或﹣6132.解:4x,﹣4x,4x4设所求的一项是y,则①当y是中间项时,∵4x2+1±y是完全平方式,∴4x2+y+1=(2x+1)2,∴4x2±y+1=4x2+4x+1,∴y=±4x;②当y是尾项时,1=2×2x•,则y=.不合题意,舍去33.解:∵x2+2(m﹣2)x+9是一个完全平方式,∴这两个数是x和3,∴2(m﹣2)=±6,解得m=5或﹣1,故答案为m1=5,m2=﹣134.解:∵a2﹣4a+4+9b2+6b+1=(a﹣2)2+(3b+1)2=0,而(a﹣2)2≥0,(3b+1)2≥0,∴a﹣2=0,3b+1=0,解得a=2,b=﹣35.证明:(a2+3a)(a2+3a+2)+1,=(a2+3a)2+2(a2+3a)+1,=(a2+3a+1)2,∴(a2+3a)(a2+3a+2)+1是一个完全平方式36.解:∵2(a2+b2+c2﹣ab﹣ac﹣bc),=a2+b2﹣2ab+a2+c2﹣2ac+b2+c2﹣2bc,=(a﹣b)2+(a﹣c)2+(b﹣c)2,=(2002﹣2003)2+(2002﹣2004)2+(2003﹣2004)2=1+4+1,=6,∴a2+b2+c2﹣ab﹣ac﹣bc=337.解:原式=(a+1)(a+4)(a+2)(a+3)+1=(a2+5a+4)(a2+5a+6)+1=(a2+5a)2+10(a2+5a)+25=(a2+5a+5)2.则代数式是完全平方式38.解:(a+1)(a+2)(a+3)(a+4)+m,=(a+1)(a+4)(a+2)(a+3)+m,=(a2+5a+4)(a2+5a+6)+m,=(a2+5a)2+10(a2+5a)+24+m,∵多项式是一个完全平方式,∴24+m=25,∴m=139.解:设x2+y+1和y2+4x+3的值能同时是完全平方,那么有x2+y+1=(x+1)2,y2+4x+3=(y+)2,∴y=2x,4x=2y,即y=2x,x=y,又∵x、y是自然数,∴y必是无理数,∴与已知矛盾,故x2+y+1和y2+4x+3的值不能同时是完全平方40.解:设两个连续自然数是x、x+1,则根据题意知2n2+n﹣29=x2+(x+1)2,化简为2x2+2x+30﹣2n2﹣n=0 ①∴x==②因为x是自然数,所以4n2+2n﹣59必为某个整数的平方(完全平方数),因此设4n2+2n﹣59=k2③∴n==④因为n是整数,所以4k2+237必为某个整数的平方(完全平方数),设4k2+237=a2⑤则有a2﹣4k2=237,即(a+2k)(a﹣2k)=237,所以有或,解之得或由⑤式得4k2+237=1192或412,代入④式得n1=10,n2=﹣30,∴符合条件的整数n是10或﹣3041.解:原式=(x+y)2﹣a(x+y)+52,∵原式为完全平方式,∴﹣a(x+y)=±2×5•(x+y),解得a=±1042.解:∵9x2﹣(m+6)x+m﹣2=(3x)2﹣(m+6)x+()2,∴±(m+6)=2•3•,两边平方并整理得,m2﹣24m+108=0,解得m1=6,m2=18,所以m的值为6或1843.解:(1)由题意,可得12×142×16+4=(122+4×12+2)2=1942;(2)n(n+2)2(n+4)+4=(n2+4n+2)244.解:(1)当a=﹣2,b=1时,(a+b)2=1,a2+2ab+b2=1(2)当a=﹣2,b=﹣3时,(a+b)2=25,a2+2ab+b2=25(3)(a+b)2=a2+2ab+b2(4)原式=19652+2×1965×35+352=(1965+35)2=400000045.解:当a=﹣3,b=1时,(a﹣b)2=(﹣3﹣1)2=16,a2﹣2ab+b2=(﹣3)2﹣2×(﹣3)×1+12=9+6+1=16,∴(a﹣b)2=a2﹣2ab+b2;根据结果,20122﹣2×2012×2011+20112=(2012﹣2011)2=1 46.证明:令2992=m,则2993=m+1,于是a=m2+m2•(m+1)2+(m+1)2,=m4+2m3+3m2+2m+1,=m4+2m3+2m2+m2+2m+1,=(m2)2+2•m2•(m+1)+(m+1)2,=(m2+m+1)2,所以是a一个完全平方数47.解:依题意,画一个边长是a+b+c+d的正方形,则(a+b+c+d)2=a2+ab+ac+ad+ab+b2+bc+bd+ac+bc+c2+cd+ad+bd+cd+d2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd48.