新最新初中数学—分式的难题汇编附解析(2)

合集下载

新最新初中数学—分式的难题汇编及答案

新最新初中数学—分式的难题汇编及答案

一、选择题1.把分式2n m n +中的m 与n 都扩大3倍,那么这个代数式的值 A .不变 B .扩大3倍 C .扩大6倍 D .缩小到原来的132.计算23x 11x +--的结果是 A .1x 1- B .11x - C .5x 1- D .51x- 3.下列分式约分正确的是( )A .236a a a =B .1-=-+y x y xC .316222=b a abD .m mn m n m 12=++4.当012=-+a a 时,分式2222-21a a a a a ++++的结果是( ) A .25-1- B .251-+ C .1 D .0 5.下列各式、、、+1、中分式有( ) A .2个 B .3个 C .4个 D .5个6.在分式ab a b +(a ,b 为正数)中,字母a ,b 值分别扩大为原来的2倍,则分式的值( )A .扩大为原来的2倍B .缩小为原来的12 C .不变 D .不确定 7.已知,则的值是( )A .B .﹣C .2D .﹣28.化简:(a-2)·22444a a a --+的结果是( ) A .a-2 B .a +2 C .22-+a a D .22+-a a 9.已知+=3,则分式的值为( )A .B .9C .1D .不能确定10.若分式23x x --有意义,则x 满足的条件是( ) A .x ≠0 B .x ≠2 C .x ≠3 D .x ≥3 11.若分式的值为0,则x 的值为( ) A .0B .2C .﹣2D .2或﹣2 12.如果把223y x y-中的x 和y 都扩大5倍,那么分式的值( ) A.扩大5倍 B.不变 C.缩小5倍 D.扩大10倍13.12⎛⎫- ⎪⎝⎭-2的正确结果是( ) A .14 B .14- C .4 D .-414.用科学记数方法表示0.00000601,得( )A .0.601×10-6B .6.01×10-6C .60.1×10-7D .60.1×10-615.若分式的值为0,则x 的值为 A . B . C . D .不存在16.计算222x y x y y x +--的结果是( ) A .1 B .﹣1 C .2x y + D .x y +17.下列各式的约分,正确的是A .1a b a b --=-B .1a b a b--=-- C .22a b a b a b -=-+ D .22a b a b a b-=++ 18.若分式的值为0,则x 的值是( )A .3B -3C .4D .-419.已知115ab a b =+,117bc b c =+,116ca c a =+,则abc ab bc ca ++的值是( ) A .121 B .122 C .123 D .12420.(2015秋•郴州校级期中)下列计算正确的是( ) A .B .•C .x÷y•D .21.在,,中,是分式的有( ) A .0个 B .1个 C .2个 D .3个22.若已知分式22169x x x ---+的值为0,则x ﹣2的值为( ). A .19或﹣1 B .19或1 C .﹣1 D .1 23.计算的结果是( ) A .a+b B .2a+b C .1 D .-124.在函数中,自变量的取值范围是( ) A .>3 B .≥3且≠4 C .>4 D .≥325.若分式211x x -+的值为零,则x 的值为( ) A .0 B .1 C .1- D .±1【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】试题解析:分式2n m n+中的m 与n 都扩大3倍,得 6233n n m n m n=++, 故选A .2.B解析:B【解析】试题分析:先通分,再根据同分母的分式相加减的法则进行计算伯出判断:2323231x 11x 1x 1x 1x 1x-++=-+==------.故选B . 3.D 解析:D【解析】试题分析:A.约分的结果为a3;B.不能进行约分;C.约分的结果为ab 3。

最新最新初中数学—分式的难题汇编含答案

最新最新初中数学—分式的难题汇编含答案

一、选择题1.下列各式:351,,,,12a b x y a b x a b xπ-+++--中,是分式的共有( ) A .1个 B .2个C .3个D .4个2.0.000002019用科学记数法可表示为( )A .0.2019×10﹣5B .2.019×10﹣6C .20.19×10﹣7 D .2019×10﹣9 3.小张在课外阅读中看到这样一条信息:“肥皂泡的厚度约为0.0000007m ”,请你用科学记数法表示肥皂泡的厚度,下列选项正确的是( ) A .0.7 ⨯10-6 mB .0.7 ⨯10-7mC .7 ⨯10-7mD .7 ⨯10-6m4.若x 2-6xy +9y 2=0,那么x yx y-+的值为( ) A .12yB .12y-C .12D .12-5.已知02125,,0.253a b c --⎛⎫⎛⎫=-== ⎪ ⎪ ⎪⎝⎭⎝⎭,a ,b ,c 的大小关系是( ) A .a >b >cB .b >a >cC .c >a >bD .c >b >a6.下列计算正确的有(). ①0(1)1-= ②21333-⨯= ③()()33m m x x -=- ④2211224x x x ⎛⎫-=-+ ⎪⎝⎭ ⑤22(3)(3)9a b b a a b ---=-A .4个B .3个C .2个D .1个7.把分式a2a b+中的a 、b 都扩大2倍,则分式的值( ) A .缩小14 B .缩小12C .扩大2倍D .不变8.蜜蜂建造的蜂巢坚固省料,其厚度约为0.000073米,0.000073用科学计数法表示为 A .40.7310-⨯ B .47.310-⨯ C .57.310-⨯ D .67.310-⨯9.下列运算中,正确的是( )A .;B .;C .;D .;10.已知x 2-4xy +4y 2=0,则分式x yx y -+的值为( )A .13-B .13C .13yD .y 31-11.将分式2x x y+中的x 、y 都扩大2倍,则分式值( )A .扩大为原来的2倍B .缩小为原来的2倍C .保持不变D .无法确定12.如果把5xy x y+中的x 和y 都扩大为原来的10倍,那么这个分式的值( )A .不变B .扩大为原来的50倍C .扩大为原来的10倍D .缩小为原来的11013.如果把分式2x y zxyz-+中的正数x ,y ,z 都扩大2倍,则分式的值( ) A .不变B .扩大为原来的两倍C .缩小为原来的14D .缩小为原来的1814.(2017河北)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是( )A .4+446-=B .004+4+4=6C .34+4+4=6D .14446-÷+=15.老师设计了一个接力游戏,用小组合作的方式完成分式的运算,规则是:每人只能看见前一个人给的式子,并进行一步计算,再将结果传递给下一个人,最后完成计算.其中一个组的过程是:老师给甲,甲一步计算后写出结果给乙,乙一步计算后写出结果给丙,丙一步计算后写出结果给丁,丁最后算出结果.接力中,自己负责的一步出现错误的是( )A .甲B .乙C .丙D .丁16.1372x x-+-x 的取值范围是( )A .3<x <72B .3≤x <72C .3≤x ≤72D .x ≥317.用小数表示45.610-⨯为( ) A .5.6000B .0.00056C .0.0056D .0.05618.下列变形正确的是( ) A .()23524a a -=- B .22220x y xy -=C .23322b ab a a-÷=- D .()()222222x y x y x y +-=-19.若23a b =≠0,则代数式(2244b aba -+1)2b a a -÷的值为( ) A .2 B .1C .﹣1D .﹣220.若把分式x xy2中的x 和y 同时扩大为原来的3倍,则分式的值( ) A .扩大3倍B .缩小6倍C .缩小3倍D .保持不变21.下列运算正确的是( ) A .1133a a﹣=B .2322a a a +=C .326()•a a a ﹣=﹣D .32()()a a a ÷﹣﹣=22.使分式211x x -+的值为0,这时x 应为( )A .x =±1 B .x =1C .x =1 且 x≠﹣1D .x 的值不确定23.下列计算:①3362a a a ⋅=;②2352m m m +=;③()224-24a a =-;④()21048a a a a ⋅÷=;⑤()-21-510=;⑥22m a mn a n+=+,其中正确的个数为( ) A .4个 B .3个C .2个D .1个24.若代数式21a 4-在实数范围内有意义,则实数a 的取值范围为( ) A .a 4≠ B .a 2>- C .2a 2-<< D .a 2≠± 25.把0.0813写成科学计教法8.13×10n (n 为整数)的形式,则n 为( ) A .2B .-2C .3D .-3【参考答案】***试卷处理标记,请不要删除一、选择题 1.C【解析】 【分析】根据分式的定义逐一进行判断即可. 【详解】31,,1x a b x a b x ++--是分式 故选:C. 【点睛】本题考查分式的定义,熟练掌握定义是关键.2.B解析:B 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】0.000002019=2.019×10﹣6, 故选B . 【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.C解析:C 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.000 000 7=7×10-7. 故选C . 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.C解析:C 【解析】根据完全平方公式求出x 与y 的关系,代入计算即可. 【详解】 x 2-6xy+9y 2=0, (x-3y )2=0, ∴x=3y , 则x y x y -+=3132y y y y -=+, 故选:C . 【点睛】本题考查的是求分式的值,掌握完全平方公式、分式的计算是解题的关键.5.C解析:C 【解析】 【分析】根据负整数指数幂和零指数幂法则计算,比较即可. 【详解】2129==10.25=434a b c --⎛⎫=-== ⎪⎝⎭⎝⎭,,, ∵4>94>1, ∴c >a >b . 故选C . 【点睛】此题考查了负整数指数幂和零指数幂的运算,掌握其运算法则是解答此题的关键.6.C解析:C 【解析】 【分析】直接利用整数指数幂的法则和乘法公式分别计算得出答案. 【详解】解:①0(1)1-=,故①正确;②211333=93-⨯=⨯,故②正确; ③当m 是偶数时,()()333=mm m x x x -=,故③错误;④221124x x x ⎛⎫-=-+ ⎪⎝⎭,故④错误;⑤22(3)(3)9a b b a b a ----=,故⑤错误. 正确的有①②,共2个. 故选C本题考查了整数指数幂的运算法则和乘法公式,熟练掌握幂的各种性质和法则,乘法公式是解题的基础.7.D解析:D【解析】【分析】根据题意进行变形,发现实质上是分子、分母同时扩大2倍,根据分式的基本性质即可判断.【详解】根据题意,得把分式a2a b+中的a、b都扩大2倍,得2a2a a22a2b2(2a b)2a b==⨯+++,根据分式的基本性质,则分式的值不变.故选D.【点睛】此题考查了分式的基本性质.8.C解析:C【解析】【分析】数学术语,a×10的n次幂的形式.将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数,这种记数方法叫科学记数法。

最新初中数学方程与不等式之分式方程难题汇编含答案解析(2)

最新初中数学方程与不等式之分式方程难题汇编含答案解析(2)

