1定义新运算
第1讲:定义新运算讲义

定义新运算(★★)(迎春杯试题)规定n※b=3×n-b÷2。
例如:1※2=1×3-2÷2=2。
根据以上的规定,10※6=()(★★)两个不相等的自然数a、b(b≠0),较大的数除以较小的数商为a△b,余数记为a◇b,如3△11=3、3◇11=2,那么6◇(2△7)=()。
⑴(★★★)(“从小爱数学”邀请赛)设a※b表示a的3倍减去b的2倍,即a※b=3a-2b,例如,当a=6,b=5时,6※5=3×6-2×5=8。
①计算:(8※7)※9;②已知:x※(4※1)=7,求:x。
⑵(★★★)规定a○b=(3a-2b),例如4○5=3×4-2×5=2,那么当x○5比5○x大5时,x等于几?⑴(★★)规定a⊗b=a×3+b÷2,其中a、b都是自然数。
①6⊗8的值;②8⊗6的值。
⑵(★★★)定义运算※为a ※b =a ×b -(a +b ),①求12※(3※4),(12※3)※4;②这个运算“※”有结合律吗?③如果3※(5※x )=3,求x 。
⑴(★★★)(“祖冲之杯”数学邀请赛)如图是一个运算器的示意图,A 、B 是输入的两个数据,C 是输出的结果,右下表是输入A 、B 数据后,运算器输出C 的对应值,请你据此判断,当输入A 值是1999,输入B 值是9时,运算器输出的C 值是_____。
⑵(★★★★)(中环杯试题)已知A *B =A ×B +A +B则101*9*9*9**9*9 共次运算=__________。
(★★★★★)定义a *b 为a 与b 之间(包含a 、b )所有与a 奇偶性相同的自然数的平均数,例如:7*14=(7+9+11+13)÷4=10,18*10=(18+16+14+12+10)÷5=14。
在算式□*(19*99)=80的方格中填入恰当的自然数后可使等式成立,那么所填的数是多少?在线测试题温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。
小学奥数举一反三(六年级)

- 1 -第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b 等于a 和b 两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b ,那么求10*6和5*(2*8)。
3.设a*b=3a -b ×1/2,求(25*12)*(10*5)。
【例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1.设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2.设p 、q 是两个数,规定p △q =p2+(p -q )×2。
求30△(5△3)。
3.设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
小学数学竞赛:定义新运算.教师版解题技巧 培优 易错 难

【考点】定义新运算之直接运算【难度】3星【题型】计算
【解析】原式
【答案】
【巩固】 表示
【考点】定义新运算之直接运算【难度】2星【题型】计算
【关键词】走美杯,3年级,初赛
【解析】原式
【答案】
【巩固】规定运算“☆”为:若a>b,则a☆b=a+b;若a=b,则a☆b=a-b+1;若a<b,则a☆b=a×b。那么,(2☆3)+(4☆4)+(7☆5)=。
【考点】定义新运算之直接运算【难度】2星【题型】计算
【关键词】希望杯,四年级,二试
【解析】19
【答案】
【例 2】“△”是一种新运算,规定:a△b=a×c+b×d(其中c,d为常数),如5△7=5×c+7×d。如果1△2=5,2△3=8,那么6△1OOO的计算结果是________。
【考点】定义新运算之直接运算【难度】2星【题型】计算
【答案】
【巩固】设 △ ,那么,5△ ______,(5△2)△ _____.
【考点】定义新运算之直接运算【难度】2星【题型】计算
【解析】
,
【答案】
【巩固】 、 表示数, 表示 ,求3 (6 8)
【考点】定义新运算之直接运算【难度】2星【题型】计算
【解析】
【答案】
【巩固】已知a,b是任意自然数,我们规定:a⊕b=a+b-1, ,那么
可知:5*7=(5+3×7)×(5+7)=(5+21)×12=26×12=312
【答案】
【巩固】定义新运算为a△b=(a+1)÷b,求的值。6△(3△4)
【考点】定义新运算之直接运算【难度】2星【题型】计算
【解析】所求算式是两重运算,先计算括号,所得结果再计算。由a△b=(a+1)÷b得,3△4=(3+1)÷4=4÷4=1;6△(3△4)=6△1=(6+1)÷1=7
五年级奥数专题三:定义新运算(1)