解:左边图形的阴影部分面积为:(a+b)2﹣(a﹣b)2,右边图形的阴影部分面积为:a×4b=4ab,根据两图形的阴影部分面积相等可得,(a+b)2﹣(a﹣b)2=4ab.故答案为:(a+b)2﹣(a﹣b)2=4ab49.解:(1)图中有1个边长为a的正方形;有4个边长为b的正方形;有4个两边长分别为a和b的矩形;(2)图形中最大正方形的面积为(a+2b)2=a2+4ab+4b2;最大正方形的边长为a+2b,故面积为(a+2b)2;最大正方形的面积S=a2+4ab+4b2,故(a+2b)2=a2+4ab+4b250.解:(1)原式=x6n﹣1﹣x6n+2x3n﹣1=2x3n﹣2.(2)原式=[(1+2x n)(1﹣2x n)]2﹣16[(x n+1)(x n﹣1)]2=(1﹣4x2n)2﹣16(x2n﹣1)2=1﹣8x2n+16x4n﹣16x4n+32x2n﹣16=24x2n﹣1551.解:(1)由图形可知:2a2+5ab+2b2=(a+2b)(2a+b);(2)52.解:(1)∵如图是用四个长、宽分别为a、b(a>b)的相同长方形和一个小正方形镶嵌而成的正方形图案,∴小正方形的面积为:(a﹣b)2或(a+b)2﹣4ab;(2)∵大正方形图案的面积为28,小正方形的面积是6,∴(a+b)2﹣4ab=6,∴28﹣4ab=6,∴ab=,∴a2+b2+ab=(a+b)2﹣ab=28﹣=22.553.解:(1)长方形面积=2a•2b=4ab;(2)方法1:S阴影部分=(a+b)2﹣4ab;方法2:S阴影部分=(a﹣b)2;(3)根阴影部分的面相等得到(a+b)2﹣4ab=(a﹣b)2;(4)两块阴影部分的周长和=2a+2(n﹣2b)+2×2b+2(n﹣a)=4n.故答案为4ab;(a+b)2﹣4ab;S阴影部分=(a﹣b)254.解:设有p个x取1,q个x取﹣2,有,(5分)解得,(5分)所以原式=1×13+9×(﹣2)3=﹣71.55.解:(1)根据题意知,(a+b)4的展开后,共有5项,各项系数分别为1、(1+3)、(3+3)、(3+1)、1,即:1、4、6、4、1;(2)当a=b=1时,(a+b)n=2n.故答案为:(1)5,1,4,6,4,1;(2)n+1,2n56.解:(1)∵=a2+2∴a2+=﹣2=34;(2)∵a﹣b=2,ab=3,∴a2+b2=(a﹣b)2+2ab,=4+2×3,=10,a2b2=9,∴a4+b4=(a2+b2)2﹣2a2b2,=100﹣2×9,=8257.解:(1)x2﹣4x+2的三种配方分别为:x2﹣4x+2=(x﹣2)2﹣2,x2﹣4x+2=(x+)2﹣(2+4)x,x2﹣4x+2=(x ﹣)2﹣x2;(2)a2+ab+b2=(a+b)2﹣ab,a2+ab+b2=(a+b)2+b2;(3)a2+b2+c2﹣ab﹣3b﹣2c+4,=(a2﹣ab+b2)+(b2﹣3b+3)+(c2﹣2c+1),=(a2﹣ab+b2)+(b2﹣4b+4)+(c2﹣2c+1),=(a ﹣b)2+(b﹣2)2+(c﹣1)2=0,从而有a ﹣b=0,b﹣2=0,c﹣1=0,即a=1,b=2,c=1,∴a+b+c=458.解:(1)根据题意可推出第五行的数字为:1、5、10、10、5、1,(2)(a+b)5=(a+b)3(a+b)2=a5+5a4b+10a3b2+10a2b3+5ab4+b5,(3)(a﹣b)5=(a﹣b)3(a﹣b)2=(a3﹣3a2b+3ab2﹣b3)(a2﹣2ab+b2)=a5﹣5a4b+10a3b2﹣10a2b3+5ab4﹣b5.故答案为1、5、10、10、5、159.解:(1)92=81=40+41,且92+402=412,第21 页共22 页故答案为:40,41.(2)(2n﹣1)2+(2n2﹣2n)2=(2n2﹣2n+1)2,证明:(2n﹣1)2+(2n2﹣2n)2=4n2﹣4n+1+4n4﹣8n3+8n2﹣4n+1,(2n2﹣2n+1)2=4n4﹣8n3+8n2﹣4n+1,即(2n﹣1)2+(2n2﹣2n)2=(2n2﹣2n+1)2,故答案为:40,4160.解:(1)32+42>2×3×4;②()2+()2>2××;③(﹣2)2+(﹣3)2>2×(﹣2)×(﹣3);④(﹣)2+(﹣)2>2×(﹣)×(﹣)⑤(﹣4)2+(﹣4)2=2×(﹣4)×(﹣4)…故答案为>、>、>、>、=;(2)a2+b2≥2ab;(3)∵m2+n2≥2mn,而mn=8,∴m2+n2≥16,∴2m2+2n2的最小值为32第22 页共22 页。