最新初中数学方程与不等式之分式方程难题汇编含答案解析(2)一、选择题1.若数k 使关于x 的不等式组301132x k x x +≤⎧⎪-⎨-≤⎪⎩只有4个整数解,且使关于y 的分式方程1k y -+1=1y ky ++的解为正数,则符合条件的所有整数k 的积为( )A .2B .0C .﹣3D .﹣6【答案】A 【解析】 【分析】解不等式组求得其解集,根据不等式组只有4个整数解得出k 的取值范围,解分式方程得出y=-2k+1,由方程的解为整数且分式有意义得出k 的取值范围,综合两者所求最终确定k 的范围,据此可得答案. 【详解】解:解不等式组301132x k x x +≤⎧⎪-⎨-≤⎪⎩得:﹣3≤x ≤﹣3k ,∵不等式组只有4个整数解, ∴0≤﹣3k<1, 解得:﹣3<k ≤0, 解分式方程1k y -+1=1y k y ++得:y =﹣2k +1,∵分式方程的解为正数, ∴﹣2k +1>0且﹣2k +1≠1, 解得:k <12且k ≠0, 综上,k 的取值范围为﹣3<k <0,则符合条件的所有整数k 的积为﹣2×(﹣1)=2, 故选A . 【点睛】本题考查了解一元一次不等式组、分式方程的解,有难度,注意分式方程中的解要满足分母不为0的情况.2.解分式方程11222x x x-+=--的结果是( ) A .x="2"B .x="3"C .x="4"D .无解【解析】 【分析】 【详解】解:去分母得:1﹣x+2x ﹣4=﹣1, 解得:x=2,经检验x=2是增根,分式方程无解. 故选D .考点:解分式方程.3.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x 米/秒,则所列方程正确的是( ) A .4 1.2540800x x ⨯-=B .800800402.25x x-= C .800800401.25x x -= D .800800401.25x x-= 【答案】C 【解析】 【分析】先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可. 【详解】小进跑800米用的时间为8001.25x 秒,小俊跑800米用的时间为800x秒, ∵小进比小俊少用了40秒,方程是800800401.25x x-=, 故选C . 【点睛】本题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键.4.某施工队承接了60公里的修路任务,为了提前完成任务,实际每天的工作效率比原计划提高了25%,结果提前60天完成了这项任务.设原计划每天修路x 公里,根据题意列出的方程正确的是( ) A .60(125%)6060x x⨯+-=B .6060(125%)60x x⨯+-= C .606060(125%)x x-=+D .606060(125%)x x-=+ 【答案】D【分析】设原计划每天修路x公里,则实际每天的工作效率为(125%)x+公里,根据题意即可列出分式方程.【详解】解:设原计划每天修路x公里,则实际每天的工作效率为(125%)x+公里,依题意得:606060(125%)x x-=+.故选:D.【点睛】此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系进行列方程.5.如果关于x的不等式(a+1)x>2的解集为x<-1,则a的值是().A.a=3 B.a≤-3 C.a=-3 D.a>3【答案】C【解析】【分析】根据不等式的解集得出关于a的方程,解方程即可.【详解】解:因为关于x的不等式(a+1)x>2的解集为x<-1,所以a+1<0,即a<-1,且21a+=-1,解得:a=-3.经检验a=-3是原方程的根故选:C.【点睛】此题主要考查了不等式的解集,当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据解集进行判断,求得另一个字母的值.6.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是()A.1101002x x=+B.1101002x x=+C.1101002x x=-D.1101002x x=-【答案】A【解析】设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.解:设乙骑自行车的平均速度为x千米/时,由题意得:1102 x+=100x,故选A.7.《九章算术》中记录的一道题译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多一天,如果用快马送,所需的吋间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间. 设规定时间为x天,则可列方程为().A.900900213x x⨯=+-B.900900213x x=⨯+-C.900900213x x⨯=-+D.900900213x x=⨯++【答案】A【解析】【分析】设规定时间为x天,得到慢马和快马所需要的时间,根据速度关系即可列出方程.【详解】设规定时间为x天,则慢马的时间为(x+1)天,快马的时间是(x-3)天,∵快马的速度是慢马的2倍,∴900900213 x x⨯=+-,故选:A.【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系即可列方程.8.为保证某高速公路在2019年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用30天,如果甲乙两队合作,可比规定时间提前20天完成任务.若设规定的时间为x 天,由题意可以列出的方程是()A.111103020+=--+x x xB.111103020+=++-x x xC.111103020-=++-x x xD.111102030+=-+-x x x【答案】B【解析】【分析】设规定的时间为x天.则甲队单独完成这项工程所需时间是(x+10)天,乙队单独完成这项工程所需时间是(x+30)天.根据甲、乙两队合作,可比规定时间提前20天完成任务,列方程为111103020+=++-x x x.【详解】设规定时间为x天,则甲队单独一天完成这项工程的110 +x,乙队单独一天完成这项工程的130x+,甲、乙两队合作一天完成这项工程的120 x-.则111103020+=++-x x x.故选B.【点睛】此题考查分式方程,解题关键在于由实际问题抽象出分式方程.9.中秋节是我国的传统节日,人们素有吃月饼的习俗.汾阳月饼不仅汾阳人爱吃,而且风靡省城市场.省城某商场在中秋节来临之际购进A、B两种汾阳月饼共1500个,已知购进A种月饼和B种月饼的费用分别为3000元和2000元,且A种月饼的单价比B种月饼单价多1元.求A、B两种月饼的单价各是多少?设A种月饼单价为x元,根据题意,列方程正确的是( )A.3000200015001x x+=+B.2000300015001x x+=+C.3000200015001x x+=-D.2000300015001x x+=-【答案】C【解析】【分析】设A种月饼单价为x元,再分别表示出A种月饼和B种月饼的个数,根据“购进A、B两种汾阳月饼共1500个”,列出方程即可.【详解】设A种月饼单价为x元,则B种月饼单价为(x-1)元,根据题意可列出方程3000200015001x x+=-,故选C.【点睛】本题考查分式方程的应用,读懂题意是解题关键.10.已知A 、C 两地相距40千米,B 、C 两地相距50千米,甲乙两车分别从A 、B 两地同时出发到C 地.若乙车每小时比甲车多行驶12千米,则两车同时到达C 地.设乙车的速度为x 千米/小时,依题意列方程正确的是( )A .405012x x =- B .405012x x=- C .405012x x =+ D .405012x x=+ 【答案】B 【解析】试题解析:设乙车的速度为x 千米/小时,则甲车的速度为(x-12)千米/小时, 由题意得,405012x x=-. 故选B .11.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得 A .25301018060(%)x x -=+ B .253010180(%)x x -=+ C .30251018060(%)x x -=+D .302510180(%)x x-=+【答案】A 【解析】若设走路线一时的平均速度为x 千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程. 解:设走路线一时的平均速度为x 千米/小时,()253010180%60x x -=+ 故选A .12.若关于x 的方程333x m mx x++--=3的解为正数,则m 的取值范围是( ) A .m <92 B .m <92且m≠32C .m >﹣94D .m >﹣94且m≠﹣34【答案】B【解析】【分析】【详解】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.13.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为()A.3036101.5x x-=B.3030101.5x x-=C.3630101.5x x-=D.3036101.5x x+=【答案】A【解析】【分析】根据题意可得等量关系:原计划种植的亩数-改良后种植的亩数10=亩,根据等量关系列出方程即可.【详解】设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为:3036101.5x x-=.故选:A.【点睛】本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.14.关于x的方程2111axx x-=++的解为非正数,且关于x的不等式组22533a xx+⎧⎪+⎨⎪⎩„…无解,那么满足条件的所有整数a的和是()A.﹣19 B.﹣15 C.﹣13 D.﹣9【答案】C【解析】解:分式方程去分母得:ax﹣x﹣1=2,整理得:(a﹣1)x=3,由分式方程的解为非正数,得到31a-≤0,且31a-≠﹣1,解得:a<1且a≠﹣2.不等式组整理得:224axx-⎧≤⎪⎨⎪≥⎩,由不等式组无解,得到22a-<4,解得:a>﹣6,∴满足题意a的范围为﹣6<a<1,且a≠﹣2,即整数a的值为﹣5,﹣4,﹣3,﹣1,0,则满足条件的所有整数a的和是﹣13,故选C.点睛:此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.15.若关于x的分式方程3222x m mx x++=--有增根,则m的值为()A.1-B.0 C.1 D.2【答案】C【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣2=0,得到x=2,然后代入化为整式方程的方程,满足即可.【详解】解:方程两边都乘x﹣2,得x+m﹣3m=2(x﹣2),∵原方程有增根,∴最简公分母x﹣2=0,解得x=2,当x=2时,2+m﹣3m=0,∴m=1,故选:C.【点睛】本题考查了分式方程的增根,难度适中.确定增根可按如下步骤进行:①让最简公分母为0确定可能的增根;②化分式方程为整式方程;③把可能的增根代入整式方程,使整式方程成立的值即为分式方程的增根.16.《九章算术》中记录的一道题目译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多1天,如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍,求规定时间.设规定时间为x 天,则可列方程为( ) A .900900213x x ⨯=+- B .900900213x x =⨯+- C .900900213x x ⨯=-+ D .900900213x x =⨯-+ 【答案】A 【解析】 【分析】设规定时间为x 天,可得到慢马和快马需要的时间,根据快马的速度是慢马的2倍的速度关系即可列出方程. 【详解】解:设规定时间为x 天,则慢马需要的时间为(x +1)天,快马的时间为(x -3)天, ∵快马的速度是慢马的2倍∴900900213x x ⨯=+- 故选A . 【点睛】本题考查分式方程的实际应用,正确理解题意找到题中的等量关系即可列方程.17.某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x 台机器,根据题意,下面列出的方程正确的是( )A .60048040x x =- B .60048040x x =+ C .60048040x x =+ D .60048040x x =- 【答案】B 【解析】 【分析】由题意分别表达出原来生产480台机器所需时间和现在生产600台机器所需时间,然后根据两者相等即可列出方程,再进行判断即可. 【详解】解:设原计划每天生产x 台机器,根据题意得:48060040x x =+.故选B . 【点睛】读懂题意,用含x 的代数式表达出原来生产480台机器所需时间为480x天和现在生产600台机器所需时间为60040x +天是解答本题的关键.18.关于x 的分式方程26344ax x x -+=---的解为正数,且关于x 的不等式组1722x a x x >⎧⎪⎨+≥-⎪⎩有解,则满足上述要求的所有整数a 的绝对值之和为( )A .12B .14C .16D .18【答案】C 【解析】 【分析】根据分式方程的解为正数即可得出a <2且a≠1,根据不等式组有解,即可得出a >-5,找出-5<a <2且a≠1中所有的整数,将其相加即可得出结论. 【详解】解分式方程26344ax x x -+=---得:x=43a -,因为分式方程的解为正数,所以43a ->0且43a -≠4, 解得:a <3且a≠2,解不等式1722x a x x >⎧⎪⎨+≥-⎪⎩,得:x≤a+7,∵不等式组有解, ∴a+7>1, 解得:a >-6,综上,-6<a <3,且a≠2,则满足上述要求的所有整数a 的绝对值的和为: |-5|+|-4|+|-3|+|-2|+|-1|+|0|+|1|=16, 故选:C . 【点睛】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组有解,找出-6<a <3且a≠2是解题的关键.19.初二18班为课外体育活动购买了实心球和跳绳.已知跳绳的单价比实心球的单价贵40元,购买实心球总花费为1610元,购买跳绳总花费为1650元,购买实心球的数量比跳绳的数量多8个,求实心球的单价.设实心球单价为x 元,所列方程正确的是( ) A .16501610840x x -=+ B .16501610840x x -=+ C .16101650840x x -=+ D .16101650840x x -=+ 【答案】C【解析】【分析】设实心球单价为x 元,则跳绳单价为()40x +元,根据“购买实心球的数量比跳绳的数量多8个”即可得到方程.【详解】 解:设实心球单价为x 元,则跳绳单价为()40x +元,根据题意得,16101650840x x -=+. 故选:C【点睛】本题考查了分式方程的实际应用,解答本题的关键是审清题意,找到等量关系即可得解.20.2019年7月30日阳朔至鹿寨高速公路建成通车,已知从阳朔至鹿寨国道的路程为150km ,现在高速路程缩短了20km ,若走高速的平均车速是走国道的2.5倍,所花时间比走国道少用1.5小时,设走国道的平均车速为/xkm h ,则根据题意可列方程为( )A .15020150 1.52.5x x --=B .15015020 1.52.5x x--= C .15015020 1.52.5x x --= D .15020150 1.52.5x x--= 【答案】C【解析】【分析】根据“走高速用的时间比走国道少花1.5小时”列出方程即可得出答案.【详解】 根据题意可得,走高速所用时间150202.5x -小时,走国道所用时间150x小时 即15015020 1.52.5x x--= 故答案选择C.【点睛】本题考查的是分式方程在实际生活中的应用,根据公式“路程=速度×时间”及其变形列出等式是解决本题的关键.。

(易错题精选)最新初中数学—分式的难题汇编附答案

(易错题精选)最新初中数学—分式的难题汇编附答案

一、选择题1.当x =_____ 时,分式11xx-+无意义.( ) A .0 B .1C .-1D .22.如果把5xy x y+中的x 和y 都扩大为原来的10倍,那么这个分式的值( )A .不变B .扩大为原来的50倍C .扩大为原来的10倍D .缩小为原来的1103.设2222x 18n x 33x x 9+=+++--,若n 的值为整数,则x 可以取的值得个数是( ) A .5 B .4 C .3 D .2 4.0.000002019用科学记数法可表示为( )A .0.2019×10﹣5B .2.019×10﹣6C .20.19×10﹣7D .2019×10﹣9 5.小张在课外阅读中看到这样一条信息:“肥皂泡的厚度约为0.0000007m ”,请你用科学记数法表示肥皂泡的厚度,下列选项正确的是( ) A .0.7 ⨯10-6 mB .0.7 ⨯10-7mC .7 ⨯10-7mD .7 ⨯10-6m6.已知02125,,0.253a b c --⎛⎫⎛⎫=-== ⎪ ⎪ ⎪⎝⎭⎝⎭,a ,b ,c 的大小关系是( ) A .a >b >c B .b >a >c C .c >a >b D .c >b >a7.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物。

