3.3轴对称与坐标变化 (1)
3.3 轴对称与坐标变化(课件)北师大版数学八年级上册

所以根据关于坐标轴对称的点的坐标特征
可得A′(-3,-1),B′(-1,0),C′(-2,1),A″(3,1),
B″(1,0),C″(2,-1).
1-1.如图,在平面直角坐标系中,每个小正方形的边 知1-练 长均为 1.
(1)点 A 在第__四__ 象限, 它的坐标是_(3_,__-__2_)__ ;
(1)若点A,B关于x轴对称,求a,b的值; 解:因为点A,B关于x轴对称, 所以2a+b=2b-1,5+a-a+b=0, 解得a=-3,b=-5.
知2-练
(2)若点A,B关于y轴对称,求(4a+4b)2 025 的值. 解:因为点A,B关于y轴对称, 所以2a+b+2b-1=0,5+a=-a+b,
知1-讲
图示
知1-讲
特别提醒 当原图上所有点的横坐标不变,纵坐标乘
-1后,得到新图形上对应点的坐标,则新图形 与原图形上的每一组对应点都关于 x 轴对称, 所以新图形与原图形关于x轴对称;同理可得新 图形与原图形关于 y 轴对称的变化方式 .
知1-练
例1 [母题 教材P69习题T2 ]△ABC在平面直角坐标系中 的位置如图3-3-1所示,已知A,B,C三点在格点上, 请分别画出与△ABC关于x轴和y轴对称的图形,并 写出对称图形顶点的坐标.
A.1
B.-1
C.32 025
D.0
课堂小结
轴对称与坐标变化
画轴对称图形
对称轴 坐标轴
关键
关于坐标轴对称 坐标 变化
作对称点
关于x 轴对称
关于y 轴对称
称,横不变,纵相反;纵对称,纵不变,横相反. ◆关于坐标轴对称的点的坐标只有符号不同,其绝
对值相同.
知2-练
例2 已知点A(2a+b,5+a),B(2b-1,-a+b). (1)若点A,B关于x轴对称,求a,b的值; (2)若点A,B关于y轴对称,求(4a+4b)2 025 的值.
八年级数学上册3.3轴对称与坐标变化教学设计 (新版北师大版)

八年级数学上册3.3轴对称与坐标变化教学设计(新版北师大版)一. 教材分析本节课的内容是北师大版八年级数学上册3.3轴对称与坐标变化。
这部分内容是学生学习了平面直角坐标系、图形的轴对称变换等知识后进行的,是学生进一步学习函数、几何等知识的基础。
本节课主要让学生了解坐标与图形的轴对称变换之间的关系,学会如何运用坐标来表示图形的轴对称变换。
二. 学情分析学生在学习本节课之前,已经掌握了平面直角坐标系的知识,对图形的轴对称变换也有了一定的了解。
但是,学生可能对坐标与轴对称变换之间的关系理解不够深入,需要通过本节课的学习来进一步掌握。
三. 教学目标1.知识与技能:让学生掌握坐标与图形的轴对称变换之间的关系,能运用坐标来表示图形的轴对称变换。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生探索数学问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极思考、合作交流的学习习惯。
四. 教学重难点1.重点:坐标与图形的轴对称变换之间的关系。
2.难点:如何运用坐标来表示图形的轴对称变换。
五. 教学方法采用问题驱动法、案例分析法、合作交流法等教学方法,引导学生通过自主学习、探究学习、合作学习,掌握坐标与图形的轴对称变换之间的关系。
六. 教学准备1.教师准备:教材、课件、教学素材等。
2.学生准备:课本、练习本、文具等。
七. 教学过程1.导入(5分钟)教师通过一个简单的轴对称变换案例,引导学生回顾轴对称变换的定义,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过课件展示坐标与轴对称变换之间的关系,让学生观察、思考,引导学生发现坐标与轴对称变换之间的规律。
3.操练(10分钟)教师给出一些具体的轴对称变换问题,让学生独立解决,进一步巩固坐标与轴对称变换之间的关系。
4.巩固(10分钟)教师学生进行小组讨论,分享各自解决问题的方法,互相学习,共同提高。
5.拓展(10分钟)教师引导学生运用所学知识解决一些实际问题,让学生感受数学与生活的紧密联系。
北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计

北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计一. 教材分析北师大版八年级数学上册3.3《轴对称与坐标变化》是学生在学习了平面直角坐标系、坐标与图形的性质等知识的基础上,进一步研究图形的轴对称性质以及坐标变化规律。