完全平方公式常考题型经典

完全平方公式典型题型一、公式及其变形1、 完全平方公式:222()+2a b a ab b +=+ 〔1〕222()2a b a ab b -=-+ 〔2〕公式特征:左边是一个二项式的完全平方,右边有三项,其中有两项是左边二项式中每一项的平方,而另一项为哪一项左边二项式中两项乘积的2倍。
注意: 222)()]([)(b a b a b a +=+-=-- 222)()]([)(b a b a b a -=--=+- 完全平方公式的口诀:首平方,尾平方,加上首尾乘积的2倍。
2、公式变形 (1)+〔2〕得:2222()()2a b a b a b ++-+= (12)-)(得: 22()()4a b a b ab +--= ab b a ab b a b a 2)(2)(2222-+=-+=+,ab b a b a 4)()(22-+=-3、三项式的完全平方公式:bc ac ab c b a c b a 222)(2222+++++=++二、题型题型一、完全平方公式的应用例1、计算〔1〕〔-21ab 2-32c 〕2; 〔2〕〔x -3y -2〕〔x +3y -2〕;练习1、(1)〔x -2y 〕〔x 2-4y 2〕〔x +2y 〕;〔2〕、〔a -2b +3c -1〕〔a +2b -3c -1〕;题型二、配完全平方式 1、假设k x x ++22是完全平方式,那么k =2、.假设x 2-7xy +M 是一个完全平方式,那么M 是3、如果4a 2-N ·ab +81b 2是一个完全平方式,那么N =4、如果224925y kxy x +-是一个完全平方式,那么k =题型三、公式的逆用1.〔2x -______〕2=____-4xy +y 2. 2.〔3m 2+_______〕2=_______+12m 2n +________.3.x 2-xy +________=〔x -______〕2. 4.49a 2-________+81b 2=〔________+9b 〕2.5.代数式xy -x 2-41y 2等于-〔 〕2 题型四、配方思想1、假设a 2+b 2-2a +2b +2=0,那么a 2004+b 2005=_____.2、0136422=+-++y x y x ,求y x =_______.3、222450x y x y +--+=,求21(1)2x xy --=_______. 4、x 、y 满足x 2十y 2十45=2x 十y ,求代数式y x xy +=_______. 5.014642222=+-+-++z y x z y x ,那么z y x ++= .6、三角形ABC 的三边长分别为a,b,c 且a,b,c 满足等式22223()()a b c a b c ++=++,请说明该三角形是什么三角形?题型五、完全平方公式的变形技巧1、 2()16,4,a b ab +==求223a b +与2()a b -的值。
专项练习1:完全平方公式(有答案)

专项练习:完全平方公式一、填空题1.(x+3y)2=_________,_________=y2﹣y+.2.________=9a2﹣______+16b2;x2+10x+____=(x+_____)2.3.(﹣x﹣y)_________=x2+2xy+y2.4.(x+y)2=(x﹣y)2+_________.5.若(x+y)2=9,(x﹣y)2=5,则xy=_________.6.如果x2+mx+16是一个整式的完全平方,那么m=_________.7.已知x﹣=5,则x2+=_________.二、选择题8.下列算式不成立的是()A.3a﹣b)2=9a2﹣6ab+b2B.(a+b﹣c)2=(c﹣a﹣b)2C.(x﹣y)2=﹣xy+y2D.(x+y)(x﹣y)(x2﹣y2)=x4﹣y49.若|x+y﹣5|+(xy﹣3)2=0,则x2+y2的值为()A.19 B.31 C.27 D.2310.若(x﹣2y)2=(x+2y)2+m,则m等于()A.4xy B.