2.5微米等于0.0000025米,把0.0000025用科学记数法表示为( ) A .0.25×10–5米B .2.5×10–7米C .2.5×10–6米D .25×10–7米8.纳米是一种长度单位,1纳米810-=米,己知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为( ) A .43.510⨯米B .43.510-⨯米C .33.510-⨯米D .93.510-⨯9.已知:a ,b ,c 三个数满足,则的值为( ) A .B .C .D .10.已知x 2-4xy +4y 2=0,则分式x yx y-+的值为( )A .13-B .13C .13yD .y 31-11.把0.0813写成科学计教法8.13×10n (n 为整数)的形式,则n 为( )A .2B .-2C .3D .-312.若a =﹣0.22,b =﹣2-2,c =(﹣12)-2,d =(﹣12)0,则它们的大小关系是( ) A .a <b <c <d B .b <a <d <c C .a <d <c <bD .c <a <d <b13.下列运算正确的是( ) A .393= B .0(2)1-=C .2234a a a +=D .2325a a a ⋅=14.下列各式:2a b -,3x x +,13,a b a b +-,1()x y m -中,是分式的共有( )A .1个B .2个C .3个D .4个15.若02018a =,2201720192018b =⨯- , 2017201845()()54c =-⨯ ,则a ,b ,c 的大小关系式( ) A .a b c << B .b c a << C .c b a << D .a c b <<16.如果把分式2x y zxyz-+中的正数x ,y ,z 都扩大2倍,则分式的值( ) A .不变 B .扩大为原来的两倍 C .缩小为原来的14D .缩小为原来的1817.下列各式:351,,,,12a b x y a b x a b xπ-+++--中,是分式的共有( ) A .1个B .2个C .3个D .4个18.下列运算结果最大的是( )A .112-⎛⎫ ⎪⎝⎭B .02C .12-D .()12-19.下列等式从左到右的变形正确的是( )A .22b by x xy= B .2ab b a a =C .22b b a a=D .11b b a a +=+ 20.如图是数学老师给玲玲留的习题,玲玲经过计算得出的正确结果为( )A .1B .2C .3D .421.将分式2a bab+中的a 、b 都扩大为原来的2倍,则分式的值( )A .缩小到原来的12倍 B .扩大为原来的2倍 C .扩大为原来的4倍 D .不变22.若m+2n =0,则分式22221m n m m mn m m n +⎛⎫+÷ ⎪--⎝⎭的值为( ) A .32B .﹣3nC .﹣32n D .9223.用小数表示45.610-⨯为( ) A .5.6000B .0.00056C .0.0056D .0.05624.若a=20180,b=2016×2018-20172,c=(23-)2016×(32)2017,则a ,b ,c 的大小关系正确的是( ) A .a<b<c B .a<c<bC .b<a<cD .c<b<a25.与分式()()a b a b ---+相等的是( ) A .a ba b +- B .a ba b-+ C .a ba b+-- D .a ba b--+【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据分式无意义的条件,分母等于0,列不等式求解即可. 【详解】因为分式11xx-+无意义, 所以1+x =0, 解得x =-1. 故选C. 【点睛】本题主要考查分式无意义的条件,解决本题的关键是要熟练掌握分式无意义的条件.2.C解析:C 【解析】 【分析】首先分别判断出x 与y 都扩大为原来的10倍后,分式的分子、分母的变化情况,然后判断出这个代数式的值和原来代数式的值的关系即可. 【详解】解:∵x 与y 都扩大为原来的10倍,∴5xy 扩大为原来的100倍,x+y 扩大为原来的10倍, ∴5xyx y+的值扩大为原来的10倍, 即这个代数式的值扩大为原来的10倍. 故选:C . 【点睛】本题考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,要熟练掌握,解答此题的关键是分别判断出分式的分子、分母的变化情况.3.B解析:B 【解析】 【分析】先通分,再加减,最后化简.根据化简结果为整数,确定x 的取值个数. 【详解】 n=222218339x x x x ++++-- =()()()()()()()()2323218333333x x x x x x x x x -++-++-+-+-=()()262621833x x x x x ---+++-=()()()2333x x x ++-=23x - 当x-3=±1、±2,即x=4、2、1、5时 分式23x -的值为整数. 故选B . 【点睛】本题考查了异分母分式的加减法及分式为整数的相关知识.解决本题的关键是根据化简结果得到分式值为整数的x 的值.4.B解析:B 【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】0.000002019=2.019×10﹣6, 故选B . 【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.C解析:C 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.000 000 7=7×10-7. 故选C . 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.6.C解析:C 【解析】 【分析】根据负整数指数幂和零指数幂法则计算,比较即可. 【详解】2129==10.25=4342a b c --⎛⎛⎫=-== ⎪ ⎝⎭⎝⎭,,, ∵4>94>1, ∴c >a >b . 故选C . 【点睛】此题考查了负整数指数幂和零指数幂的运算,掌握其运算法则是解答此题的关键.7.C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.由此即可解答.【详解】0.0000025=2.5×10﹣6,故选C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8.B解析:B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】35000纳米=35000×10-8米=3.5×10-4米.故选:B.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.A解析:A【解析】【分析】由已知可得,,,,则ac+bc=3abc,ab+ac=4abc,bc+ab=5abc,把三式相加,可得2(ab+bc+ca)=12abc,即可求解.【详解】解:由已知可得,,,,则ac+bc=3abc①,ab+ac=4abc②,bc+ab=5abc③,①+②+③得,2(ab+bc+ca)=12abc,即=.故选:A.【点睛】此题考查了分式的化简求值,要特别注意观察已知条件和所求代数式的关系,再进行化简.10.B解析:B【解析】试题解析:∵x2-4xy+4y2=0,∴(x-2y)2=0,∴x=2y,∴133 x y yx y y-== +.故选B.11.B解析:B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:把0.0813写成a×10n(1≤a<10,n为整数)的形式为8.13×10-2,则n为-2.故选B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.B解析:B【解析】【分析】根据负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1,可得答案.【详解】∵a=﹣0.22=﹣0.04;b=﹣2﹣2=﹣14=﹣0.25,c=(﹣12)﹣2=4,d=(﹣12)0=1,∴﹣0.25<﹣0.04<1<4,∴b<a<d<c,故选B.【点睛】本题考查了负整数指数幂,熟练掌握负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1是解题关键.13.B解析:B 【分析】直接利用立方根,零指数幂,合并同类项法则同底数幂的乘法法则化简得出答案. 【详解】3≠,无法计算,故此选项错误; B. 0(2)1-=,故此选项正确; C. 22234a a a +=,故此选项错误; D. 2326a a a ⋅=,故此选项错误; 故选:B. 【点睛】此题考查合并同类项,零指数幂,立方根,解题关键在于掌握运算法则.14.C解析:C 【分析】利用分式的概念:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子A B叫做分式,进行解答即可. 【详解】解:在2a b -,3x x +,13,a b a b +-,1()x y m-中, 3x x +,a b a b +-,1()x y m -是分式,共3个, 故选:C . 【点睛】本题考查了分式,关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母.15.C解析:C 【分析】根据零次幂的性质,平方差公式以及积的乘方法则求出a ,b ,c ,再根据有理数的比较法则判断即可. 【详解】解:020118a ==,2222201720192018(20181)(20181)20182018120181b =⨯-=-+-=--=-,201720182017454555()()()545444c =-⨯=-⨯⨯=-,∵54-<-1<1,∴c <b <a . 故选:C . 【点睛】本题主要考查了零次幂的性质,平方差公式以及积的乘方,熟练掌握相关运算法则是解题关键.16.C解析:C 【分析】用2x 、2y ,2z 去替换原分式中的x 、y 和z ,利用分式的基本性质化简,再与原分式进行比较即可得到答案. 【详解】 ∵把分式2x y zxyz-+中的正数x ,y ,z 都扩大2倍, ∴222221222244x y z x y z x y zx y z xyz xyz-⨯+-+-+==⨯⋅⋅.∴分式的值缩小为原来的14. 故选:C. 【点睛】考查了分式的基本性质,解题关键把字母变化后的值代入式子中,然后化简,再与原式比较,得出结论.17.C解析:C 【解析】 【分析】根据分式的定义逐一进行判断即可. 【详解】31,,1x a b x a b x ++--是分式 故选:C. 【点睛】本题考查分式的定义,熟练掌握定义是关键.18.A解析:A 【解析】 【分析】直接利用负整数指数幂的性质和零指数幂的性质分别化简得出答案. 【详解】∵11=22-⎛⎫ ⎪⎝⎭;02=1;12-=12;()12=2--, 2>1>12>-2, ∴运算结果最大的是112-⎛⎫ ⎪⎝⎭, 故选A. 【点睛】本题主要考查了负整数指数幂的性质和零指数幂的性质,正确化简各数是解题关键.19.B解析:B 【分析】根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0,并且分式的值不变,由此即可判定选择项. 【详解】 A 、22b by x xy=,其中y≠0,故选项错误; B 、2ab ba a=,其中左边隐含a≠0,故选项正确; C 、2b ab a a =,故选项错误. D 、根据分式基本性质知道11b b a a ++≠,故选项错误;故选B . 【点睛】此题考查分式的基本性质,解题的关键是熟练掌握分式的基本性质.20.C解析:C 【分析】先将原式通分,可以得到222b a ab ab++,再将分子用完全平方公式进行变形,即可得到()222a b abab +-+,最后代入数值计算即可.【详解】因为2b aa b++()2222222222323233b a ab abb a aba b ab ab=+++=++-=+-⨯=+= 所以选C.【点睛】本题考查的是分式的通分和完全平方公式的变形,能够熟练掌握完全平方公式的变形是解题的关键. 21.A解析:A【分析】用2a ,2b 分别替换掉原分式中的a 、b ,进行计算后与原分式对比即可得出答案.【详解】用2a ,2b 分别替换掉原分式中的a 、b ,可得:()2221=222822+++=⨯⨯⨯a b a b a b a b ab ab ,所以分式缩小到原来的12倍, 故选A.【点睛】本题考查了分式的基本性质,关键是根据条件正确的替换原式中的字母,然后化简计算.22.A解析:A【分析】直接利用分式的混合运算法则进行化简,进而把已知代入求出答案.【详解】 解:原式=2()m n m n m m n ++--•(+)()m n m n m- =3()m m m n -•(+)()m n m n m- =3()m n m+, ∵m+2n =0,∴m =﹣2n , ∴原式=32n n --=32.故选:A .【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.23.B解析:B【分析】把数据45.610-⨯中5.6的小数点向左移动4位就可以得到.【详解】 解:441=5.6=5.60.0001=0.0005615.6100-⨯⨯⨯. 故选B.【点睛】本题考查写出用科学记数法表示的原数.(1)科学记数法a ×10n 表示的数,“还原”成通常表示的数,就是把a 的小数点向右移动n 位所得到的数.若科学记数法表示较小的数a ×10-n ,还原为原来的数,需要把a 的小数点向左移动n 位得到原数.(2)把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.24.C解析:C【分析】首先计算a 、b 、c 的值,再进行比较即可.【详解】a=20180=1,b=2016×2018-20172=222(20171)(20171)20172017120171-+-=--=-,20162017201620162016232332333()()()()()323223222c =-⨯=⨯⨯=⨯⨯=, ∵-1<1<32, ∴b<a<c ,故选:C.【点睛】此题考查零次幂定义,平方差公式,同底数幂乘法的逆运算,积的乘方的逆运算,掌握掌握各计算法则是解题的关键.25.B解析:B【分析】根据分式的基本性质,分式的分子和分母同时乘以和除以一个不为0的整式,分式的值不变.【详解】解:原分式()()()()()()1=1a b a b a ba b a b a b----⨯--=-+-+⨯-+,故选B.【点睛】本题主要考查分式的基本性质,解决本题的关键是要熟练掌握分式的基本的性质.。

最新初中数学—分式的难题汇编及答案解析(2)

最新初中数学—分式的难题汇编及答案解析(2)