本节内容通过具体实例让学生体会坐标变化与图形轴对称之间的关系,提高学生的空间想象能力和抽象思维能力。
二. 学情分析学生在七年级已经学习了平面直角坐标系的相关知识,对坐标与图形的性质有了初步了解。
但轴对称与坐标变化的知识较为抽象,需要通过具体实例和操作活动,让学生逐步理解和掌握。
三. 教学目标1.理解轴对称的定义,掌握坐标变化与轴对称之间的关系。
2.能够运用坐标变化规律,解决实际问题。
3.培养学生的空间想象能力和抽象思维能力。
四. 教学重难点1.教学重点:坐标变化与轴对称之间的关系。
2.教学难点:如何运用坐标变化规律解决实际问题。
五. 教学方法采用问题驱动法、案例分析法、合作学习法等,引导学生通过观察、思考、操作、交流等活动,理解坐标变化与轴对称的内在联系。
六. 教学准备1.准备相关的多媒体教学课件和教学素材。
2.准备坐标纸、剪刀、胶水等实验材料。
3.设计好课堂练习题和课后作业。
七. 教学过程1.导入(5分钟)通过一个简单的实例,如翻转一张纸片,让学生观察和描述其轴对称性质。
引导学生思考:如何用坐标来表示轴对称变换?2.呈现(10分钟)利用多媒体课件,展示一系列轴对称变换的图形,让学生观察和分析坐标变化规律。
引导学生发现:轴对称变换不改变图形的大小和形状,只改变图形的位置。
3.操练(10分钟)让学生分组进行实验,使用坐标纸、剪刀、胶水等材料,制作并观察轴对称变换的图形。
要求学生用自己的语言描述坐标变化规律。
4.巩固(10分钟)课堂练习:让学生独立完成教材中的相关练习题,巩固轴对称与坐标变化的知识。
教师巡回指导,解答学生的疑问。
5.拓展(10分钟)让学生思考:轴对称变换在实际生活中有哪些应用?引导学生举例说明,如建筑设计、艺术创作等。
北师大版八年级数学上册:3.3《轴对称与坐标变化》教案

北师大版八年级数学上册:3.3《轴对称与坐标变化》教案一. 教材分析《轴对称与坐标变化》这一节的内容,主要让学生了解轴对称的概念,以及如何利用坐标来表示轴对称图形。
通过学习,学生能理解轴对称图形的性质,并能够运用坐标变化来解决一些实际问题。
二. 学情分析八年级的学生已经学习了平面几何的基础知识,对图形的性质和坐标系有一定的了解。
但是,对于轴对称的概念和坐标变化的应用,可能还存在一定的困难。
因此,在教学过程中,需要引导学生通过观察、操作、思考,自主探索轴对称的性质和坐标变化的应用。
三. 教学目标1.了解轴对称的概念,理解轴对称图形的性质。
2.学会利用坐标来表示轴对称图形,并能够运用坐标变化解决实际问题。
3.培养学生的观察能力、操作能力和思维能力。
四. 教学重难点1.轴对称的概念和性质。
2.坐标变化的应用。
五. 教学方法采用问题驱动的教学方法,引导学生通过观察、操作、思考,自主探索轴对称的性质和坐标变化的应用。
同时,运用小组合作学习的方式,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备一些轴对称的图形,如正方形、矩形、三角形等。
2.准备坐标纸,以便学生进行坐标操作。
3.准备一些实际问题,如寻找平面直角坐标系中的对称点等。
七. 教学过程1.导入(5分钟)利用多媒体展示一些轴对称的图形,如剪刀、飞机等,引导学生观察这些图形的特点,引出轴对称的概念。
2.呈现(10分钟)让学生拿出准备好的轴对称图形,观察并描述它们的特点。
引导学生发现轴对称图形的性质,如对称轴两侧的图形完全相同,对称轴是图形的中心线等。
3.操练(10分钟)让学生在坐标纸上画出一些轴对称图形,并标出对称轴。
然后,让学生将对称轴沿坐标轴移动,观察图形的变化。
通过操作,让学生理解坐标变化对轴对称图形的影响。
4.巩固(10分钟)让学生解决一些实际问题,如寻找平面直角坐标系中的对称点等。
通过解决问题,巩固学生对轴对称和坐标变化的理解。
5.拓展(10分钟)让学生思考:轴对称图形在现实生活中的应用。
3.3轴对称与坐标变化+课件+2023-2024学年北师大版数学八年级上册

6.如图,在3×3的正方形网格中有四个格点A,B,C,D,以其中一 点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余 三个点中存在两个点关于一条坐标轴对称,则原点是( B ) A.点A B.点B C.点C D.点D
7.若点A(1+m,1-n)与点B(-3,2)关于y轴对称,则m+n的值 是( D ) A.-5 B.-3 C.3 D.1
即 22+52= 29.