﹣4xy C.8xy D.﹣8xy11.若(3x+2y)2=(3x﹣2y)2+A,则代数式A是()A.﹣12xy B.12xy C.24xy D.﹣24xy12.若a﹣b=2,a﹣c=1,则(2a﹣b﹣c)2+(c﹣a)2的值是()A.9B.10 C.2D.1三、解答题13.计算.(1)(5x﹣2y)2+20xy;(2)(x﹣3)2(x+3)2;(3)(3x﹣5)2﹣(2x+7)2;1/ 5(4)(x+y+1)(x+y﹣1)14.计算.(1)89.82;(2)472﹣94×27+272.15.已知(x+y)2=25,(x﹣y)2=9,求xy与x2+y2的值.16.南湖公园有一正方形草坪,需要修整成一长方形草坪,在修整时一边长加长了4m,另一边长减少了4m,这时得到的长方形草坪的面积比原来正方形草坪的边长减少2m后的正方形面积相等,求原正方形草坪的面积是多少.17.多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式可以是_________.(填上正确的一个即可,不必考虑所有可能的情况)18.(2011•凉山州)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中的系数等等.(1)根据上面的规律,写出(a+b)5的展开式.(2)利用上面的规律计算:25﹣5×24+10×23﹣10×22+5×2﹣1.参考答案一、填空题1.解:(x+3y)2=x2+6xy+9y2,(y﹣)2=y2﹣y+.故答案为x2+6xy+9y2,y﹣.2.解:(3a﹣4b)2=9a2﹣24ab+16b2;x2+10x+25=(x+5)2.故答案为3a﹣4b,24ab;25,5.3.解:∵(x+y)2=x2+2xy+y2,而﹣x﹣y=﹣(x+y),∴[﹣(x+y][﹣(x+y)]=x2+2xy+y2,即(﹣x﹣y)(﹣x﹣y)=x2+2xy+y2.故答案为﹣x﹣y.4.解:∵(x+y)2=x2+2xy+y2,(x﹣y)2=x2﹣2xy+y2,∴(x+y)2﹣(x﹣y)2=4xy.故本题答案为:4xy.5.解:(x+y)2=x2+2xy+y2=9 (1),(x﹣y)2=x2﹣2xy+y2=5 (2),(1)﹣(2)可得:4xy=4,解得xy=1.6.解:∵x2+mx+16=x2+mx+42,∴mx=±2×4x,解得m=±8.故答案为:±8.7.解:∵x﹣=5,∴(x﹣)2=25,即x2﹣2+=25,∴x2+=27.故答案为:27.二、选择题8.解:A、(3a﹣b)2=9a2﹣6ab+b2,成立,故本选项错误;B、(a+b﹣c)2=(c﹣a﹣b)2成立,故本选项错误;C、(x﹣y)2=x2﹣xy+y2,成立,故本选项错误;D、(x+y)(x﹣y)(x2﹣y2)=(x2﹣y2)(x2﹣y2)=x4﹣2x2y2+y4,故本选项正确.故选D.9.解:根据题意得,x+y﹣5=0,xy﹣3=0,∴x+y=5,xy=3,∵(x+y)2=x2+2xy+y2=25,∴x2+y2=25﹣2×3=25﹣6=19.故选A.10.解:(x﹣2y)2,=x2﹣4xy+4y2,=x2﹣8xy+4xy+4y2,=(x+2y)2﹣8xy,∴m=﹣8xy.故选D.11.解:∵(3x+2y)2=(3x﹣2y)2+A,∴A=(3x+2y)2﹣(3x﹣2y)2=9x2+12xy+4y2﹣9x2+12xy﹣4y2=24xy.故选C.三、解答题13.解:(1)(5x﹣2y)2+20xy=25x2﹣20xy+4y2+20xy=25x2+4y2;(2)(x﹣3)2(x+3)2=(x2﹣9)2=x4﹣18x2+81;(3)(3x﹣5)2﹣(2x+7)2=9x2﹣30x+25﹣(4x2+28x+49)=9x2﹣30x+25﹣4x2﹣28x﹣49=5x2﹣58x﹣24;(4)(x+y+1)(x+y﹣1)=[(x+y)+1][(x+y)﹣1]=(x+y)2﹣1=x2+2xy+y2﹣1.14.解:(1)(89.8)2=(90﹣0.2)2=902﹣2×0.2×90+0.22=8064.04;(2)472﹣94×27+272=472﹣2×47×27+272=(47﹣27)2=202=400.15.解:∵(x+y)2=25,(x﹣y)2=9,∴x2+2xy+y2=25①,x2﹣2xy+y2=9②,①﹣②得,4xy=16,解得xy=4,①+②得,2(x2+y2)=34,解得x2+y2=17.