一、选择题1.下面是一位同学所做的5道练习题: ①()325a a = ,②236a a a ⋅=,③22144m m -=, ④()()253aa a -÷-=-,⑤()3339a a -=-,他做对题的个数是 ( )A .1道B .2道C .3道D .4道2.把分式2210x y xy+中的x y 、都扩大为原来的5倍,分式的值( )A .不变B .扩大5倍C .缩小为15D .扩大25倍3.分式x 22x 6-- 的值等于0,则x 的取值是 A .x 2=B .x ?2=-C .x 3=D .x ?3=-4.下列式子中,错误的是 A .1a a 1a a --=- B .1a a 1a a ---=- C .1a 1aa a---=- D .1a 1aa a+---= 5.下列分式:24a 5b c ,23c 4a b ,25b2ac中,最简公分母是 A .5abcB .2225a b cC .22220a b cD .22240a b c6.计算: ()332xy ?-一 的结果是A .398x y --B .398x y ---C .391x y 2---D .361x y 2---7.下列运算,正确的是 A .0a 0= B .11a a-=C .22a a b b=D .()222a b a b -=-8.在式子:2x、5x y + 、12a - 、1x π-、21xx +中,分式的个数是( )A .2B .3C .4D .5 9.下列变形正确的是( ).A .1a b b ab b++= B .22x y x y-++=- C .222()x y x y x y x y --=++ D .23193x x x -=--10.已知a <b ,化简222a a ab b a b a-+-的结果是( )A .aB .a -C .a --D .a -11.人体中红细胞的直径约为0.000 007 7 m ,用科学记数法表示该数据为 ( ) A .7.7×106 B .7.7×107 C .7.7×10-6 D .7.7×10-7 12.下列关于分式的判断,正确的是( ) A .当x=2时,12x x +-的值为零 B .当x≠3时,3x x-有意义 C .无论x 为何值,31x +不可能得整数值 D .无论x 为何值,231x +的值总为正数 13.若 a =20170,b =2015×2017﹣20162,c =(﹣23)2016×(32)2017,则下列 a ,b ,c 的大小关系正确的是( ) A .a <b <c B .a <c <bC .b <a <cD .c <b <a14.使分式224x x +-有意义的取值范围是( ) A .2x =-B .2x ≠-C .2x =D .2x ≠15.(下列化简错误的是( ) A .(2)﹣1=22B .2(2)- =2C .25542=± D .(﹣2)0=116.若,则用u 、v 表示f 的式子应该是( )A .B .C .D .17.下列运算正确的是( ) A .a ﹣3÷a ﹣5=a 2 B .(3a 2)3=9a 5 C .(x ﹣1)(1﹣x)=x 2﹣1D .(a+b)2=a 2+b 218.纳米是一种长度单位,1米=109纳米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示这种花粉的直径为( ) A .3.5×10﹣6米 B .3.5×10﹣5米 C .35×1013米 D .3.5×1013米 19.计算(16)0×3﹣2的结果是( ) A .32 B .9C .19-D .1920.下列分式中,最简分式是( )A .211x x +-B .2211x x -+C .236212x x -+D .()2--y x x y21.如果2310a a ++=,那么代数式229263a a a a ⎛⎫++⋅ ⎪+⎝⎭的值为( ) A .1B .1-C .2D .2-22.3--2的倒数是( )A .-9B .9C .19D .-1923.若()3231tt --=,则t 可以取的值有( )A .1个B .2个C .3个D .4个24.计算()22ab ---的结果是( )A .42b a-B .42b aC .24a b -D .24a b25.计算正确的是( )A .(﹣5)0=0B .x 3+x 4=x 7C .(﹣a 2b 3)2=﹣a 4b 6D .2a 2•a ﹣1=2a【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【解析】分析:原式各项利用幂的乘方,同底数幂的乘法,负整数指数幂法则,单项式除以单项式以及积的乘方计算得到结果,判断即可.详解:①236a a =() ,故①错误;②235a a a ⋅=,故②错误; ③2244mm -=,故③错误; ④523a a a -÷-=-()(),故④正确; ⑤33327a a -=-().故⑤错误.故选A .点睛:本题考查了整式的除法,幂的乘方与积的乘方,零指数幂、负整数指数幂,熟练掌握运算法则是解答本题的关键.2.A解析:A【详解】∵要把分式2210x y xy+中的x y 、都扩大5倍,∴扩大后的分式为:()()()22222225551055251010x y x y xy x yxyxy+++==⨯⨯⨯,∴把分式2210x y xy+中的x y 、都扩大5倍,分式的值不变.故选A.点睛:解这类把分式中的所有字母都扩大n 倍后,判断分式的值的变化情况的题,通常是用分式中每个字母的n 倍去代替原来的字母,然后对新分式进行化简,再把化简结果和原来的分式进行对比就可判断新分式和原分式相比值发生了怎样的变化.3.A解析:A 【解析】由题意得:20260x x -=⎧⎨-≠⎩,解得:2x =. 故选A.点睛:分式值为0需同时满足两个条件:(1)分子的值为0;(2)分母的值不为0.4.B解析:B 【解析】 A 选项中,1(1)1a a a a a a ----==--,所以A 正确; B 选项中,1(1)1a a a a a a -----=-=---,所以B 错误; C 选项中,11a aa a ---=-,所以C 正确; D 选项中,11a aa a+---=,所以D 正确. 故选B.5.C解析:C 【解析】根据最简公分母的定义:“通常取各分母的系数的最小公倍数与各分母中所有字母因数的最高次幂的积作为各分母的公分母,这个公分母叫做这几个分式的最简公分母”可知,分式:24a 5b c ,23c 4a b ,25b 2ac 的最简公分母是:22220a b c . 故选C.6.B解析:B 【解析】3333939(2)=(-2)8xy x y x y -------=-.故选B.7.B解析:B 【解析】A 选项中,因为只有当0a ≠时,01a =,所以A 错误;B 选项中,11=a a-,所以B 正确; C 选项中,22a b的分子与分母没有公因式,不能约分,所以C 错误;D 选项中,222()2a b a ab b -=-+,所以D 错误; 故选B.8.B解析:B 【解析】 解:分式有2x 、12a -、21x x +共3个.故选B . 点睛:此题主要考查了分式的定义,正确把握分式的定义是解题关键.9.C解析:C 【解析】 选项A.a bab+ 不能化简,错误. 选项B.22x y x y-+-=-,错误. 选项C.()222x y x y x y x y --=++ ,正确. 选项D. 23193x x x -=-+,错误. 故选C.10.D解析:D 【解析】因为a-ba a b-=-故选D.,0,0a a a a a ≥⎧==⎨-<⎩,推广此时a 可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小于0,把绝对值变为括号,前面再加负号.最后去括号,化简.11.C解析:C【解析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定, 0.000 007 7=7.7×10-6, 故选C.12.D解析:D 【解析】A 选项:当x =2时,该分式的分母x -2=0,该分式无意义,故A 选项错误.B 选项:当x =0时,该分式的分母为零,该分式无意义. 显然,x =0满足x ≠3. 由此可见,当x ≠3时,该分式不一定有意义. 故B 选项错误.C 选项:当x =0时,该分式的值为3,即当x =0时该分式的值为整数,故C 选项错误.D 选项:无论x 为何值,该分式的分母x 2+1>0;该分式的分子3>0. 由此可知,无论x 为何值,该分式的值总为正数. 故D 选项正确. 故本题应选D. 点睛:本题考查了与分式概念相关的知识. 分式有意义的条件是分式的分母不等于零,并不是分母中的x 的值不等于零. 分式的值为零的条件是分式的分母不等于零且分式的分子等于零. 在分式整体的符号为正的情况下,分式值的符号由分子与分母的符号共同确定:若分子与分母同号,则分式值为正数;若分子与分母异号,则分式值为负数.13.C解析:C 【解析】 【详解】解:a =20170=1,b =2015×2017﹣20162=(2016﹣1)(2016+1)﹣20162=20162﹣1-20162=﹣1,c =(﹣23)2016×(32)2017=(﹣23×32)2016×32=32,则b <a <c .故选C . 点睛:本题考查了平方差公式,幂的乘方与积的乘方,以及零指数幂,熟练掌握运算法则及公式是解答本题的关键.14.D解析:D【解析】【分析】根据分式有意义分母不为零可得2x-4≠0,再解即可.【详解】解:由题意得:2x-4≠0,解得:x≠2,故选:D.【点睛】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.15.C解析:C【解析】【分析】分别利用负指数幂的性质以及二次根式的性质、零指数幂的性质分别化简得出答案.【详解】A、(2)﹣1=2,正确,不合题意;B、()22- =2,正确,不合题意;C、25542=,故此选项错误,符合题意;D、(﹣2)0=1,正确,不合题意;故选:C.【点睛】此题主要考查了负指数幂的性质以及二次根式的性质、零指数幂的性质,正确掌握相关运算法则是解题关键.16.B解析:B【解析】【分析】已知等式左边通分并利用同分母分式的加法法则计算,表示出f即可.【详解】,变形得:f=.故选B.【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.17.A解析:A【解析】【分析】直接利用同底数幂的除法运算法则、积的乘方运算法则、完全平方公式分别化简得出答案.【详解】A.a﹣3÷a﹣5=a2,故此选项正确;B.(3a2)3=27a6,故此选项错误;C.(x﹣1)(1﹣x)=﹣x2+2x﹣1,故此选项错误;D.(a+b)2=a2+2ab+b2,故此选项错误.故选A.【点睛】本题考查了同底数幂的除法运算法则、积的乘方运算法则、完全平方公式等知识,正确掌握相关运算法则是解题的关键.18.B解析:B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】∵1米=109纳米,某种植物花粉的直径约为35000纳米,∴35000纳米=35000×10﹣9m=3.5×10﹣5m.故选B.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.19.D解析:D【解析】【分析】根据零指数幂的性质以及负指数幂的性质先进行化简,然后再进行乘法运算即可.【详解】(16)0×3﹣2=11199⨯=,故选D.本题考查了实数的运算,涉及了零指数幂、负指数幂的运算,正确化简各数是解题关键.20.B解析:B 【分析】利用最简分式的定义判断即可. 【详解】A 、原式=()()11 111x x x x +=+--,不合题意;B 、原式为最简分式,符合题意;C 、原式=()()()666262x x x x +--=+,不合题意,D 、原式=()()2x y x y x x y x--=-,不合题意;故选B . 【点睛】此题考查了最简分式,最简分式为分式的分子分母没有公因式,即不能约分的分式.21.D解析:D 【分析】根据分式的加法和乘法可以化简题目中的式子,然后根据a 2+3a+1=0,即可求得所求式子的值. 【详解】229263a a a a ⎛⎫++⋅⎪+⎝⎭, =22962•3a a a a a +++ =()2232•3a a a a ++ =2a (a+3) =2(a 2+3a ), ∵a 2+3a+1=0, ∴a 2+3a=-1,∴原式=2×(-1)=-2, 故选D . 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.解析:A 【解析】 【分析】 首先计算3--2=-19,再根据倒数的定义求解即可. 【详解】 ∵3--2=213-=-19,-19的倒数是-9, ∴3--2的倒数是-9, 故选A. 【点睛】此题考查了倒数和负整数指数幂,掌握倒数的定义是本题的关键.23.B解析:B 【解析】 【分析】根据任何非0数的零次幂等于1,1的任何次幂等于1,-1的偶数次幂等于1解答. 【详解】当3-2t=0时,t=32,此时t-3=32-3=-32,(-32)0=1, 当t-3=1时,t=4,此时3-2t=2-3×4=-6,1-6=1, 当t-3=-1时,t=2,此时3-2t=3-2×2=-1,(-1)-1=-1,不符合题意, 综上所述,t 可以取的值有32、4共2个. 故选:B . 【点睛】本题考查了零指数幂,有理数的乘方,要穷举所有乘方等于1的数的情况.24.B解析:B 【解析】 【分析】根据负整数指数幂和幂的乘方和积的乘方解答. 【详解】 原式=(-1)-2a -2b 4 =21a •b 4=42b a.故选B.【点睛】本题主要考查了负整数指数幂,同时要熟悉幂的乘方和积的乘方.25.D解析:D【解析】解:A.原式=1,故A错误;B.x3与x4不是同类项,不能进行合并,故B错误;C.原式=a4b6,故C错误;D.正确.故选D.。

(易错题精选)最新初中数学—分式的难题汇编附答案解析

(易错题精选)最新初中数学—分式的难题汇编附答案解析

一、选择题1.在某次数学小测中,老师给出了5个判断题.如图为张晓亮的答卷,每个小题判断正确得20分,他的得分应是( )A .100分B .80分C .60分D .40分2.若a =﹣0.22,b =﹣2-2,c =(﹣12)-2,d =(﹣12)0,则它们的大小关系是( ) A .a <b <c <dB .b <a <d <cC .a <d <c <bD .c <a <d <b 3.若2220110.2,2,(),.()25a b c d --=-=-=-=-,则( )A .a b c d <<<B .b a d c <<<C .a b d c <<<D .c a d b <<< 4.若代数式()11x --有意义,则x 应满足( )A .x = 0B .x ≠ 0C .x ≠ 1D .x = 1 5.把分式a 2ab +中的a 、b 都扩大2倍,则分式的值( ) A .缩小14 B .缩小12 C .扩大2倍 D .不变6.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物。