巩固提升
1.在平面直角坐标系中,点A的坐标为(1,2).作点A关于x轴的对称 点,得到点A′,则点A′所在的象限是( D ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.蝴蝶标本可以近似地看作轴对称图形,如图,将一只蝴蝶标本放 在平面直角坐标系中,如果图中点A的坐标为(-5,3),则其关于y轴 对称的点B的坐标为( A ) A.(5,3) B.(5,-3) C.(-5,-3) D.(3,5)
5.如图所示的点A,B,C,D,E中,哪两个点关于x轴对称?哪两个 点关于y轴对称?点C和点E关于x轴对称吗?为什么? 解:因为点A(-3,2),B(-3,-2),E(3,-2), 所以点A,B关于x轴对称,点B,E关于y轴对称. 因为点C(3,3),E(3,-2), 所以点C,E不关于x轴对称.
7.【空间观念、几何直观】△ABC在平面直角坐标系中的位置如图 所示.
(1)画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别为A,B, C的对应点); 解:如图所示,△A′B′C′即为所求.
(2)直接写出A′,B′,C′三点的坐标; 解:A′,B′,C′三点的坐标分别为(2,3),(3,1),(-1,-2). (3)在y轴上找一点P,使得PA+PB最小,画出点P所在的位置(保留作 图痕迹,不写作法),并求出PA+PB的最小值. 解:如图所示,点 P 即为所求,PA+PB 的最小值为线段 A′B 的长,
北师大版数学 八年级上册 轴对称与坐标变化

(x , y)
( x , -y)
横坐标不变,纵坐标变为相反数.
3.关于原点轴对称的两个图形上点的坐标特征:
(x , y)
(-x , -y) 横坐标、纵坐标都变为相反数.
巩固练习
1.在平面直角坐标系中,点P(-4,6) 关于x轴对称的
点的坐标为( A )
A.(-4,-6)
B.(4,-6)
C.(-6,-4)
对应点的横坐 标互为相反数
对应点的纵 坐标相等
(3)如果点P(m,n)在△ABC内,那么它在 △A1B1C1内的对应点P1的坐标是 (-m,n).
探究新知
3.通过以上学习,你知道关于x轴对称的两个点的坐标 之间的关系吗?关于y轴对称的两个点的坐标之间的关 系呢?
关于x轴对称的两个点 的坐标,横坐标相同, 纵坐标互为相反数;
关于y轴对称的两个点 的坐标,横坐标互为 相反数,纵坐标相同.
关于x轴对称的点, 横坐标相同;
关于y轴对称的点, 纵坐标相同.
探究新知
素养考点 1 根据坐标轴变化的规律确定点的坐标
例 若点A(1+m,1-n)与点B(-3,2)关于y轴对称,
则m+n的值是(D )
A.-5
B.-3
C.3
D.1
解析:因为点A(1+m,1-n)与点B(-3,2)关于y轴 对称,所以1+m=3,1-n=2,解得m=2,n=- 1.所以m+n=2-1=1.
接A,B,C,D,E,F,G,H,A各点.
