洪水计算范例

合集下载

洪水频率计算(规范方法)

洪水频率计算(规范方法)

附录A 洪水频率计算A1 洪水频率曲线统计参数的估计和确定A1。

1 参数估计法A1。

1。

1 矩法。

对于n 年连序系列,可采用下列公式计算各统计参数: 均值∑==ni i X n X 11 (A1)均方差 ∑=--=ni i X X n S 12)(11或 ⎥⎦⎤⎢⎣⎡--=∑∑==n i n i i i X n X n S 1212)(111 (A2)变差系数XSC v =(A3)偏态系数3313)2)(1()(vni i s C X n n X X n C ---=∑=或 3313112132)2)(1()(23vn i ni i ni i ni i i sC X n n n X X X n X n C --+⋅-=∑∑∑∑==== (A4)式中 X i —-系列变量(i=1,…,n ); n —-系列项数。

对于不连序系列,其统计参数的计算与连序系列的计算公式有所不同。

如果在迄今的N 年中已查明有a 个特大洪水(其中有l 个发生在n 年实测或插补系列中),假定(n-l)年系列的均值和均方差与除去特大洪水后的(N —a)年系列的相等,即l n a n l n a N S S X X ----==,,可推导出统计参数的计算公式如下:)(111∑∑+==--+=nl i i a j j X l n a N X N X (A5)⎥⎦⎤⎢⎣⎡---+--=∑∑++==n l i i a j jv X X l n a N X X N XC 1212)()(111 (A6)331313)2)(1()()(vn l i ia j j s C X N N X X l n a N X X N C --⎥⎦⎤⎢⎣⎡---+-=∑∑+== (A7) 式中 X j ——特大洪水变量(j=1,…,a );X i ——实测洪水变量(i=l +1,…,n )。

A1。

1。

2 概率权重矩法。

概率权重矩定义为⎰=10)(dF x xF M j j j=0,1,2,… (A8)皮尔逊Ⅲ型频率曲线的三个统计参数不能用概率权重矩的显式表达。

水文计算算例最终

水文计算算例最终

1.4水文计算1.4.1设计资料1.大桥桥位地质剖面图。

2.水文资料:桥为河段为稳定性河段,设计洪水位频率1:100,设计洪水位31.25m。

3.洪水含沙量ρ=3.2kg/m3。

4.桥位概况:本桥位于某市区外,跨越河流,河宽220米。

1.4.2计算设计流量Q S[10]1.根据河道横断面图式,本河道采用单宽式,采用形态法计算。

2.依据桥位地质剖面图,假定为单宽式Ⅰ类河道,糙率n=0.0222,m=45。

3.洪水比降I=0.3‰。

4.设计水位31.25m,起止桩号k1+186—k1+381。

5.过水面积ω及水位宽度B计算,见下表。

6.平均水深H均=ω/B=988.215/195=5.07m7.由谢—满公式V=m⨯(H均)2/3⨯I1/2=45⨯(5.07)2/3⨯(0.0003)1/2=2.299m/s8.设计水位时,过水断面流量Q SQ S=ω⨯V=988.215⨯2.299=2272m3/s设计流量偏安全考虑,选定Q S=2300m3/sV=2.3m/sω=988.215m²B=195m1.4.3确定桥孔长度1.河段类型选择依据桥位地质剖面图,假定该桥位河段为顺直型稳定性河段。

2.桥孔布设原则(1)桥孔不宜过多的压缩河槽;(2)墩台基础可以视冲刷程度,置于不同的标高上。

3.采用经验公式计算桥长L j= Q S/(β⨯q c) (1-1)式中:Q S——设计流量;取值为Q S=2300 m3/s;β——压缩系数;取值为β=k1(B c/H c)0.06=1.245;k1——稳定性河段取1.00;q c——河槽单宽流量,q c= Q S/B c=2300/195=11.79。

L j= Q S/(β⨯q c)=2300/(1.245⨯11.79)=156.69m4.采用过水面积计算(冲刷系数法)[10]上部结构采用预应力混凝土箱型梁桥,桥墩中心间距80m,假定采用单排双柱式桥墩柱直径d=1.5m,设计流速V S=2.3m/s,Q S=2300 m3/s,冲刷系数P=1.4,系数计算:μ=1-0.375⨯V S/ L0=1-0.375⨯2.3/ (80-1.5)=0.99λ=1.5/100=0.015则A q= Q S/[μ(1-λ)P V S]=2300/[0.99⨯(1-0.015)⨯1.4⨯2.3]=732.488m2根据桥位断面图桥下毛过水面积为988.215m2略大于732.488m2。