2.5微米等于0.0000025米,把0.0000025用科学记数法表示为( )A .0.25×10–5米B .2.5×10–7米C .2.5×10–6米D .25×10–7米7.已知x 2-4xy +4y 2=0,则分式x y x y -+的值为( ) A .13-B .13C .13yD .y 31- 8.如果把分式2x y z xyz -+中的正数x ,y ,z 都扩大2倍,则分式的值( ) A .不变B .扩大为原来的两倍C .缩小为原来的14D .缩小为原来的18 9.如果把分式2++a b a b 中的a 和b 都扩大为原来的10倍,那么分式的值( ) A .不变 B .缩小10倍 C .是原来的20倍 D .扩大10倍10.化简22222a ab b a b++-的结果是( ) A .a b a b +- B .b a b - C .a a b + D .b a b+ 11.下列分式运算中,正确的是( )A .111x y x y+=+ B .x a a x b b +=+ C .22x y x y x y -=+- D ..a c ad b d bc = 12.目前,世界上能制造出的小晶体管的长度只有0.00000004m 将0.00000004用科学记数法表示为( )A .3410-⨯B .80.4 10⨯C .8410⨯D .8410-⨯13.函数 y =21x x --的自变量 x 的取值范围是( ) A .x > -1且x ≠ 1B .x ≠ 1且x ≠ 2C .x ≥ -1且x ≠ 1D .x ≥ -1 14.若把分式32ab a b +中的a 、b 都缩小为原来的13,则分式的值( ) A .缩小为原来的13B .扩大为原来的6倍C .缩小为原来的19 D .不变15.+x 的取值范围是( ) A .3<x <72 B .3≤x <72 C .3≤x ≤72 D .x ≥316.若m+2n =0,则分式22221m n m m mn m m n +⎛⎫+÷⎪--⎝⎭的值为( ) A .32 B .﹣3n C .﹣32n D .9217.下列运算错误的是( )A .235a a a ⋅=B .()()422ab ab ab ÷-=C .()222424ab a b -=D .3322a a-= 18.某种病毒变异后的直径为0.000000102米,将这个数写成科学记数法是( ) A .61.0210-⨯ B .60.10210-⨯ C .71.0210-⨯ D .810210-⨯19.下列运算正确的是( )A .1133a a ﹣=B .2322a a a +=C .326()•a a a ﹣=﹣D .32()()a a a ÷﹣﹣=20.若20.3a =-,23b -=-,021(3)3c d -⎛⎫=-=- ⎪⎝⎭,,则( ) A .a b c d <<< B .b a d c <<< C .a d c b <<< D .c a d b <<<21.使分式211x x -+的值为0,这时x 应为( ) A .x =±1 B .x =1 C .x =1 且 x≠﹣1 D .x 的值不确定22.下列等式成立的是( )A .123a b a b +=+ B .212a b a b =++ C .2ab a ab b a b =-- D .a a a b a b=--++ 23.计算下列各式①(a 3)2÷a 5=1;②(-x 4)2÷x 4=x 4;③(x -3)0=1(x ≠3);④(-a 3b )3÷5212a b =-2a 4b 正确的有( )题A .4B .3C .2D .1 24.已知1112a b -=,则ab a b -的值是( ) A .12 B .12- C .2 D .-225.已知11(1,2)a x x x =-≠≠,23121111,,,111n n a a a a a a -==⋯⋯=---,则2017a =( ) A .21x x -- B .12x - C .1x - D .无法确定【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】依据分式的化简,无理数定义,平方根定义,实数的大小比较方法依次判断各小题正确与否即可确定他的得分.【详解】 因为c a c b++是最简分式不能在进行化简,故第1小题错误,他判断正确得20分;因为227是分数属于有理数,不是无理数,所以第2小题错误,他判断正确得20分;因为0.6=-,所以第3小题错误,他判断错误不得分;因为23<<,所以112<<,所以第4小题正确,他判断正确得20分; 数轴上的点可以表示无理数,故第5小题错误,他判断正确得20分.故他应得80分,选择B【点睛】此题考察分式的化简,无理数定义,平方根定义,实数的大小比较方法,熟练掌握才能正确判断.2.B解析:B【解析】【分析】根据负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1,可得答案.【详解】∵a =﹣0.22=﹣0.04;b =﹣2﹣2=﹣14=﹣0.25,c =(﹣12)﹣2=4,d =(﹣12)0=1, ∴﹣0.25<﹣0.04<1<4,∴b <a <d <c ,故选B .【点睛】本题考查了负整数指数幂,熟练掌握负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1是解题关键. 3.B解析:B【解析】【分析】分别计算出a 、b 、c 、d 的值,再进行比较即可.【详解】因为20.2a =-=-0.04,b=22--=-14,c=212-⎛⎫- ⎪⎝⎭=4,d=015⎛⎫- ⎪⎝⎭=1, 所以b a d c <<<.故选B.【点睛】本题考查比较有理数的大小,涉及知识有负整数指数幂、0次幂,解题关键是熟记法则.4.C解析:C【解析】代数式中有0指数幂和负整数指数的底数不能为0,再求x的取值范围;【详解】解:根据题意可知,x-1≠0且解得x≠1.故选:C.【点睛】本题考查负整数指数幂和0指数幂的底数不能为0.5.D解析:D【解析】【分析】根据题意进行变形,发现实质上是分子、分母同时扩大2倍,根据分式的基本性质即可判断.【详解】根据题意,得把分式a2a b+中的a、b都扩大2倍,得2a2a a22a2b2(2a b)2a b==⨯+++,根据分式的基本性质,则分式的值不变.故选D.【点睛】此题考查了分式的基本性质.6.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.由此即可解答.【详解】0.0000025=2.5×10﹣6,故选C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7.B解析:B【解析】试题解析:∵x2-4xy+4y2=0,∴(x-2y)2=0,∴133x y y x y y -==+. 故选B .8.C解析:C【分析】用2x 、2y ,2z 去替换原分式中的x 、y 和z ,利用分式的基本性质化简,再与原分式进行比较即可得到答案.【详解】 ∵把分式2x y z xyz-+中的正数x ,y ,z 都扩大2倍, ∴222221222244x y z x y z x y z x y z xyz xyz-⨯+-+-+==⨯⋅⋅. ∴分式的值缩小为原来的14. 故选:C.【点睛】考查了分式的基本性质,解题关键把字母变化后的值代入式子中,然后化简,再与原式比较,得出结论.9.A解析:A【分析】根据分式的基本性质代入化简即可.【详解】 扩大后为:102022=1010)a b a b a b a b a b a b+++=+++10()10( 分式的值还是不变故选:A.【点睛】本题考查分式的基本性质,熟练掌握性质是关键.10.A解析:A【分析】利用完全平方公式和平方差公式化简约分即可.【详解】222222()=()()a ab b a b a b a b a b a b a b++++=-+--.【点睛】此题主要考查了分式的约分,解题的关键是正确地把分子、分母分解因式.11.C解析:C【分析】根据分式的运算法则计算各个选项中的式子,从而可以解答本题.【详解】 解:∵11,x y x y xy++= 故A 错误; (0)x a a x x b b+≠≠+,故B 错误;. 22()()x y x y x y x y x y x y-+-==+--,故C 正确; ∵.a c ac b d bd=,故D 错误. 故选:C【点睛】 本题考查分式的混合运算,解答本题的关键是明确分式的混合运算的计算方法.12.D解析:D【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:0.000 000 04=4×10-8, 故选:D .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.C解析:C【分析】根据分母不能为零且被开方数是非负数,可得答案.【详解】解:由题意得:x-1≠0且x+1≥0,解得:x≥-1且x≠1.【点睛】本题考查了函数自变量的取值范围,利用分母不能为零且被开方数是非负数得出不等式是解题关键.14.A解析:A【分析】把分式32aba b+中的a用13a、b用13b代换,利用分式的基本性质计算即可求解.【详解】把分式32aba b+中的a、b都缩小为原来的13,则分式变为1133311233a ba b ⨯⨯⨯+,则:1133311233a ba b⨯⨯⨯+=1332aba b⨯+,所以把分式32aba b+中的a、b都缩小为原来的13时分式的值也缩小为原来的13.故选:A.【点睛】本题考查了分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.15.B解析:B【分析】根据二次根式的性质,被开方数大于等于0;分母中有字母,分母不为0.【详解】由题意,得:x﹣3≥0且7﹣2x>0,解得:3≤x72<.故选B.【点睛】本题考查了二次根式有意义的条件,正确解不等式是解题的关键.16.A解析:A【分析】直接利用分式的混合运算法则进行化简,进而把已知代入求出答案.解:原式=2()m n m n m m n ++--•(+)()m n m n m- =3()m m m n -•(+)()m n m n m- =3()m n m+, ∵m+2n =0,∴m =﹣2n , ∴原式=32n n --=32. 故选:A .【点睛】 此题主要考查分式的运算,解题的关键是熟知分式的运算法则.17.B解析:B【分析】直接运用同底数幂的乘法运算法则、单项式除以单项式运算法则、积的乘方与幂的乘方运算法则以及负整数指数幂的意义分别计算得出答案再进行判断即可.【详解】A . 235a a a ⋅=,计算正确,不符合题意;B . ()()4222ab ab a b ÷-=,原选项计算错误,符合题意;C . ()222424ab a b -=,计算正确,不符合题意; D . 3322a a -=,计算正确,不符合题意. 故选:B .【点睛】此题主要考查了幂的运算,熟练掌握运算法则是解题的关键.18.C解析:C【分析】用科学记数法表示比较小的数时,n 的值是第一个不是0的数字前0的个数,包括整数位上的0.【详解】解:0.000000102=71.0210-⨯.故选:C .【点睛】此题考查科学记数法表示较小的数,解题关键在于掌握一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.19.D解析:D【分析】直接利用负指数幂的性质以及同底数幂的乘除运算法则计算得出答案.【详解】解:A 、133a a-=,故此选项错误; B 、22a a +,不是同类项无法合并; C 、()325a a a -⋅=-,故此选项错误;D 、()()32a a a -÷-=,正确; 故选:D .【点睛】此题考查负指数幂的性质以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.20.B解析:B【分析】分别求出a 、b 、c 、d 的值,比较大小即可.【详解】20.30.09a =-=-2213139b -=-=-=- 01()3c =-=1 2211=(-3))9(3d -==- 故b a d c <<<故选:B【点睛】本题考查正指数与负指数的计算,注意负指数的运算规则.21.B解析:B【分析】 使分式211x x -+的值为0,则x 2-1=0,且x+1≠0. 【详解】使分式211x x -+的值为0, 则x 2-1=0,且x+1≠0解得x =1故选:B【点睛】考核知识点:考查分式的意义. 要使分式值为0,分子等于0,分母不等于0.22.C解析:C【分析】根据分式的运算,分别对各选项进行运算得到结果,即可做出判断.【详解】A 、221b b a ab a +=+,故A 错误; B 、22a b +,分子分母具有相同的因式才可以约分,故B 错误; C 、2()ab ab a ab b b a b a b ==---,故C 正确; D 、a a a b a b=--+-,故D 错误; 故选C .【点睛】本题主要考查了分式的运算,熟悉分式的通分以及约分的重要法则是解决本题的关键.23.B解析:B【分析】根据整数指数幂的运算法则解答即可.【详解】解:①(a 3)2÷a 5=a 6÷a 5=a ,故原式错误;②(-x 4)2÷x 4=x 8÷x 4=x 4,故原式正确;③因为x ≠3,所以x -3≠0,(x -3)0=1,故原式正确;④(-a 3b )3÷12a 5b 2=-a 9b 3÷12a 5b 2=-2a 4b ,故原式正确. 所以正确的有3个,故选:B .【点睛】本题主要考查了整数指数幂的运算,熟记法则是解决此题的关键.24.D解析:D【分析】先把已知的式子变形为()2ab b a =-,然后整体代入所求式子约分即得答案.【详解】 解:∵1112a b -=, ∴()2ab b a =-, ∴()22b a ab a b a b-==---. 故选:D .【点睛】本题考查了分式的通分与约分,属于常考题目,掌握解答的方法是关键.25.C解析:C【分析】按照规定的运算方法,计算出前几个数的值,进一步找出数字循环的规律,利用规律得出答案即可.【详解】解:∵11(1,2)a x x x =-≠≠, ∴2111111(1)2a a x x ===----,321121111()2x a a xx-===----,34111211()1a x x a x===-----… ∴以x−1,12x -,21x x --为一组,依次循环, ∵2017÷3=672…1,∴2017a 的值与a 1的值相同,∴20171a x =-,故选:C .【点睛】此题考查数字的变化规律以及分式的运算,找出数字之间的运算规律,利用规律解决问题是解答此题的关键.。