分析:方法一:点(x,y)关于y轴对称的点的坐标是(-x,y), 作点B,C,D关于y轴对称的点的关键是确定各对称点的坐标, 然后顺次平滑连接各点即得所要求的图形; 方法二:利用轴对称先作出图形,再直观判断F,G,H的坐标.
3.3 轴对称与坐标变化2024-2025学年八年级数学上册同步教学课件(北师大版)

(2,6)
C2
B2
A2 (2,-6)
(4)在这个坐标系里画出小旗ABCD关于 原点的对称图形,它的各个“顶点”的 坐标与原来的点的坐标有什么关系?
(2,6)
A (2,6) B (5,4) C (2,4) A2 ( -2 , -6 ) B2 ( -5 , -4 ) C2 ( -2 , -4 )
(3)在这个坐标系里画出小旗ABCD关于x
轴的对称图形,它的各个“顶点”的坐标
与原来的点的坐标有什么关系?
先做出对称图形:
对应点横坐标相同, 纵坐标互为相反数.
步骤:①找各对应点位置;②连线
A (2,6) B (5,4) C (2,4) A2 ( 2 , -6 ) B2 ( 5 , -4 ) C2 ( 2 , -4 )
对应点横、纵互为相反数.
B2
C2
1.关于原点对称的图形:各顶点关于原点对称; 2.关于原点对称的点的坐标:对应点的横、纵 坐标互为相反数
A2 (-2,-6)
例2 在平面直角坐标系中依次 连接下列各点: ( 0 , 0 ),( 5 , 4 ),( 3 , 0 ),( 5 , 1 ),( 5 , -1 ),( 3 , 0 ),( 4 , -2 ), ( 0 , 0 ), 你得到了一个怎样的图案?
鱼
(1)将各坐标的纵坐标保持不变,横 坐标都乘以 -1,那么图形会怎么变 化呢? 坐标变化为:
(x,y) (5,4) (3,0) (5,1) (5,-1) (-x,y) (-5,4) (-3,0) (-5,1) (-5,-1)
答:与原图形关于 y 轴对称.
3.3《轴对称与坐标变化》北师大版八年级数学上册精品教案

第三章位置与坐标3 轴对称与坐标变化一、教学目标1.在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.2.经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合思想.3.通过“坐标与轴对称”,让学生体验数学活动充满着探索与创造.4.通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动.二、教学重难点重点:在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.难点:经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合思想.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计教学环节教师活动学生活动设计意图环节一创设情境【复习回顾】问题1:什么叫轴对称?教师活动:教师演示对应的课件,学生观看思考后回答.预设:如果两个平面图形沿一直线折叠后能够完全重合,那么称这两个图形成轴对称,这条直线叫做这两个图形的对称轴.问题2:如何在平面直角坐标系中确定点P的位置?预设:a称为点P的横坐标,b称为点P的纵学生回忆并积极回答.通过回忆已学知识,一方面加深记忆,另一方面为后面学习新知识坐标.做铺垫.环节二探究新知【探究】教师活动:通过问题1、2,引导学生探究两个点关于x、y轴对称的规律.探究过程由浅到深,循序渐进,符合学生的认知过程.情境1:问题1 如右图所示的平面直角坐标系中,第一、二象限内各有一面小旗.(1)两面小旗之间有怎样的位置关系?预设:关于y轴成轴对称(2)请在下表中填入点A与A1、点B与B1、点C与C1、点D与D1的坐标,并思考:这些对应点的坐标之间有什么关系?预设:找到对应点,列表、画图:对应点的横坐标互为相反数,对应点的纵观察两面小旗,尝试找到对应点的坐标,并交流、讨论对应坐标之间的特征.通过呈现两面关于y轴对称的小旗,问题1引领学生思考关于y轴对称的点的坐标的特征.(3)如果点P(m,n)在△ABC内,那么它在△A1B1C1内的对应点P1的坐标是_______ .预设:P与P1横坐标互为相反数,纵坐标相同,则P1(-m,n).情境2:△ABC与△A1B1C1在如图所示的直角坐标系中,仔细观察,完成下列各题:(1)△ABC与△A1B1C1有怎样的位置关系?预设:关于x轴成轴对称(2)请在下表中填入点A与A1、点B与B1、点C与C1的坐标,并思考:这些对应点的坐标之间有什么关系?预设:找到对应点,列表:对应点的横坐标相同,对应点的纵坐标互观察两个图形,尝试找到对应点的坐标,并交流、讨论对应坐标之间的特征.通过呈现两个关于x轴对称的三角形问题2,进一步研究关于x轴对称的点的坐标的特征.