五年级奥数专题三:定义新运算(1)关键词:运算四则四则运算定义奥数符号意义这些表示年级我们已经学习过加、减、乘、除运算,这些运算,即四则运算是数学中最基本的运算,它们的意义、符号及运算律已被同学们熟知。
除此之外,还会有什么别的运算吗?这两讲我们就来研究这个问题。
这些新的运算及其符号,在中、小学课本中没有统一的定义及运算符号,但学习讨论这些新运算,对于开拓思路及今后的学习都大有益处。
例1 对于任意数a,b,定义运算“*”:a*b=a×b-a-b。
求12*4的值。
分析与解:根据题目定义的运算要求,直接代入后用四则运算即可。
12*4=12×4-12-4=48-12-4=32。
根据以上的规定,求10△6的值。
3,x>=2,求x的值。
分析与解:按照定义的运算,<1,2,3,x>=2,x=6。
由上面三例看出,定义新运算通常是用某些特殊符号表示特定的运算意义。
新运算使用的符号应避免使用课本上明确定义或已经约定俗成的符号,如+,-,×,÷,<,>等,以防止发生混淆,而表示新运算的运算意义部分,应使用通常的四则运算符号。
如例1中,a*b=a×b-a-b,新运算符号使用“*”,而等号右边新运算的意义则用四则运算来表示。
分析与解:按新运算的定义,符号“⊙”表示求两个数的平均数。
四则运算中的意义相同,即先进行小括号中的运算,再进行小括号外面的运算。
按通常的规则从左至右进行运算。
分析与解:从已知的三式来看,运算“”表示几个数相加,每个加数各数位上的数都是符号前面的那个数,而符号后面的数是几,就表示几个数之和,其中第1个数是1位数,第2个数是2位数,第3个数是3位数……按此规定,得35=3+33+333+3333+33333=37035。
从例5知,有时新运算的规定不是很明显,需要先找规律,然后才能进行运算。
例6 对于任意自然数,定义:n!=1×2×… ×n。
第一讲 定义新运算

五年级春季第一讲定义新运算对于+、-、×、÷四则运算,我们已经熟知它们的运算规则和计算方法,还学会了四则混合运算,以及速算与巧算。
这一讲我们要学习一种新的运算,简称为定义新运算。
所谓定义新运算就是用一种新的符号来自主定义或规定一种运算规则,然后按照这一规则进行计算。
典例精讲例1 设a、b都表示数,规定a△b=3×a-2×b,①求3△2,2△3。
②这个运算“△”有交换律吗?③求(17△6)△2, 17△(6△2)。
④这个运算“△”有结合律吗?⑤如果已知4△b=2,求b。
【思路点拨】解定义新运算这类题的关键是抓住定义的本质,本题规定的运算的本质是:用运算符号前面的数的3倍减去符号后面数的2倍。
【详细解答】例2 对于任意两个整数a、b,定义两种运算“☆”“☉”:a☆b=a+b-1,a☉b=a×b-1,计算4☉[(6☆8)☆(3☆5)]的值。
【思路点拨】这题是两种新运算的混合运算,首先要弄清楚每一种运算的运算规则,再确定运算顺序;在新运算中,也是按照先算括号内再算括号外的运算顺序进行计算,先将定义的新运算符号前后运算好后再进行新运算,计算时可以分步进行。
【详细解答】例3 定义x☉y=a×x+2×y,并且已知5☉6=6☉5,求a是几?【思路点拨】先根据对新运算的定义,把等式5☉6=6☉5转化成含有未知数的等式,然后,再求出未知数a的值。
【详细解答】例4 有一个数学运算符号“◎”使下列算式成立:2◎4=8,5◎3=13,3◎5=11,9◎7=25,求7◎3=?【思路点拨】题目没有明确告知对新运算进行定义,该如何进行运算呢?我们可以通过对题目提供的算式进行观察、分析,找出规律,从而确定新运算的运算规则。
可以看出“◎”表示前面的数的2倍加上后一个数。
【详细解答】达标练习1.定义一种新的运算“△”,规定:a△b=a×b+a+b。
5△8是多少?2.定义新运算“□”为x□y等于2xy-(x+y)。
小学思维数学:定义新运算-带答案解析