最新最新初中数学—分式的难题汇编附答案解析

最新最新初中数学—分式的难题汇编附答案解析

一、选择题1.下列各分式中,最简分式是( )A .21x x +B .22m n m n-+C .22a ba b+- D .22x yx y xy ++2.把分式中的、的值同时缩小到原来的,则分式的值( )A .扩大为原来的2倍B .不变C .扩大为原来的4倍D .缩小为原来的一半3.已知02125,,0.253a b c --⎛⎫=-== ⎪⎝⎭⎝⎭,a ,b ,c 的大小关系是( ) A .a >b >c B .b >a >c C .c >a >b D .c >b >a4.若代数式1xx +有意义,则实数x 的取值范围是( ) A .0x = B .1x =-C .1x ≠D .1x ≠-5.与分式()()a b a b ---+相等的是( )A .a ba b+- B .a ba b-+ C .a ba b+-- D .a ba b--+ 6.下列各式:351,,,,12a b x y a b x a b xπ-+++--中,是分式的共有( ) A .1个B .2个C .3个D .4个7.下列各分式的值可能为零的是( ).A .2211m m +-B .11m +C .211m m +-D .211m m -+8.下列运算正确的是( )A .623x x x=B .221x a ax b b++=++ C .1122x xx x ---=-- D .0.71070.20.323a b a ba b a b--=++9.下列分式运算中,正确的是( )A .111x y x y+=+ B .x a ax b b+=+ C .22x y x y x y -=+- D ..a c adb d bc= 10.下列等式从左到右的变形正确的是( )A .22b byx xy= B .2ab b a a =C .22b b a a=D .11b b a a +=+11.若a +b =0, 则ba的值为( ) A .-1 B .0C .1D .-1或无意义12.设2222x 18n x 33x x 9+=+++--,若n 的值为整数,则x 可以取的值得个数是( ) A .5 B .4 C .3 D .2 13.如图是数学老师给玲玲留的习题,玲玲经过计算得出的正确结果为( )A .1B .2C .3D .414.已知1112a b -=,则ab a b-的值是( ) A .12B .12-C .2D .-215.将分式2a bab+中的a 、b 都扩大为原来的2倍,则分式的值( ) A .缩小到原来的12倍 B .扩大为原来的2倍 C .扩大为原来的4倍 D .不变16.1372x x-+-x 的取值范围是( ) A .3<x <72B .3≤x <72C .3≤x ≤72D .x ≥317.下列命题中:①已知两实数a 、b ,如果a >b ,那么a 2>b 2;②同位角相等,两直线平行;③如果两个角是直角,那么这两个角相等;④如果分式332x x -+无意义,那么x =﹣23;这些命题及其逆命题都是真命题的是( ) A .①② B .③④ C .①③ D .②④ 18.用小数表示45.610-⨯为( )A .5.6000B .0.00056C .0.0056D .0.05619.计算33x yx y x y---的结果是( ) A .1B .0C .3D .620.下列变形正确的是( )A .()23524a a -=- B .22220x y xy -=C .23322b ab a a-÷=- D .()()222222x y x y x y +-=-21.将0.00086用科学记数法表示为( ) A .8.6×104 B .8.60×104 C .8.6×10-4 D .8.6×10-6 22.若20.3a =-,23b -=-,021(3)3c d -⎛⎫=-=- ⎪⎝⎭,,则( )A .a b c d <<<B .b a d c <<<C .a d c b <<<D .c a d b <<<23.若222110.2,2,(),()22a b c d --=-=-=-=-,则它们的大小关系是( ) A .a b d c <<< B .b a d c <<< C .a d c b <<<D .c a d b <<<24.使分式211x x -+的值为0,这时x 应为( )A .x =±1 B .x =1C .x =1 且 x≠﹣1D .x 的值不确定25.下列变形中,正确的是( )A .2211x x y y-=-B .22m m n n=C .2()a b a ba b-=-- D .2233x x +=+【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】最简分式就是分式的分子和分母没有公因式,也可理解为分式的分子和分母的最大公因式为1.所以判断一个分式是否为最简分式,关键是要看分式的分子和分母的最大公因式是否为1. 【详解】 解:A.21xx +,分子分母的最大公因式为1; B. 22m n m n-+,分子分母中含有公因式m+n;C.22a ba b +-,分子分母中含有公因式a+b ;D.22x yx y xy ++,分子分母中含有公因式x+y故选:A. 【点睛】最简分式首先系数要最简;一个分式是否为最简分式,关键看分子与分母是不是有公因式,但表面不易判断,应将分子、分母分解因式.2.A解析:A 【解析】 【分析】根据题意可知原来的x 变成,原来的y 变成,在根据分式基本性质可以求得答案.【详解】由题意可知:分式的值扩大为原来的2倍. 故选:A 【点睛】本题考查了分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.3.C解析:C 【解析】 【分析】根据负整数指数幂和零指数幂法则计算,比较即可. 【详解】21295==10.25=434a b c --⎛⎫=-== ⎪⎝⎭⎝⎭,,, ∵4>94>1, ∴c >a >b . 故选C . 【点睛】此题考查了负整数指数幂和零指数幂的运算,掌握其运算法则是解答此题的关键.4.D解析:D 【解析】【分析】根据分式有意义的条件即分母不等于零可得x+1≠0,从而得解. 【详解】解:由题意得:x+1≠0, 解得:x≠-1, 故选:D . 【点睛】本题考查分式有意义的条件,解题关键是掌握分式有意义的条件:分母不等于零.5.B解析:B 【分析】根据分式的基本性质,分式的分子和分母同时乘以和除以一个不为0的整式,分式的值不变. 【详解】解:原分式()()()()()()1=1a b a b a ba b a b a b----⨯--=-+-+⨯-+,故选B. 【点睛】本题主要考查分式的基本性质,解决本题的关键是要熟练掌握分式的基本的性质.6.C解析:C 【解析】 【分析】根据分式的定义逐一进行判断即可. 【详解】31,,1x a b x a b x ++--是分式 故选:C. 【点睛】本题考查分式的定义,熟练掌握定义是关键.7.D解析:D 【分析】根据分式为零的条件进行计算即可. 【详解】解:∵分式有意义且它的值为零, ∴分子为0,分母不为0A. 2m +10≠,分式的值不可能为零,不符合题意;B. 10≠,分式的值不可能为零,不符合题意;C. 2m+1=0m -10⎧⎨≠⎩无解,分式的值不可能为零,不符合题意;D.当 2m -1=0m+10⎧⎨≠⎩,即m=1时,分式的值为零,符合题意;故选:D 【点睛】本题主要考查分式为零的条件,(1)分子的值为零;(2)分母的值不为零;两个条件必须同时具备,缺一不可.8.D解析:D 【分析】根据分式的基本性质,将每一个分式的分子与分母的公因式约去,再比较即可. 【详解】A. 633x x x=,故该选项不符合题意; B.221x a ax b b++≠++,故该选项不符合题意; C. 1x 122x x x ---=--,故该选项不符合题意; D.0.71070.20.323a b a ba b a b --=++,故该选项符合题意;故选:D 【点睛】此题考查约分,解题关键在于掌握运算法则.9.C解析:C 【分析】根据分式的运算法则计算各个选项中的式子,从而可以解答本题. 【详解】解:∵11,x yx y xy ++=故A 错误; (0)x a ax x b b+≠≠+,故B 错误;. 22()()x y x y x y x y x y x y -+-==+--,故C 正确; ∵.a c ac b d bd =,故D 错误. 故选:C【点睛】本题考查分式的混合运算,解答本题的关键是明确分式的混合运算的计算方法.10.B解析:B 【分析】根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0,并且分式的值不变,由此即可判定选择项. 【详解】A 、22b by x xy=,其中y≠0,故选项错误; B 、2ab ba a=,其中左边隐含a≠0,故选项正确; C 、2b aba a=,故选项错误. D 、根据分式基本性质知道11b b a a ++≠,故选项错误;故选B . 【点睛】此题考查分式的基本性质,解题的关键是熟练掌握分式的基本性质.11.D解析:D 【分析】互为相反数两个数的和为0,同时要考虑到0+0=0,从而进行判断. 【详解】 解:∵a +b =0 ∴a=-b 或a=0,b=0∴ba的值为-1或无意义, 故选:D. 【点睛】掌握互为相反数的两个数的和为0和0+0=0,是本题的解题关键.12.B解析:B 【解析】 【分析】先通分,再加减,最后化简.根据化简结果为整数,确定x 的取值个数. 【详解】n=222218339x x x x ++++-- =()()()()()()()()2323218333333x x x x x x x x x -++-++-+-+-=()()262621833x x x x x ---+++-=()()()2333x x x ++-=23x - 当x-3=±1、±2,即x=4、2、1、5时 分式23x -的值为整数. 故选B . 【点睛】本题考查了异分母分式的加减法及分式为整数的相关知识.解决本题的关键是根据化简结果得到分式值为整数的x 的值.13.C解析:C 【分析】先将原式通分,可以得到222b a ab ab++,再将分子用完全平方公式进行变形,即可得到()222a b abab +-+,最后代入数值计算即可.【详解】因为2b aa b++ ()2222222222323233b a ab ab b a ab a b abab =+++=++-=+-⨯=+=所以选C. 【点睛】本题考查的是分式的通分和完全平方公式的变形,能够熟练掌握完全平方公式的变形是解题的关键.14.D解析:D 【分析】先把已知的式子变形为()2ab b a =-,然后整体代入所求式子约分即得答案. 【详解】 解:∵1112a b -=, ∴()2ab b a =-, ∴()22b a ab a b a b-==---. 故选:D . 【点睛】本题考查了分式的通分与约分,属于常考题目,掌握解答的方法是关键.15.A解析:A 【分析】用2a ,2b 分别替换掉原分式中的a 、b ,进行计算后与原分式对比即可得出答案. 【详解】用2a ,2b 分别替换掉原分式中的a 、b ,可得:()2221=222822+++=⨯⨯⨯a b a ba b a b ab ab,所以分式缩小到原来的12倍, 故选A. 【点睛】本题考查了分式的基本性质,关键是根据条件正确的替换原式中的字母,然后化简计算.16.B解析:B 【分析】根据二次根式的性质,被开方数大于等于0;分母中有字母,分母不为0. 【详解】由题意,得:x ﹣3≥0且7﹣2x >0,解得:3≤x 72<. 故选B . 【点睛】本题考查了二次根式有意义的条件,正确解不等式是解题的关键.17.D解析:D【分析】分别写出四个命题的逆命题,利用反例对①和它的逆命题进行判断;利用平行线的性质和判定对②和它的逆命题进行判断;利用直角的定义对③和它的逆命题进行判断;利用分式有意义的条件对④和它的逆命题进行判断. 【详解】解:①已知两实数a 、b ,如果a >b ,那么a 2>b 2;若a =1,b =﹣2,结论不成立,则命题为假命题,其逆命题为:已知两实数a 、b ,如果a 2>b 2,那么a >b ;若a =﹣2,b =1时,结论不成立,所以逆命题为假命题;②同位角相等,两直线平行;则命题为真命题,其逆命题为:两直线平行,同位角相等,所以逆命题为真命题;③如果两个角是直角,那么这两个角相等;此命题为真命题,其逆命题为:如果两个角相等,那么这两个角是直角,所以逆命题为假命题; ④如果分式332x x -+无意义,那么x =﹣23;此命题为真命题,其逆命题为:如果x =﹣23,那么分式332x x -+无意义,所以逆命题为真命题; 故选:D . 【点睛】此题主要考查命题的判断,解题的关键是熟知实数的性质、平行线的性质、直角的性质及分式的性质.18.B解析:B 【分析】把数据45.610-⨯中5.6的小数点向左移动4位就可以得到. 【详解】解:441=5.6=5.60.0001=0.0005615.6100-⨯⨯⨯. 故选B. 【点睛】本题考查写出用科学记数法表示的原数.(1)科学记数法a ×10n 表示的数,“还原”成通常表示的数,就是把a 的小数点向右移动n 位所得到的数.若科学记数法表示较小的数a ×10-n ,还原为原来的数,需要把a 的小数点向左移动n 位得到原数.(2)把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.19.C解析:C 【分析】根据同分母的分式加减的法则进行计算即可.【详解】 解:()333=3x y x y x y x y x y--=--- 故选C.【点睛】本题考查了分式的加减法,掌握分式运算的法则是解题的关键.20.C解析:C【分析】原式各项计算得到结果,即可作出判断.【详解】A 、原式=4a 6,错误;B 、原式不能合并,错误;C 、原式=−232a ,正确; D 、原式=2x 2−4xy +xy−2y 2=2x 2−3xy−2y 2,错误.故选:C .【点睛】此题考查了分式的乘除法,合并同类项,幂的乘方与积的乘方,以及整式的乘法,熟练掌握公式及运算法则是解本题的关键.21.C解析:C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将8600用科学记数法表示为:8.6×10-4. 故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.22.B解析:B【分析】分别求出a 、b 、c 、d 的值,比较大小即可.【详解】20.30.09a =-=-2213139b -=-=-=- 01()3c =-=1 2211=(-3))9(3d -==- 故b a d c <<<故选:B【点睛】本题考查正指数与负指数的计算,注意负指数的运算规则.23.B解析:B【分析】根据负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1,可得答案.【详解】∵a=-0.22=-0.04;b=-2-2=-14=-0.25,c=(-12)-2=4,d=(-12)0=1, ∴-0.25<-0.04<1<4,∴b <a <d <c ,故选:B .【点睛】题考查了负整数指数幂,利用负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1是解题关键. 24.B解析:B【分析】 使分式211x x -+的值为0,则x 2-1=0,且x+1≠0. 【详解】 使分式211x x -+的值为0, 则x 2-1=0,且x+1≠0解得x =1故选:B【点睛】考核知识点:考查分式的意义. 要使分式值为0,分子等于0,分母不等于0. 25.C解析:C【分析】根据分式的性质分子分母同时乘(或除以)同一个不为零的整式,分式的值不变,进行判断选择即可.【详解】A,B,D均不符合分式分子分母同时乘(或除以)同一个不为零的整式,分式的值不变的性质,选项C可以将分子分母同时除以(a-b)到()2a ba ba b-=--,故答案选择C.【点睛】本题考查的是分式的基本性质,熟知分式中分子分母同时乘(或除以)同一个不为零的整式,分式的值不变,是解题的关键.。