故答案为:4,17.16.解:设原正方形草坪的边长为xm,则(x+4)(x﹣4)=(x﹣2)2,x2﹣16=x2﹣4x+4,解得:x=5,故原正方形的面积为:x2=52=25(m2).17.解:∵4x2±4x+1=(2x±1)2,∴加上的单项式可以是±4x.故答案为:4x(答案不唯一).18.解:(1)(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5(3分)(2)原式=25+5×24×(﹣1)+10×23×(﹣1)2+10×22×(﹣1)3+5×2×(﹣1)4+(﹣1)5 (5分)=(2﹣1)5=1(6分)注:不用以上规律计算不给分.。
14.2.2 第1课时 完全平方公式练习题 2021——2022学年人教版八年级数学上册

14.2.2 第1课时完全平方公式【基础练习】知识点 1 完全平方公式1.根据完全平方公式填空:(1)(x+1)2=()2+2××+()2= ;(2)(-x+1)2=()2+2××+()2= ;(3)(-2a-b)2=()2+2××+()2= .2.[2020·陕西]计算(2x-y)2的结果为 ()A.4x2-4xy+y2B.4x2-2xy+y2C.4x2-y2D.4x2+y23.下列计算中,结果错误的是 ()①(b-4c)2=b2-16c2;②(a-2bc)2=a2+4abc+4b2c2;③(x+y)2=x2+xy+y2;④(4m-n)2=16m2-8mn+n2.A.①②③B.①②④C.①③④D.②③④4.计算(2x-1)(1-2x)的结果正确的是 ()A.4x2-1B.1-4x2C.-4x2+4x-1D.4x2-4x+15.[2020·江西]计算:(a-1)2= .6.[教材例3变式]计算:(1)(2y-1)2;(2)(3a+2b)2;(3)(-x +2y )2;(4)(5-ab )2;(5)(-3x -4y )2;(6)(ab -1)(-ab +1).7.(1)先化简,再求值:(x +5)(x -1)+(x -2)2,其中x=-2;(2)已知x=16,y=18,求式子(2x +3y )2-(2x -3y )2的值.知识点 2 利用完全平方公式简便计算8.9.72变形正确的是 ( ) A .9.72=92+0.72B .9.72=92-9×0.7÷0.72C .9.72=(10+0.3)×(10-0.3)D .9.72=102-2×10×0.3+0.329.[教材例4变式] 运用完全平方公式进行简便计算:(1)(60160)2;(2)9.82.【能力提升】10.若m ≠n ,则下列各式:①(m -n )2=(n -m )2,②(m -n )2=-(n -m )2,③(m +n )(m -n )=(-m -n )(-m +n ),④(-m -n )2=-(m +n )2中,错误的有 ( ) A .4个 B .3个 C .2个 D .1个11.已知(m +n )2=5,mn=1,则m 2+n 2的值是 ( ) A .2 B .3 C .4D .1 12.如果ab=2,a +b=3,那么a 2+b 2= ..13.先化简,再求值:(a-2b)(a+2b)-(a-2b)2+8b2,其中a=-2,b=1214.(1)化简:(a-b)2+(b-c)2+(c-a)2;(2)利用(1)中的结果,已知a-b=10,b-c=5,求a2+b2+c2-ab-bc-ca的值.15.计算:(1)(a-b)2(a+b)2;(2)(x+y)(-x+y)(x2-y2).16.如图2①是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀将其平均分成四个小长方形,然后按图②的方式拼成一个正方形.图2(1)图②中阴影部分的面积为,也可以表示为;(2)观察图②,请你写出式子(m+n)2,(m-n)2,mn之间的等量关系:;(3)若x+y=-6,xy=2.75,则x-y= ;(4)实际上有许多恒等式都可以用图形的面积来表示,如图③,它表示等式:.17.我国南宋数学家杨辉所著的《详解九章算术》一书中,用图3中的三角形解释二项式(a+b)n 的展开式的各项系数,此三角形称为“杨辉三角”.图3(1)每一行的任意一个数字和它上方的两个数字有什么关系?