定义新运算定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。
一 定义新运算 基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
我们学过的常用运算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.二 定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合模块一、直接运算型【例 1】 若*A B 表示()()3A B A B +⨯+,求5*7的值。
【考点】定义新运算之直接运算 【难度】2星 【题型】计算【解析】 A *B 是这样结果这样计算出来:先计算A +3B 的结果,再计算A +B 的结果,最后两个结果求乘积。
由 A *B =(A +3B )×(A +B )可知: 5*7=(5+3×7)×(5+7) =(5+21)×12 = 26×12 = 312【答案】312【巩固】 定义新运算为a △b =(a +1)÷b ,求的值。
奥数第三讲 学生 定义新运算1

奥数第三讲定义新运算1定义新运算通常是用特殊的符号表示特定的运算意义。
它的符号不同于课本上明确定义或已经约定的符号,例如“+、-、×、÷、、>、<”等。
表示运算意义的表达式,通常是使用四则运算符号,例如a☆b=3a-3b,新运算使用的符号是☆,而等号右边表示新运算意义的则是四则运算符号。
正确解答定义新运算这类问题的关键是要确切理解新运算的意义,严格按照规定的法则进行运算。
如果没有给出用字母表示的规则,则应通过给出的具体的数字表达式,先求出表示定义规则的一般表达式,方可进行运算。
值得注意的是:定义新运算一般是不满足四则运算中的运算律和运算性质,所以,不能盲目地运用定律和运算性质解题。
一、例题与方法指导例1 对于任意数a,b,定义运算“*”:a*b=a×b-a-b。
求12*4的值。
根据以上的规定,求10△6的值。
3,x>=2,求x的值。
由上面三例看出,定义新运算通常是用某些特殊符号表示特定的运算意义。
新运算使用的符号应避免使用课本上明确定义或已经约定俗成的符号,如+,-,×,÷,<,>等,以防止发生混淆,而表示新运算的运算意义部分,应使用通常的四则运算符号。
如例1中,a*b=a×b-a-b,新运算符号使用“*”,而等号右边新运算的意义则用四则运算来表示。
例6 对于任意自然数,定义:n!=1×2×… ×n。
例如4!=1×2×3×4。
那么1!+2!+3!+…+100!的个位数字是几?例7 如果m,n表示两个数,那么规定:m¤n=4n-(m+n)÷2。
求3¤(4¤6)¤12的值。
定义新运算课堂练习一1、a、b是自然数,规定a※b=(a+b)÷2,求:3※(4※6)的值。
2、对于任意两个自然数a、b,定义一种新运算“*”:a*b=ab+a÷b,求75*5=?,12*4=?3、定义运算符“◎”:a◎b=3a+4b-5,求6◎9=?9◎6=?×b=a+b=a+b-1,a○4、定义两种运算“○+”和“○×”,对于任意两个整数a、b规定:a○×3)]等于多少?×b-1,那么8○× [(6○+10)○+(5○+12)哪一个大?大的+(6○+12与3○5、定义运算“○+”=(a+b)÷3,那么(3○+6)○比小的大多少?6、规定a△b=ab+2a, a▽b=2b-a,求(8△3)▽(9△5)的值。
定义新运算