洪水调节调洪演算列表法和图解法

洪水调节调洪演算列表法和图解法

调洪演算计算说明书一、 相关资料中包水利枢纽工程是三等工程,溢洪道设计洪水标准为五十年一遇(P=2%)至一百年一遇(P=1%),校核洪水标准为千年一遇(P=0.1%).二、基本原理1.泄水建筑物尺寸:溢洪道堰顶高程519m ,采用3孔86m m ⨯(宽⨯高)的弧形门控制。

由2/302q H g m nb ⋅=ε (其中侧收缩系数ε=0.92,n 为所开孔数, 流量系数m=0.48,单孔堰顶宽度b=8m ,g=9.812/m s ,堰顶水头0H =水位Z-堰顶高程,。

不计流速水头。

) 计算出下泄流量2.设计洪水来临时,用左右2孔泄洪;校核洪水来临时,用3孔泄洪。

3.基本计算公式为:()()()t V V q q Q Q ∆-=+-+/2/2/122121式中: Q 1, Q 2--分别为计算时段初、末的入库流量,m 3/s ; v 1,v 2--分别为计算时段初、末水库的蓄水量,m 3 ; q 1,q 2--分别为计算时段初、末的下泄流量,m 3/s ; t ∆--计算时段,一般取1小时。

4.下游安全泄量及起调水位该水利枢纽没有下游防洪要求,一般在洪水来临时,水库将预泄库水至水库防洪限制水位,以便有足够的库容蓄洪或滞洪。

防洪限制水位是水库在汛期允许兴利蓄水的上限水位,则调洪计算从水位525.3m 起调。

5.水库运行方式根据题目分析,本工程采用3孔溢洪道泄洪,设计洪水来临时,用左右2孔泄洪;校核洪水来临时,用3孔泄洪。

在洪水期间洪水来临时,先用闸门控制下泄流量q 并使其等于洪水来水量Q,使水库水位保持在防洪限制水位525.3m不变;当洪水来水量Q继续增大时,闸门逐渐打开;当闸门达到全开后,就不再用闸门控制,下泄流量q随水库水位z 的升高而增大,流态为自由流态,情况与无闸门控制一样。

6.计算方法:先决定开始计算时刻和此时的q1、V1,然后假定下泄流量q2值,再由计算V2值,再查q-V表得出q2’值,水量平衡方程()()()t-+2/2/=+/VV-qqQ∆Q211122比较q2和q2’,若二者基本相等,则假定正确,否则重新试算,直到大致相等为止,依次计算下去。

设计洪水计算书

设计洪水计算书

设计洪水推求(一)工程概况甘溪又称古城溪,发源于浙江省江山市大桥镇青源尾。

甘溪自源头开始以东西向流入玉山县境内,经白云镇鹁鸪嘴、大园地、平阳村、岩瑞镇水门村后,在岩瑞镇山头淤北和金沙溪汇合。

甘溪流域面积206Km 2,主河道长44.2Km ,河道加权平均坡降0.824‰(其中玉山境内流域面积102.6Km 2,河长24Km )。

甘溪河道弯曲,河床较浅,中下游两岸地形开阔,耕地集中,属平原丘陵地带,是主要产粮区之一。

1,工程地点流域特征值,主河道比降0.000824.已知流域总面积206Km 2,加权平均坡降0.824‰,计算河段下游断面集雨面积145.3 Km 2,加权平均坡降1.32‰,主河道长44.2 Km 。

2,设计暴雨查算(1) 求十年一遇24小时点暴雨量根据工程地理位置,查《江西省暴雨洪水查算手册》(下同)附图2—4,得流域中心最大24小时点暴雨量H 24=115mm ;查附图2—5,得Cv 24=0.45。

由设计频率P=10%和Cs=3.5Cv 查附表5—2,得Kp 24=1.60。

则十年一遇24小时点暴雨量H 24(10%)=115⨯1.60=184.0mm 。

(2) 求十年一遇24小时面暴雨量根据计算段流域面积F=145.3 Km 2和暴雨历时t=24小时,查附图5—1,得点面系数24α=0.983 则十年一遇面暴雨量为24%)10(24%)10(24α⨯=H H =184⨯0.983=180.9mm 。