(专题精选)最新初中数学—分式的难题汇编含答案

(专题精选)最新初中数学—分式的难题汇编含答案

一、选择题1.若把分式3xyx y-(,x y均不为0)中的x和y都扩大3倍,则原分式的值是()A.扩大3倍B.缩小至原来的13C.不变D.缩小至原来的162.若把分式x yxy+中的x和y都扩大2倍,那么分式的值()A.扩大2倍B.不变C.缩小2倍D.缩小4倍3.小张在课外阅读中看到这样一条信息:“肥皂泡的厚度约为0.0000007m ”,请你用科学记数法表示肥皂泡的厚度,下列选项正确的是()A.0.7 ⨯10-6m B.0.7 ⨯10-7m C.7 ⨯10-7m D.7 ⨯10-6m4.已知2125,,0.253a b c--⎛⎫⎛⎫=-==⎪⎪ ⎪⎝⎭⎝⎭,a,b,c的大小关系是()A.a>b>c B.b>a>c C.c>a>b D.c>b>a5.把分式a2a b+中的a、b都扩大2倍,则分式的值()A.缩小14B.缩小12C.扩大2倍D.不变6.下列四种说法(1)分式的分子、分母都乘以(或除以),分式的值不变;(2)分式的值能等于零;(3)的最小值为零;其中正确的说法有()A.1个B.2 个C.3 个D.0个7.把分式aba b+中的a、b都扩大为原来的3倍,则分式的值()A.扩大为原来的6倍B.不变C.缩小为原来的13D.扩大为原来的3倍8.与分式11aa-+--相等的式子是()A.11aa+-B.11aa-+C.11aa+--D.11aa--+9.如果把分式2x y zxyz-+中的正数x,y,z都扩大2倍,则分式的值( )A.不变B.扩大为原来的两倍 C.缩小为原来的14D.缩小为原来的1810.如果把分式2++a ba b中的a和b都扩大为原来的10倍,那么分式的值()A .不变B .缩小10倍C .是原来的20倍D .扩大10倍 11.下列运算结果最大的是( ) A .112-⎛⎫ ⎪⎝⎭ B .02 C .12- D .()12- 12.0.000002019用科学记数法可表示为( ) A .0.2019×10﹣5 B .2.019×10﹣6 C .20.19×10﹣7 D .2019×10﹣9 13.下列各分式中,最简分式是( )A .21x x +B .22m n m n-+ C .22a b a b +- D .22x y x y xy ++ 14.下列分式中,属于最简分式的是( ) A .42x B .11x x -- C .211x x +- D .224x x - 15.在某次数学小测中,老师给出了5个判断题.如图为张晓亮的答卷,每个小题判断正确得20分,他的得分应是( )A .100分B .80分C .60分D .40分 16.将分式2a b ab+中的a 、b 都扩大为原来的2倍,则分式的值( ) A .缩小到原来的12倍 B .扩大为原来的2倍C .扩大为原来的4倍D .不变 17.若m+2n =0,则分式22221m n m m mn m m n +⎛⎫+÷⎪--⎝⎭的值为( ) A .32B .﹣3nC .﹣32nD .92 18.若把分式xx y 2中的x 和y 同时扩大为原来的3倍,则分式的值( ) A .扩大3倍 B .缩小6倍 C .缩小3倍 D .保持不变19.下列运算正确的是( )A .1133a a ﹣=B .2322a a a +=C .326()•a a a ﹣=﹣D .32()()a a a ÷﹣﹣= 20.小明家到学校m 千米,若步行从家到学校,需要t 小时;若骑自行车,所用时间比步行少用20分钟,则骑自行车的比步行的速度快了( )A .3(1)m t t -千米/时B .(31)m t t - 千米/时C .(31)m t t -+ 千米/时D .13m t - 千米/时 21.若20.3a =-,23b -=-,021(3)3c d -⎛⎫=-=- ⎪⎝⎭,,则( ) A .a b c d <<< B .b a d c <<< C .a d c b <<< D .c a d b <<< 22.2019年底,我国爆发了新一轮的冠状病毒疫情,冠状病毒直径约80-120纳米,1纳米=1.0×10-9米,用科学记数法表示120纳米,其结果是( ) A .1.2×10-9米 B .1.2×10-8米 C .1.2×10-7米 D .1.2×10-6米 23.若x 取整数,则使分式6321x x +-的值为整数的x 值有( ) A .3个 B .4个C .6个D .8个 24.当x 为任意实数时,下列分式中,一定有意义的是( )A .1xB .11x +C .11x -D .211x + 25.下列运算正确的是( )A .623x x x= B .221x a a x b b ++=++ C .1122x x x x ---=-- D .0.71070.20.323a b a b a b a b --=++【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】将原式中x 变成3x ,将y 变成3y ,再进行化简,与原式相比较即可.【详解】 由题意得3332733333()x y xy xy x y x y x y⋅⋅==⋅---,所以原分式的值扩大了3倍 故选择A.【点睛】此题考察分式的化简,注意结果应化为最简分式后与原分式相比较.2.C解析:C【解析】【分析】根据题意,分式中的x 和y 都扩大2倍,则222()2242x y x y x y x y xy xy +++==⋅; 【详解】 解:由题意,分式x yy x +中的x 和y 都扩大2倍, ∴222()2242x y x y x y x y xy xy+++==⋅; 分式的值是原式的12,即缩小2倍; 故选C .【点睛】本题考查了分式的基本性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,分子、分母、分式本身同时改变两处的符号,分式的值不变. 3.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000 000 7=7×10-7. 故选C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.C解析:C【解析】【分析】根据负整数指数幂和零指数幂法则计算,比较即可.【详解】2129==10.25=434a b c --⎛⎫=-== ⎪⎝⎭⎝⎭,,, ∵4>94>1,∴c>a>b.故选C.【点睛】此题考查了负整数指数幂和零指数幂的运算,掌握其运算法则是解答此题的关键.5.D解析:D【解析】【分析】根据题意进行变形,发现实质上是分子、分母同时扩大2倍,根据分式的基本性质即可判断.【详解】根据题意,得把分式a2a b+中的a、b都扩大2倍,得2a2a a22a2b2(2a b)2a b==⨯+++,根据分式的基本性质,则分式的值不变.故选D.【点睛】此题考查了分式的基本性质.6.A解析:A【解析】(1)分式的分子、分母都乘以(或除以)不为零的整式,分式的值不变,故(1)错误;(2)分式的值不能等于零,故②错误;(3)的最小值为零,故(3)正确;故选A.7.D解析:D【解析】试题解析:把分式aba b+中的a、b都扩大为原来的3倍,则33333a b aba b a b⨯=++,故分式的值扩大3倍.故选D.8.B解析:B【分析】根据分式的基本性质即可得出:分式的分子、分母、分式本身的符号,改变其中的任意两个,分式的值不变,据此即可解答.解:原式=1)(1)aa--+-(=11aa-+故选:B.【点睛】本题考查分式的基本性质,解题关键是熟练掌握分式的基本性质.9.C解析:C【分析】用2x、2y,2z去替换原分式中的x、y和z,利用分式的基本性质化简,再与原分式进行比较即可得到答案.【详解】∵把分式2x y zxyz-+中的正数x,y,z都扩大2倍,∴2222212 22244x y z x y z x y zx y z xyz xyz-⨯+-+-+==⨯⋅⋅.∴分式的值缩小为原来的1 4 .故选:C.【点睛】考查了分式的基本性质,解题关键把字母变化后的值代入式子中,然后化简,再与原式比较,得出结论.10.A解析:A【分析】根据分式的基本性质代入化简即可.【详解】扩大后为:102022=1010)a b a b a b a b a b a b+++=+++10()10(分式的值还是不变故选:A.【点睛】本题考查分式的基本性质,熟练掌握性质是关键.11.A解析:A【解析】【分析】直接利用负整数指数幂的性质和零指数幂的性质分别化简得出答案.∵11=22-⎛⎫ ⎪⎝⎭;02=1;12-=12;()12=2--, 2>1>12>-2, ∴运算结果最大的是112-⎛⎫ ⎪⎝⎭, 故选A.【点睛】本题主要考查了负整数指数幂的性质和零指数幂的性质,正确化简各数是解题关键.12.B解析:B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000002019=2.019×10﹣6,故选B .【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.13.A解析:A【分析】最简分式就是分式的分子和分母没有公因式,也可理解为分式的分子和分母的最大公因式为1.所以判断一个分式是否为最简分式,关键是要看分式的分子和分母的最大公因式是否为1.【详解】解:A. 21x x +,分子分母的最大公因式为1; B. 22m n m n-+,分子分母中含有公因式m+n; C.22a b a b +-,分子分母中含有公因式a+b ; D. 22x y x y xy ++,分子分母中含有公因式x+y【点睛】最简分式首先系数要最简;一个分式是否为最简分式,关键看分子与分母是不是有公因式,但表面不易判断,应将分子、分母分解因式.14.D解析:D【分析】根据最简分式的定义即可判断.【详解】 解:42=2x x,故A 选项错误; ()11=111x x x x ---=---,故B 选项错误; ()()2111==1111x x x x x x ++-+--,故C 选项错误; 224x x -,故D 选项正确. 故选:D【点睛】本题主要考查的是最简分式的定义,正确的掌握最简分式的定义是解题的关键.15.B解析:B【分析】依据分式的化简,无理数定义,平方根定义,实数的大小比较方法依次判断各小题正确与否即可确定他的得分.【详解】 因为c a c b ++是最简分式不能在进行化简,故第1小题错误,他判断正确得20分; 因为227是分数属于有理数,不是无理数,所以第2小题错误,他判断正确得20分;因为0.6=-,所以第3小题错误,他判断错误不得分;因为23<<,所以112<<,所以第4小题正确,他判断正确得20分; 数轴上的点可以表示无理数,故第5小题错误,他判断正确得20分.故他应得80分,选择B【点睛】此题考察分式的化简,无理数定义,平方根定义,实数的大小比较方法,熟练掌握才能正确判断.16.A【分析】用2a ,2b 分别替换掉原分式中的a 、b ,进行计算后与原分式对比即可得出答案.【详解】用2a ,2b 分别替换掉原分式中的a 、b ,可得:()2221=222822+++=⨯⨯⨯a b a b a b a b ab ab ,所以分式缩小到原来的12倍, 故选A.【点睛】本题考查了分式的基本性质,关键是根据条件正确的替换原式中的字母,然后化简计算.17.A解析:A【分析】直接利用分式的混合运算法则进行化简,进而把已知代入求出答案.【详解】 解:原式=2()m n m n m m n ++--•(+)()m n m n m- =3()m m m n -•(+)()m n m n m- =3()m n m+, ∵m+2n =0,∴m =﹣2n , ∴原式=32n n --=32. 故选:A .【点睛】 此题主要考查分式的运算,解题的关键是熟知分式的运算法则.18.D解析:D【分析】 根据题意把分式xx y 2中的x 和y 同时扩大为原来的3倍,将其化简后与原分式进行比价即可做出判断.【详解】 解:∵分式xx y 2中的x 和y 同时扩大为原来的3倍∴()23322333x x x x y x y x y⋅⋅==+++ 则分式的值保持不变.故选:D【点睛】本题考查了分式的基本性质,属于基础题型,能够熟练掌握分式的基本性质是解决问题的关键.19.D解析:D【分析】直接利用负指数幂的性质以及同底数幂的乘除运算法则计算得出答案.【详解】解:A 、133a a-=,故此选项错误; B 、22a a +,不是同类项无法合并; C 、()325a a a -⋅=-,故此选项错误;D 、()()32a a a -÷-=,正确; 故选:D .【点睛】此题考查负指数幂的性质以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.20.B解析:B【分析】利用速度=路程÷时间分别求得步行的速度和骑自行车的速度,从而利用分式的运算法则求得两者的速度差.【详解】 解:步行的速度是:m t (km /h ),骑自行车的速度是:31313m m t t =--(km /h ), 则骑自行车的速度与步行的速度差为:331(31)m m m t t t t-=--. 故选:B .【点睛】本题考查了列代数式及分式的加减运用,正确表示出步行和骑自行车的速度是解题的关键. 21.B解析:B【分析】分别求出a 、b 、c 、d 的值,比较大小即可.【详解】20.30.09a =-=-2213139b -=-=-=- 01()3c =-=1 2211=(-3))9(3d -==- 故b a d c <<<故选:B【点睛】本题考查正指数与负指数的计算,注意负指数的运算规则.22.C解析:C【分析】绝对值小于1的正数利用科学记数法表示,一般形式为a ×10-n ,n 由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:120纳米=120×10-9米=1.2×10-7米,故选:C .【点睛】本题考查用科学记数法表示较小的数(绝对值小于1的正数利用科学记数法表示,一般形式为a ×10-n ,n 由原数左边起第一个不为零的数字前面的0的个数所决定),明确科学记数法的表示方法是解题的关键.23.B解析:B【分析】 首先把分式转化为6321x +-,则原式的值是整数,即可转化为讨论621x -的整数值有几个的问题.【详解】 6363663212121x x x x x +-+==+---, 当216x -=±或3±或2±或1±时,621x -是整数,即原式是整数. 当216x -=±或2±时,x 的值不是整数,当等于3±或1±是满足条件. 故使分式6321x x +-的值为整数的x 值有4个,是2,0和1±.故选B.【点睛】本题主要考查了分式的值是整数的条件,把原式化简为6321x+-的形式是解决本题的关键.24.D解析:D【分析】根据分式有意义分母不为零分别进行分析即可.【详解】A、当0x=时,分式无意义,故此选项错误;B、当1x=-时,分式无意义,故此选项错误;C、当1x=时,分式无意义,故此选项错误;D、当x为任意实数时,分式都有意义,故此选项正确;故选:D.【点睛】本题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.25.D解析:D【分析】根据分式的基本性质,将每一个分式的分子与分母的公因式约去,再比较即可.