(2)按照这个规律你能计算一下第7行第4个数是多少吗?第8行第4个数是多少?14.2.2 第1课时 完全平方公式1.(1)x x 1 1 x 2+2x +1(2)-x (-x ) 1 1 x 2-2x +1(3)-2a (-2a ) (-b ) -b 4a 2+4ab +b 22.A3.A4.C [解析] 原式=-(2x -1)2=-4x 2+4x -1.5.a 2-2a +16.解:(1)(2y -1)2=(2y )2-2·2y ·1+12=4y 2-4y +1.(2)(3a +2b )2=(3a )2+2·3a ·2b +(2b )2=9a 2+12ab +4b 2.(3)方法一:(-x +2y )2=(2y -x )2=(2y )2-2·2y ·x +x 2=4y 2-4xy +x 2.方法二:(-x +2y )2=[-(x -2y )]2=(x -2y )2=x 2-4xy +4y 2.(4)原式=a 2b 2-10ab +25.(5)原式=(3x +4y )2=9x 2+24xy +16y 2.(6)原式=-(ab -1)2=-(a 2b 2-2ab +1)=-a 2b 2+2ab -1.7.解:(1)原式=x 2-x +5x -5+x 2-4x +4=2x 2-1.当x=-2时,原式=2×(-2)2-1=7.(2)原式=4x 2+12xy +9y 2-4x 2+12xy -9y 2=24xy.当x=16,y=18时,原式=24×16×18=12.8.D9.[解析] (1)中60160可写成60+160;(2)中9.8可写成10-0.2. 解:(1)(60160)2=(60+160)2=602+2×60×160+(160)2=3600+2+13600=360213600.(2)9.82=(10-0.2)2=102-2×10×0.2+0.22=100-4+0.04=96.04.10.C [解析] 其中错误的是②④.11.B [解析] ∵(m +n )2=m 2+2mn +n 2, ∴m 2+n 2=5-2=3.故选B .12.5 [解析] ∵ab=2,a +b=3,∴a 2+b 2=(a +b )2-2ab=32-4=5.13.解:原式=a 2-4b 2-(a 2-4ab +4b 2)+8b 2=a 2-4b 2-a 2+4ab -4b 2+8b 2=4ab.当a=-2,b=12时,原式=4ab=4×(-2)×12=-4. 14.解:(1)原式=2a 2+2b 2+2c 2-2ab -2bc -2ca.(2)∵a -b=10,b -c=5,∴a -c=15. ∴a 2+b 2+c 2-ab -bc -ca=12(2a 2+2b 2+2c 2-2ab -2bc -2ca )=12[(a -b )2+(b -c )2+(c -a )2]=12(102+52+152)=12×350=175.15.解:(1)原式=[(a -b )(a +b )]2=(a 2-b 2)2=a 4-2a 2b 2+b 4.(2)原式=-(x 2-y 2)2=-x 4+2x 2y 2-y 4.16.(1)(m -n )2 (m +n )2-4mn(2)(m +n )2-4mn=(m -n )2 (3)±5(4)(2m +n )(m +n )=2m 2+3mn +n 217.解:(1)每一行的任意一个数字都等于它上方的两个数字之和,如果某个数字的上方有一侧没有数字,可以看做0.(2)第7行第4个数等于第6行第3个数加上第6行第4个数,即10+10=20;第8行第4个数等于第7行第3个数加上第7行第4个数,即15+20=35.。
完全平方公式的综合应用习题及答案

完全平方公式的综合应用(习题)➢ 例题示范例1:已知12x x -=,求221x x +,441x x +的值. 【思路分析】① 观察题目特征(已知两数之差与两数之积11x x⋅=,所求为两数的平方与),判断此类题目为“知二求二”问题;② “x ”即为公式中的a ,“1x”即为公式中的b ,根据他们之间的关系可得:2221112x x x x x x ⎛⎫+=-+⋅ ⎪⎝⎭; ③ 将12x x -=,11x x⋅=代入求解即可; ④ 同理,24224221112x x x x x x⎛⎫+=+-⋅ ⎪⎝⎭,将所求的221x x +的值及2211x x ⋅=代入即可求解.