(3)求设计暴雨24小时的时程分配 ○1 设计24小时暴雨雨型以控制时程t ∆=3小时为例,查附表2—1,得雨型分配表,如下表1:表1:以3小时为时段的雨型分布表○2查算十年一遇1,6,3小时暴雨参数 根据工程地理位置分别查附图2—6和附图2—8,得流域中心最大6小时和1小时点暴雨量,H 6=75mm ,H 1=40mm 。

查附图2—7和附图2—9,得Cv 6=0.45,Cv 1=0.45。

设计洪水分析计算

设计洪水分析计算

设计洪水分析计算1、洪水标准依据《水利水电工程等级划分与洪水标准》(SL44-2006),确定该工程等级为五等,按20年一遇洪水标准设计,200年一遇洪水校核。

本水库上游流域面积为1.6平方千米,属于小于30平方千米范围,按《山东省小型水库洪水核算办法》(试行)进行洪水计算。

2、设计洪水推求成果1、基本资料流域面积F=1.6平方公里,干流长度L=2.1千米,干流平均比降j=0.02。

根据山东省小型水库洪水核算办法,查《山东省多年平均二十四小时暴雨等值线图》,该流域中心多年平均二十四小时暴雨H24=85毫米。

该水库水位、库容关系表如下:设计溢洪道底高程177.84米,相应库容23.29万立米。

2、最大入库流量Q m计算(1)、流域综合特征系数K按下式计算K=L/j1/3F2/5(2)、设计暴雨量计算查《山东省最大二十四小时暴雨变差系数C v等值线图》,该流域中心C v=0.6,采用C s=3.5C v应用皮尔逊3型曲线K p值表得,20年一遇K p=2.20,200年一遇K p=3.62,则20年一遇最大24小时降雨量H24=2.2*85=187毫米,200年一遇最大24小时降雨量H24=3.62*85=307.7毫米。

(3)单位面积最大洪峰流量计算经实地勘测,该工程地点以上流域属丘陵区,查泰沂山北丘陵区q m- H24-K关系曲线,得20年一遇单位面积最大洪峰流量与200年一遇单位面积最大洪峰流量q m。

(4)洪水总量与洪水过程线推求已算得20年一遇最大24小时降雨量H24=187毫米与200年一遇最大24小时降雨量H24=307.7毫米,取其75%为P 。

设计前期影响雨量P a取40毫米,计算P+P a,查P+P a与设计净雨h R关系曲线,得20年一遇与00年一遇h R。

洪水总量按下式计算W=0.1*F*h R,由此可计算得20年一遇与200年一遇洪水总量W。

将洪水过程概化为三角形,洪水历时按下式计算T=W/1800Q m。

洪水计算(推理公式法)

洪水计算(推理公式法)

P=00
1.32
33.93
1.80
67.87
2.40
135.74
2.94
271.48
3.78
407.21
4.80
542.95
5.93
644.76
7.19
678.69
8.39
644.76
9.77
542.95
11.81
407.21
14.81
271.48
19.66
135.74
25.18
1.998 2.121 2.305 2.734 2.118 2.212 2.335
499.41 411.02 320.79 194.33 489.36 405.92 317.23
Qm
4.73 4.50 4.23 3.73 4.70 4.49 4.22
验算
ψ
τ
τn3
Qp
0.045936341 0.052548381 0.061999459 0.086334157 0.046416195 0.052274533 0.061536412
Htp
380.79 306.67 232.49 137.59 335.79 281.41 225.67
t=1-6h
Qp
499.41 411.02 320.79 194.33 489.36 405.92 317.23
Wp(万m ³)
1376.06 1094.70 819.68 479.04 1154.25 954.94 755.85
-0.274557823 3.0716779 -0.275104022 3.1915656 -0.275803928 3.3439505 -0.278095567 3.6870571 -0.276682603 3.065531 -0.276322519 3.1814113 -0.277180269 3.3635863

洪水水位计算

洪水水位计算

关于偃师市(北纬34°43′50″;东经112°45′25″)位置
最大洪水水位计算
环境背景:本区为邙山区域,地貌为丘陵岗地,土质为黄土(壤土),地处城区内,也可按地面硬化对待。