【详解】A.633xxx=,故该选项不符合题意;B. 221x a ax b b++≠++,故该选项不符合题意;C.1x122xx x---=--,故该选项不符合题意;D.0.71070.20.323a b a ba b a b--=++,故该选项符合题意;故选:D【点睛】此题考查约分,解题关键在于掌握运算法则.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.若代数式34a +在实数范围内有意义,则a 的取值范围是( )A .4a ≠-B .4a ≥-C .4a >-D .4a >-且0a ≠2.分式x 5x 6-+ 的值不存在,则x 的取值是 A .x ?6=-B .x 6=C .x 5≠D .x 5=3.下列式子中,错误的是 A .1a a 1a a --=- B .1a a 1a a ---=- C .1a 1aa a---=- D .1a 1aa a+---= 4.如果分式242x x --的值等于0,那么( )A .2x =±B .2x =C .2x =-D .2x ≠5.下列变形正确的是( ).A .11a ab b+=+ B .11a ab b--=-- C .221a b a b a b-=-- D .22()1()a b a b --=-+ 6.如果112111S t t =+,212111S t t =-,则12S S =( ) A .1221t t t t +- B .2121t t t t -+ C .1221t t t t -+ D .1212t t t t +- 7.已知有理式:4x 、4a 、1x y -、34x 、12x 2、1a +4,其中分式有 ( )A .2个B .3个C .4个D .5个8.分式a x ,22x y x y +-,2121a a a --+,+-x y x y中,最简分式有( ). A .1个B .2个C .3个D .4个9.已知a <b ,化简222a a ab b a b a-+-的结果是( )A .aB .a -C .a --D .a -10.下列选项中,使根式有意义的a 的取值范围为a <1的是( ) A .a 1-B .1a -C .()21a - D .11a- 11.若 a =20170,b =2015×2017﹣20162,c =(﹣23)2016×(32)2017,则下列 a ,b ,c 的大小关系正确的是( ) A .a <b <c B .a <c <bC .b <a <cD .c <b <a12.计算22193x x x+--的结果是( ) A .13x - B .13x + C .13x- D .2339x x +- 13.下面是一位同学所做的5道练习题: ①()325a a = ,②236a a a ⋅=,③22144m m -=, ④()()253aa a -÷-=-,⑤()3339a a -=-,他做对题的个数是 ( )A .1道B .2道C .3道D .4道14.下列关于分式的判断正确的是 ( ) A .无论x 为何值,231x +的值总为正数 B .无论x 为何值,31x +不可能是整数值 C .当x =2时,12x x +-的值为零 D .当x ≠3时3x x-,有意义 15.一种花粉颗粒直径约为0.0000065米,数字0.0000065用科学记数法表示为( ) A .0.65×10﹣5 B .65×10﹣7 C .6.5×10﹣6 D .6.5×10﹣5 16.氢原子的半径约为0.000 000 000 05m ,用科学记数法表示为( ) A .5×10﹣10m B .5×10﹣11m C .0.5×10﹣10m D .﹣5×10﹣11m 17.甲、乙两人分两次在同一粮店内买粮食,两次的单价不同,甲每次购粮100千克,乙每次购粮100元.若规定:谁两次购粮的平均单价低,谁的购粮方式就合算.那么这两次购粮( ) A .甲合算 B .乙合算C .甲、乙一样D .要看两次的价格情况18.已知m ﹣1m ,则1m+m 的值为( )A .B C .D .1119.若a =-0.32,b =-3-2,c =(-13)-2,d =(-13)0,则它们的大小关系是( ) A .a<c<b<dB .b<a<d<cC .a<b<d<cD .b<a<c<d20.在12 ,2x y x - ,212x + ,m +13 ,-2x y - 中分式的个数有( ) A .2个 B .3个C .4个D .5个21.如果把分式2+mm n中的m 和n 都扩大2倍,那么分式的值 ( ) A .扩大4倍B .缩小2倍C .不变D .扩大2倍22.如果2310a a ++=,那么代数式229263a aa a ⎛⎫++⋅ ⎪+⎝⎭的值为( ) A .1B .1-C .2D .2-23.3--2的倒数是( )A .-9B .9C .19D .-1924.如果a =(﹣99)0,b =(-3)﹣1,c =(﹣2)﹣2,那么a ,b ,c 三数的大小为( ) A .a >b >c B .c >a >b C .c <b <a D .a >c >b25.若 ()1311xx --=,则 x 的取值有 ()A .0 个B .1 个C .2 个D .3 个【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:根据二次根式与分式有意义的条件和分式有意义的条件即可求出a 的范围. 详解:由题意可知:a+4>0 ∴a >-4 故选C .点睛:解题的关键是正确理解二次根式有意义的条件和分式有意义的条件,本题属于基础题型.2.A解析:A 【解析】 ∵分式56x x -+的值不存在, ∴分式56x x -+无意义, ∴60x +=,解得:6x =-. 故选A.3.B解析:B 【解析】A 选项中,1(1)1a a a a a a ----==--,所以A 正确; B 选项中,1(1)1a a a a a a-----=-=---,所以B 错误; C 选项中,11a aa a ---=-,所以C 正确; D 选项中,11a aa a+---=,所以D 正确. 故选B.4.C解析:C 【解析】根据题意得:24020x x ⎧-=⎨-≠⎩,解得:x=−2. 故选C. 5.B解析:B 【解析】 A 选项中,11a b ++不能再化简,所以A 中变形错误; B 选项中,11a ab b--=--,所以B 中变形正确; C 选项中,221()()a b a b a b a b a b a b--==-+-+,所以C 中变形错误;D 选项中,2222()()1()()a b a b a b a b --+==++,所以D 中变形错误; 故选B.6.B解析:B 【解析】∵112111S t t =+,212111S t t =-, ∴S 1=1212t t t t +,S 2=1221t t t t -,∴12112211221221t t s t t t t t t s t t t t +-==+-, 故选B .【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.7.B解析:B 【解析】4a 、、34x 、12x 2的分母中均不含有字母,因此它们是整式,而不是分式. 4x、、1x y -、1a +4的分母中含有字母,因此是分式.所以B 选项是正确的.点睛:本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.8.B解析:B 【解析】试题解析:a x ,+-x yx y是最简分式,221()()x y x y x y x y x y x y ++==-+--,2211121(1)1a a a a a a --==-+--.故选B.9.D解析:D 【解析】因为a-ba a b-=-故选D. ,0,0a a a a a ≥⎧==⎨-<⎩,推广此时a 可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小于0,把绝对值变为括号,前面再加负号.最后去括号,化简.10.D解析:D 【解析】解:A .当a ≥1时,根式有意义.B .当a ≤1时,根式有意义.C .a 取任何值根式都有意义.D .要使根式有意义,则a ≤1,且分母不为零,故a <1. 故选D .点睛:判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母的不等于0混淆.11.C解析:C 【解析】 【详解】解:a =20170=1,b =2015×2017﹣20162=(2016﹣1)(2016+1)﹣20162=20162﹣1-20162=﹣1,c =(﹣23)2016×(32)2017=(﹣23×32)2016×32=32,则b <a <c .故选C . 点睛:本题考查了平方差公式,幂的乘方与积的乘方,以及零指数幂,熟练掌握运算法则及公式是解答本题的关键.12.B解析:B 【解析】原式=()()2x x 3x 3+-−1 x 3-=()()()2x x 3x 3x 3-++-=()()x 3x 3x 3-+-=1x 3+.故选:B.13.A解析:A 【解析】分析:原式各项利用幂的乘方,同底数幂的乘法,负整数指数幂法则,单项式除以单项式以及积的乘方计算得到结果,判断即可.详解:①236a a =() ,故①错误;②235a a a ⋅=,故②错误; ③2244mm -=,故③错误; ④523a a a -÷-=-()(),故④正确; ⑤33327a a -=-().故⑤错误.故选A .点睛:本题考查了整式的除法,幂的乘方与积的乘方,零指数幂、负整数指数幂,熟练掌握运算法则是解答本题的关键.14.A解析:A【解析】 【分析】根据分式有意义的条件、分式值为0的条件、分式值是正负等逐一进行分析即可得. 【详解】A 、分母中x 2+1≥1,因而23x 1+的值总为正数,故A 选项正确; B 、当x+1=1或-1时,3x 1+的值是整数,故B 选项错误; C 、当x=2时,分母x-2=0,分式无意义,故C 选项错误; D 、当x=0时,分母x=0,分式无意义,故D 选项错误, 故选A . 【点睛】本题考查了分式的值为零的条件,分式的定义,分式有意义的条件,注意分式的值是正数的条件是分子、分母同号,值是负数的条件是分子、分母异号.15.C解析:C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:0.0000065的小数点向右移动6位得到6.5, 所以数字0.0000065用科学记数法表示为6.5×10﹣6, 故选C . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.16.B解析:B 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】0.00000000005=5×10﹣11. 故选B . 【点睛】本题考查了用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.17.B解析:B 【解析】 【分析】分别算出两次购粮的平均单价,用做差法比较即可. 【详解】解:设第一次购粮时的单价是x 元/千克,第二次购粮时的单价是y 元/千克,甲两次购粮共花费:100x+100y ,一共购买了粮食:100+100=200千克,甲购粮的平均单价是:1001002002x y x y++=;乙两次购粮共花费:100+100=200元,一共购买粮食:()100100100x y x y xy++=(千克),乙购粮的平均单价是:2xyx y+; 甲乙购粮的平均单价的差是:()()()()22420222x y xy x y x y xy x y x y x y >+--+-==+++, 即22x y xyx y++>, 所以甲购粮的平均单价高于乙购粮的平均单价,乙的购粮方式更合算,故选B . 【点睛】本题考查的知识点是做差法,解题关键是注意一个数的平方为非负数.18.A解析:A 【分析】根据完全平方公式即可得到结果. 【详解】1m-=m21m-=7m ⎛⎫∴ ⎪⎝⎭, 221m -2+=7m ∴, 221m +=9m∴,22211m+=m +2+=11m m ⎛⎫∴ ⎪⎝⎭,1m+m∴=.故选A.【点睛】本题主要考查完全平方公式,熟悉掌握公式是关键.19.B解析:B【解析】【分析】首先根据一个数的平方的计算方法,负整数指数幂的运算方法,以及零指数幂的运算方法,分别求出a、b、c、d的大小;然后根据实数大小比较的方法,判断出它们的大小关系即可.【详解】∵20 221110.30.09,3,9,1933a b c d--⎛⎫⎛⎫=-=-=-=-=-==-=⎪ ⎪⎝⎭⎝⎭,∴10.0919 9-<-<<,∴b<a<d<c.故选:B.【点睛】考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a-p=1pa(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.20.A解析:A【解析】【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,找到分母中含有字母的式子的个数即可.【详解】解:式子2x yx-,-2x y-中都含有字母是分式.故选:A.【点睛】本题考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.21.C解析:C【解析】 【分析】根据分式的分子分母都乘以(或除以)同一个不为零的数(或整式),分式的值不变,可得答案. 【详解】分式2+m m n 中的m 和n 都扩大2倍,得4222m mm n m n =++,∴分式的值不变, 故选A . 【点睛】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(或整式),分式的值不变.22.D解析:D 【分析】根据分式的加法和乘法可以化简题目中的式子,然后根据a 2+3a+1=0,即可求得所求式子的值. 【详解】229263a a a a ⎛⎫++⋅⎪+⎝⎭, =22962•3a a a a a +++ =()2232•3a a a a ++ =2a (a+3) =2(a 2+3a ), ∵a 2+3a+1=0, ∴a 2+3a=-1,∴原式=2×(-1)=-2, 故选D . 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.23.A解析:A 【解析】 【分析】 首先计算3--2=-19,再根据倒数的定义求解即可.【详解】∵3--2=213-=-19,-19的倒数是-9, ∴3--2的倒数是-9,故选A.【点睛】此题考查了倒数和负整数指数幂,掌握倒数的定义是本题的关键.24.D解析:D【解析】【分析】根据0指数幂、负整数指数幂的运算法则分别求出a 、b 、c 的值即可求得答案.【详解】a =(﹣99)0=1,b =(-3)﹣1=13-,c =(﹣2)﹣2=()21142=-, 11143>>-, 所以a >c >b ,故选D.【点睛】 本题考查了实数大小的比较,涉及了0指数幂、负整数指数幂,求出a 、b 、c 的值是解题的关键.25.C解析:C【分析】直接利用零指数幂的性质以及有理数的乘方运算法则得出答案.【详解】解:∵(1-x )1-3x =1,∴当1-3x=0时,原式=1,当x=0时,原式=1,故x 的取值有2个.故选C .【点睛】此题主要考查了零指数幂的性质以及有理数的乘方运算,正确掌握运算法则是解题关键.。

相关文档
最新文档