(3)如果点P(m,n)在△ABC内,那么它在△A1B1C1内的对应点P1的坐标是_______ .预设:P与P1横坐标互为相反数,纵坐标相同,则P1(-m,n).【议一议】通过以上学习,你知道关于x轴对称的两个点的坐标之间的关系吗?关于y轴对称的两个点的坐标之间的关系呢?预设:关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,横坐标互为相反数,纵坐标相同.友情提醒:关于横轴对称的点,横坐标相同;关于纵轴对称的点,纵坐标相同.交流讨论,与教师一起归纳目的是引导学生讨论关于坐标轴对称的点的坐标之间的关系,也可以更全面地认识轴对称与坐标变化之间的关系.环节三应用新知【典型例题】教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.例(1)在平面直角坐标系中依次连接下列各点:(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0) ,(4,-2),(0,0),你得到了一个怎样的图案?(2)将所得图案的各个顶点的纵坐标保持不变,横坐标分别乘-1,依次连接这些点,那么图形会怎么变化?分析:(1)坐标轴上依次描出各点,顺次连接即可;(2)找出变化后的对应顶点的坐标,再顺次连接所的图形与原图形进行对比.解:(1)它像一条鱼.(2)顶点坐标的变化两个图案关于y轴对称.教师动画演示两个图案关于y轴对称,达到强化巩固的目的.【做一做】明确例题的做法,尝试独立解答,并交流讨论通过解决例题与做一做,明确图形的变化实际上是图形上点的坐标变化.(1)在平面直角坐标系中依次连接下列各点:(5,2),(4,4),(6,3),(7,6),(8,3),(10,2),(7,1) ,(5,2),你又能得到了一个怎样的图案?(2)将所得图案的各个顶点的横坐标保持不变,纵坐标分别乘-1,依次连接这些点,那么图形会怎么变化?解:(1)它像一片树叶.(2)顶点坐标的变化两个图案关于x轴对称.教师动画演示两个图案关于x轴对称,达到强化巩固的目的.【归纳】仿照例题的做法,尝试独立解答,并交流讨论(1)关于y轴对称的两个图形上点的坐标特征:横坐标互为相反数,纵坐标相同;(2)关于x轴对称的两个图形上点的坐标特征:横坐标相同,纵坐标互为相反数.与教师一起归纳总结总结归纳两个图形上点的坐标特征.环节四巩固新知教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.平面直角坐标系中,点P(4,5)关于x轴对称的点的坐标为__________.2. 已知点A(a,2)与点A1(3,b)关于y轴对称,则a=__________,b=__________.3.如图,利用关于坐标轴对称的点的坐标的特点,请你试着分别作出△ABC关于x轴和y轴对称的图形.答案:1. (4,-5)2.-3,23.如下图:自主完成练习,然后进行集体交流、评价.通过课堂练习及时巩固本节课所学内容,并考查学生的知识应用能力,培养独立完成练习的习惯.红色图形是关于x轴对称的,绿色图形是关于y轴对称的.环节五课堂小结思维导图的形式呈现本节课的主要内容:学生尝试回顾本节课所讲的内容通过小结总结回顾本节课学习内容,帮助学生归纳、巩固所学知识.环节六布置作业教科书第70页习题3.5 第1、3题.学生课后自主完成.通过课后作业,教师能及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
横不变纵反;
纵不变横反;
结论:
纵坐标相同,横坐标互为相反数的两个点关 于y轴(纵轴)对称。 横坐标相同,纵坐标互为相反数的两个点关于 x轴(横轴)对称。
学以致用
1.若将点A(2,-1)的横坐标保持不变,纵坐标乘以 (-1)得到点B的坐标为 (2,1) ,此时点A与点B的位 置关系是 关于X轴对称 . 2.若点p关于y轴的对称点为点Q(2,3),则点P关于 X轴的对称点坐标为( B ) A.(-3,-2) B.(-2,-3) C.(-2,3) D.(2.-3)
拓展延伸
已知△ABC是平面坐标系内一个三角形,若将其坐标中 的横坐标加4,纵坐标乘以(-1),原图案会发生什么 样的变化? y
5 4
原图案会先向右平移4 个单位,再关于x轴对 称。
3 2 1 -5 -4 -3 -2 - 1 0 1 2 3 4 5 x
-1 -2 -3
-4 -5
1.两点关于横轴(x轴)对称
纵坐标不变,横坐 (0,0) 标变为原来的-1倍, (-5,4) (-3 ,0) 得到“鱼”与原来 (-5,1) y 轴 的“鱼”关于_____ (-5,-1) 对称. (-3,0)
(-4,-2) (-x,y)
(0,0)
(5,4)
(3 ,0) (5,1) (5,-1) (3,0) (4,-2) (x,y)
(3)对应点 A与A 的坐标有什么 1 特点? 纵坐标相同,横坐标互为相反数 其它对应的点也有这个特点吗?