一般设计城市防洪或按百年一遇,或按五十年一遇,本次设计按五十年一遇、24小时最大降水量及其形成的径流深,此径流深值即为洪水水位值。

计算如下:由《河南省暴雨图集》查得,该点的24小时点雨量均值为79mm,变差系数Cv=0.55,按照定倍比法求得偏态系数Cs=1.925,由皮尔逊Ⅲ型曲线查得:50年一遇的模比系数Kp=2.58
首先采用如下公式计算该点50年一遇24小时最大降水量:
̅̅̅̅̅̅
K24p=K P×H24p
式中K24p—50年一遇24小时最大降水量
Kp—模比系数
̅̅̅̅̅̅—50年一遇24小时点雨量均值
H24p
计算结果如下:
K24p=2.58×79=203.82(mm)
再根据50年一遇24小时最大降水量值,按照如下公式计算该点同等条件下所形成的径流深:
h=α24×K24p
式中:h—50年一遇24小时最大降水量时的径流深
α24—24小时最大降水量时的径流系数(根据有关经验,结合该点地貌土质条件及人为因素,地面硬化取0.75,自然地面取0.55)K24p—50年一遇24小时最大降水量值
计算结果如下:
h1= 0.75×203.82=1.53(m)(硬化条件的)
或:
h2= 0.55×203.82=1.12(m)(自然地面的)。

洪水频率计算(规范方法)

洪水频率计算(规范方法)

附录A 洪水频率计算A1 洪水频率曲线统计参数的估计和确定A1。

1 参数估计法A1。

1。

1 矩法。

对于n 年连序系列,可采用下列公式计算各统计参数: 均值∑==ni i X n X 11 (A1)均方差 ∑=--=ni i X X n S 12)(11或 ⎥⎦⎤⎢⎣⎡--=∑∑==n i n i i i X n X n S 1212)(111 (A2)变差系数XSC v =(A3)偏态系数3313)2)(1()(vni i s C X n n X X n C ---=∑=或 3313112132)2)(1()(23vn i ni i ni i ni i i sC X n n n X X X n X n C --+⋅-=∑∑∑∑==== (A4)式中 X i —-系列变量(i=1,…,n ); n —-系列项数。

对于不连序系列,其统计参数的计算与连序系列的计算公式有所不同。

如果在迄今的N 年中已查明有a 个特大洪水(其中有l 个发生在n 年实测或插补系列中),假定(n-l)年系列的均值和均方差与除去特大洪水后的(N —a)年系列的相等,即l n a n l n a N S S X X ----==,,可推导出统计参数的计算公式如下:)(111∑∑+==--+=nl i i a j j X l n a N X N X (A5)⎥⎦⎤⎢⎣⎡---+--=∑∑++==n l i i a j jv X X l n a N X X N XC 1212)()(111 (A6)331313)2)(1()()(vn l i ia j j s C X N N X X l n a N X X N C --⎥⎦⎤⎢⎣⎡---+-=∑∑+== (A7) 式中 X j ——特大洪水变量(j=1,…,a );X i ——实测洪水变量(i=l +1,…,n )。

A1。

1。

2 概率权重矩法。

概率权重矩定义为⎰=10)(dF x xF M j j j=0,1,2,… (A8)皮尔逊Ⅲ型频率曲线的三个统计参数不能用概率权重矩的显式表达。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.4 洪水
2.4.1 洪水的暴雨特性、洪水成因、洪水的时空分布规律
流域地处副热带北缘,属山地温带湿润气候,是南北冷暖气流交绥要道,夏季受西风带天气系统的控制和副热带系统的影响,有时受两系统共同作用,锋面活动显著,降雨充沛,实测降水资料统计表明,流域年平均降水分布主要集中在5~10月,年最大暴雨发生在6月~8月居多。

一次大的降雨过程多集中在一天内,主要降雨历时为8~12h 。

##河洪水由暴雨形成.因流域地处南北冷暖气流交绥要道,每遇较强降雨均可形成一次洪水过程,如遇深厚的强冷空气入侵,便可导致大强度的暴雨,即可发生特大洪水,其洪水特征受暴雨强度和地形的影响,暴雨主要集中在5~10月,由于该流域暴雨强度大,河床坡降陡,洪水汇流时间短,致使洪水暴涨暴落。

主要大洪水均系单峰,由于流域森林植被较好,河槽调蓄能力强,使得主峰段持续时间较长,峰型略胖。

2.4.2 设计洪水
1、计算依据及基本方法
依据GB50201~94《防洪标准》、SL252~2000《水利水电工程等级划分及洪水标准》及工程布置,确定##三级电站等级为V 等,永久性水工建筑物为5级。

次要建筑物为5级,##三级电站坝址处按10年一遇设计,50年一遇校核。

电站厂房按30年一遇设计,50年一遇校核。

##河流域##三级电站所在的##河流域位于##省水文气象分区第Ⅷ区,##河流域##三级电站坝、厂址设计洪水采用瞬时单位线法,地区小流域经验公式等方法计算,以互验成果的合理性。