第1讲定义新运算1、知识精要“加、减、乘、除”使我们很熟悉的四种运算,如果有两个数8和4,那么应用“+”的规则就得到12,应用“-”的规则就得到4,应用“X”的规则就得到32,应用“÷”的规则就得到2。
以上四种对应规则只是一种人为的约定,我们还可以做其他不同的约定,定义一些新的运算。
这一讲就让我们一起去看一看,想一想。
2、课内提升例1 a,b表示两个数,“○”表示一种新运算,规定a○b=3a+4b,求2○3。
,试一试1 “○”表示一种新运算,定义同例1,求3○2。
例2“○”表示一种新运算,对于任意两个自然数a和b,定义为:a○b=a2b2。
求7 ○(3 ○ 2)。
-试一试2 “ ”表示一中心运算,对于任意两个自然数a和b,定义为:a b=a2+b2。
求(1 2) 3和1 (2 3)。
比一比,它们的结果相等吗?比一比,它们的结果相等吗?例3 A,B表示两个数,“ ”表示一种新运算,规定A B=(A+B)÷2。
如果5 x =18,求x。
试一试3 A,B表示两个数,“ ”表示一种新运算,规定AB=(A+B)÷5。
如果4 x=5,求x。
例4 如果1#2=1+2,4#3=4+5+6,6#4=6+7+8+9,那么9#5是多少?试一试4 如果1◎3=1×2×3,2◎4=2×3×4×5,3◎2=3×4,那么3◎5是多少?例5 “ ”表示一种新运算,使下列等式成立:2 3=7,4 2=10,5 3=13,7 10=24。
按照这样的规律,求8 5。
试一试5 “ ”表示一种新运算,使下列等式成立:2 3=9,42=14,5 3=18。
按照这样的规律,求4 5。
3、 当堂训练1.A,B表示两个数,“ ”表示一种新运算,规定A B=2A+3B,求3 1。
2. ◎表示一种新运算,对于任意两个自然数a和b,定义为:a◎b=a2+b2。
求6◎(3◎2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1定义新运算
定义新运算是指用一个符号和已知运算表达式表示一种新的运算。
定义新运算是一种特别设计的计算形式,它使用一些特殊的运算符号,这是与四则运算中的加减乘除符号是不一样的。
新定义的算式中有括号的,要先算括号里的。
但它在没有转化前,是不适合于各种运算的。
小学六年级奥数中体现,解题方法较简单。
解答定义新运算,关键是要正确地理解新定义运算的算式含义。
然后严格按照新定义运算的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
简介
定义新运算是一种特殊设计的运算形式,它使用的是一些特殊的运算符号,如:*、Δ等,这是与四则运算中的加减乘除不同的。
注意
(1)解决此类问题,关键是要正确理解新定义的算式含义,严格按照新定义的计算顺序,将数值代入算式中,再把它转化为一般的四则运算,然后进行计算。
(2)我们还要知道,这是一种人为的运算形式。
它是使用特殊的运算符号,如:*、▲、★、◎、Δ、◆、■等来表示的一种运算。
(3)新定义的算式中,有括号的,要先算括号里面的。
例题
定义新运算可以作为数学问题,如:
例1、x,y表示两个数,规定新运算"*"及"△"如下:
,其中m,n,k均为自然数,已知
的值.
分析我们采用分析法,从要求的问题入手,题目要求
的值,首先我们要计算,根据"△"的定义:
,由于k的值不知道,所以首先要计算出k的值.k值求出后,的值也就计算出来了,我们设
,按"*"的定义:,在只有求出m,n时,我们才能计算
的值。
因此要计算的值,我们就要先求出k,m,n的值。
通过
可以求出m,n的值,通过求出k的值.
解因为
,所以有.又因为m,n均为自然数,所以解出:。