(- 2,6)
(2,6)
同样具有
知识点1:关于y轴对称的两点,它 们的纵坐标相同,横坐标互为相反 数;
D3
探究
(4)在这个坐标系里画出小旗ABCD关 于x轴的对称图形,它的各个“顶点”
(2,6)
y 5 4 3 2
(5,4)
(3 ,0) (5,1) (5,-1)
1
-5 -4 -3 -2 -1 0 1 2 3 4 5 x -1 -2 -3
(5,1)
(3,0) (4,2)
(3,0)
(4,-2)
-4
-5
思考:
1.纵坐标不变,横坐标互为相反数的两个点有什 么样的关系?
2.横坐标不变,纵坐标互为相反数的两个点有什 么样的关系?
典型例题
(1)在平面直角坐标系中依次连接下列各点:(0,0)(5,4) (3,0)(5,1)(5,-1)(3,0)(4,-2)(0,0)你得 到了一个怎样的图案?
y 5 4 3 2
1
-5 -4 -3 -2 -1 0 1 2 3 4 5 x -1 -2 -3 -4 -5
典型例题
(2)将所得的图案的各个“顶点”的纵坐标保持不变,横坐 标分别乘(-1),再依次连接这些点,你会得到怎样的图案? (3)这个图案与原图案又有怎样的位置关系呢? (4)在(1)的基础上,你还能提出什么问题?
的坐标与原来的点的坐标有什么关系?
横坐标相同,纵坐标互为相反数 知识点1:关于X轴对称的两点, 它们的横坐标相同,纵坐标互为 相反数; 思考:关于坐标轴对称的两个点 的横纵坐标之间有什么关系?D3C2来自A2B2接龙游戏
( 2,-3) 1.点(2,3)关于X轴的对称点坐标为 。
方法小结:
关于什么轴对称,什么轴的坐标不变,另一坐标互为相反数。
一、知识储备
1.在直角坐标系中,对于平面上的任意 一个点 ( 形)都有唯一
的一个有序 实数对 ( 数 )与它对应,反过来,对于任意一 个 有序实数对( 数 )都有平面上唯一的 一个点( 形)与它对应。 2.在学案中的平面直角坐标系中,描出下列各点,并将各点依 次用线段连接起来。C1(-2.4)B1(-5,4)A1(-2,6) D1(-2,0)你得到的是一个怎样的图案?
小组合学
如右图所示的平面直角坐标系中,
第一、二象限内各有一面小旗。 (1)两面小旗之间有怎样的位置关系?
关于y轴成轴对称
(2)完成填空: A( 2,6 ) A1(-2,6 ) B( 5,4 ) B1(-5,4 ) C( 2,4 ) C1( -2,4 ) D( 2,0 ) D1(-2,0 )
探究
问题提出:横坐标不变纵坐标乘以(-1),得到的图 形与原图形又有怎样的位置关系? 问题解决:横坐标不变,纵坐标变为原来的-1倍, X 轴 对称 得到“鱼”与原来的“鱼”关于________ 即:点(x,y)与(x,-y)是关于________ X 轴 对称的点。
(x,y) (0,0) (x,-y) (0,0) (5,-4) (3 ,0) (5, -1)