2.4.3 采用小流域经验公式法推求设计洪水
1、暴雨经验公式法推求设计洪水
根据《##省暴雨径流查算图表》第Ⅷ小流域洪峰流量经验公式推算,其公式如下:
β
t m KH Q = 式中:m Q —相应频率的洪峰流量,m 3/s ;
K —与流域面积、形状有关的综合系数; β—造峰指数; t H —造峰雨量,mm 。

其中:n
F t d
t d t H H )24(2424
++= 52.035.0F t =,242424H H F α=,a bF -+=)1(24α。

上述公式中:
a =0.168,
b =0.0054,d =0.2,n =0.65; β=1.63×(F +0.5)-0.036 (山区扇形流域); K =0.026F 0.75 (山区扇形流域)。

各种频率设计点雨量根据各电站坝址、厂房以上流域重心位置,查《##省暴雨径流查算图表》中的暴雨参数等值线图,计算成果见表2.4.3-1。

2.4.4 由暴雨资料用瞬时单位线法推求设计洪水
##河流域位于水文气象分区第Ⅷ区,##三级电站坝址流域面积F=128.8km 2,主河道长L=14.46km ,主河道加权平均比降J=44.26‰,厂房以上流域面积F=173.62km 2,主河道长L=17.7km ,主河道加权平均比降J=44.89‰。

##三级电站坝址处和厂房处流域的特征参数如下表2.4.4-1。

表2.4.3-1 ##河流域##三级电站坝址、厂房处小流域经验公式法洪水计算成果
表2.4.4-1 ##三级级电站坝址和厂房处流域特征
(1)点雨量
由于##河流域缺乏实测短历时暴雨资料,只能根据各电站坝址以上流域中心位置查1985年版《##省暴雨径流查算图表》,得出设计点雨量的均值H和变差系数Cv:
1小时:H
1
=35mm,Cv=0.42;
6小时:H
6
=51mm,Cv=0.44;
24小时:H
24
=82mm,Cv=0.48。

设计暴雨点雨量H
p点=HK
P
,kp查C
S
=3.5C
V
皮Ⅲ型曲线,kp值表得设计和校核
点雨量见表2.4.4-2~表2.4.4-3。

(2)面雨量
流域轴向与典型雨图轴向夹角小于30°,不需要作线性改正,点面系数拟采用《##省暴雨径流查算图表》表8计算值。

表2.4.4-2 ##三级电站坝址处设计点面暴雨成果表
表2.4.4-3 ##三级电站厂房处设计点面暴雨成果表
(3)设计净雨
采用概化雨型,瞬时单位线参数按##省水文分区第Ⅷ适用的公式计算:
m
1
=1.64F0.231L0.131J-0.08 n=0.529F0.25J0.2
初损I=22.5mm,稳损F
C =0.061561.0
24
R。

各历时设计暴雨公式:
1≤t≤6,H
t面=H
1面
t1-n1,n
1
=1+0.558lnβ
1
,β
1
=H
1面
/H
6面

6≤t≤24,H
t面=H
6面
6n2-1×T1-n2,n
2
=1+0.721lnβ
2
,β
2
=H
6面
/H
24面。

由于##三级电站坝址和厂房处的流域面积不一,其设计净雨时段△t,净雨历时tc选择如下表2.4.4-4。

表2.4.4-4 ##三级电站坝址、厂房净雨时段△t,净雨历时tc选择表
(4)设计洪水
由净雨及时段单位线算出地表径流过程,加上地下径流过程,可以得到各频率的设计洪水过程线,为保证成果精度,以上设计计算过程均在visuaibasic6.0编程计算,设计洪水成果见表2.4.4-5。

表2.4.4-5##三级电站坝址、厂房设计洪水过程线
2.4.5 成果比较与采用
由小流域经验公式法和瞬时单位线法推算的洪水进行比较,二者成果较为接近,其相对误差没有超过16%。

由瞬时单位线法推算的洪水比由小流域经验公式法推算的成果略大,为工程安全起见本阶段设计推荐采用暴雨瞬时单位线法推算的成果作为##三级电站枢纽工程的设计洪水取值。

二者比较及设计取值见表2.4.5-1。

表2.4.5-1不同计算方法洪水计算成果比较以及采用成果表单位:m3/s。

相关文档
最新文档