【过程书写】例2:若2226100x x y y -+++=,则x =_______,y =________.【思路分析】此题考查完全平方公式的结构,“首平方,尾平方,二倍乘积放中央”. 观察等式左边,22x x -以及26y y +均符合完全平方式结构,只需补全即可,根据“由两边定中间,由中间凑两边”可配成完全平方式,得到22(1)(3)0x y -++=.根据平方的非负性可知:2(1)0x -=且2(3)0y +=,从而得到1x =,3y =-.➢ 巩固练习1. 若2(2)5a b -=,1ab =,则224a b +=____,2(2)a b +=____.2. 已知3x y +=,2xy =,求22x y +,44x y +的值.3. 已知2310a a -+=,求221a a +,441a a+的值. 4. (1)若229x mxy y ++是完全平方式,则m =________.(2)若22916x kxy y -+是完全平方式,则k =_______. 5. 多项式244x +加上一个单项式后,能使它成为一个整式的平方,则可以加上的单项式共有_______个,分别是__________ ______________________________.6. 若22464100a b a b +--+=,则a b -=______.7. 当a 为何值时,2814a a -+取得最小值,最小值为多少? 8. 求224448x y x y +-++的最值.➢ 思考小结1. 两个整数a ,b (a ≠b )的“平均数的平方”与他们“平方数的平均数”相等吗?若不相等,相差多少?2. 阅读理解题:若x 满足(210)(200)204x x --=-,试求22(210)(200)x x -+-的值. 解:设210-x =a ,x -200=b ,则ab =-204,且(210)(200)10a b x x +=-+-=,由222()2a b a ab b +=++得,即22(210)(200)x x -+-的值为508.根据以上材料,请解答下题:若x 满足22(2015)(2013)4032x x -+-=,则(2015)(2013)x x --=______.【参考答案】➢ 例题示范例1.解:12x x -=∵例2:1-3 ➢ 巩固练习1. 913 2. 517 3. 7 474. ±6 ±245. 5 24x - -4 8x -8x 4x6. 87. 4a =时取得最小值,最小值为-2 8. 最小值为3➢ 思考小结1. 不相等,相差2()4a b -2. 2 014。
完整版)平方差公式与完全平方公式练习题

完整版)平方差公式与完全平方公式练习题1.计算以下多项式的积:1) $x^2-1$2) $m^2-4$3) $(2x)^2-1$4) $x^2-25y^2$2.哪些多项式可以用平方差公式相乘?1) 可以2) 可以3) 可以4) 可以5) 可以6) 可以3.计算:1) $9x^2-4$2) $4a^2-3b^2$3) $4y^2-x^2$4.简便计算:1) $9996$2) $-y^2-3y+10$5.计算:1) $4y^2-xy-2x^2$2) $25-4x^2$3) $-0.5x^4+0.25x^2$4) $12x$5) $.75$6) $9999$6.证明:两个连续奇数的积加上1一定是一个偶数的平方。
假设两个连续奇数为$(2n+1)$和$(2n+3)$,它们的积为$(2n+1)(2n+3)=4n^2+8n+3$,加上1后得到$4n^2+8n+4=(2n+2)^2$,是一个偶数的平方。
7.求证:$(m+5)^2-(m-7)^2$一定是24的倍数。
m+5)^2-(m-7)^2=(m^2+10m+25)-(m^2-14m+49)=24m-24$。
是24的倍数。
完全平方公式(一)1.应用完全平方公式计算:1) $16m^2+8mn+n^2$2) $y^2-6y+9$3) $a^2+2ab+b^2$4) $b^2-2ab+a^2$2.简便计算:1) $$2) $9801$3) $50$4) $50$3.计算:1) $16x^2-8xy+y^2$2) $9a^4-24a^3b+16a^2b^2$3) $10xy^2-y^4$4) $-9a^2-2ab-3b^2$5) $6x^2-3xy+3y^2$4.在下列多项式中,哪些是由完全平方公式得来的?1) 是2) 是3) 不是4) 是5) 是完全平方公式(二)1.运用法则:1) $a+\dfrac{b-c}{2}$2) $a-\dfrac{b-c}{2}$3) $a-\dfrac{b+c}{2}$4) $a+\dfrac{b+c}{2}$2.判断下列运算是否正确:1) 正确2) 错误3) 正确4) 错误3.计算:1) $x^2-4y^2+12x-12y+9$2) $a^2+b^2+c^2+2ab+2ac+2bc$3) $6x+9$4) $2x^2+16x+19$4.计算:dfrac{1}{x^2}+\dfrac{1}{x}+\dfrac{1}{4}$1+\dfrac{1}{x}+\dfrac{1}{x^2}$dfrac{1}{c^2}+\dfrac{1}{c}+\dfrac{1}{4}$1.求(a-b+2c)²和(a+b+c)²-(a-b-c)²的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
完全平方公式
【课内四基达标】
1.填空题
(1)a2-4ab+()=(a-2b)2(2)(a+b)2-()=(a-b)2
(3)(-2)2=-x+
(4)(3x+2y)2-(3x-2y)2=(5)(3a2-2a+1)(3a2+2a+1)=
(6)( )-24a2c2+( )=(-4c2)2
2.选择题
(1)下列等式能成立的是( ).
A.(a-b)2=a2-ab+b2
B.(a+3b)2=a2+9b2
C.(a+b)2=a2+2ab+b2
D.(x+9)(x-9)=x2-9
(2)(a+3b)2-(3a+b)2计算的结果是( ).
A.8(a-b)2
B.8(a+b)2
C.8b2-8a2
D.8a2-8b2
(3)在括号内选入适当的代数式使等式(5x-y)·()=25x2-5xy+y2成立.
A.5x-y
B.5x+y
C.-5x+y
D.-5x-y
(4)(5x2-4y2)(-5x2+4y2)运算的结果是( ).
A.-25x4-16y4
B.-25x4+40x2y2-16y2
C.25x4-16y4
D.25x4-40x2y2+16y2
(5)如果x2+kx+81是一个完全平方式,那么k的值是( ).
A.9
B.-9
C.9或-9
D.18或-18
(6)边长为m的正方形边长减少n(m>n)以后,所得较小正方形的面积比原正方形面积减少了( )
A.n2
B.2mn
C.2mn-n2
D.2mn+n2
3.化简或计算
(1)(3y+2x)2 (2)-(-x3n+2-x2+n)2
(3)(3a+2b)2-(3a-2b)2(4)(x2+x+6)(x2-x+6)
(5)(a+b+c+d)2 (6)(9-a2)2-(3-a)(3-a)(9+a)2
4.先化简,再求值.
(x3+2)2-2(x+2)(x-2)(x2+4)-(x2-2)2,其中x=-.
【能力素质提高】
1.计算:(1)20**2 (2)1.9992
2.证明:(m-9)2-(m+5)2是28的倍数,其中m为整数.(提示:只要将原式化简后各项均能被28整除)
3.设a、b、c是不全相等的数,若x=a2-bc,y=b2-ac,z=c2-ab,则x、y、z( )
A.都不小于0
B.至少有一个小于0
C.都不大于0
D.至少有一个大于0
4.解方程:(x2-2)(-x2+2)=(2x-x2)(2x+x2)+4x
【渗透拓展创新】
已知代数式(x-a)(x-b)-(x-b)(c-x)+(a-x)(c-x),是一个完全平方式,试问以a、b、c为边的三角形是什么三角形?
【中考真题演练】
一个自然数a恰等于另一自然数b的平方,则称自然数a为完全平方数(如64=82,64就是一个完全平方数).若a=19952+19952·19962+19962.求证:a是一个完全平方数.
参考答案
【渗透拓展创新】
等边三角形
【中考真题演练】
设1995=k,则1996=k+1,于是a=k2+k2(k+1)2+(k+1)2=〔k2-2k(k+1)+(k+1)2〕+ 2k(k+1)+k2(k+1)2=〔k-(k+1)〕2+2k(k+1)+k2(k+1)2=12+2k(k+1)+〔k(k+1)〕2=〔1+k(k+1)〕2=(1+1995·1996)2=39820212,所以a是一个完全平方数.。